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Waveguide problem
▶ Scattering in time-harmonic regime of a plane wave in the acoustic
waveguide Ω coinciding with {(x, y) ∈ R × (0; 1)} outside a compact region.

Ω

+L−L

+ Tw++Rw−

w+

Find u = ui + us s. t.
∆u + k2u = 0 in Ω,

∂nu = 0 on ∂Ω,
us is outgoing.

▶ For this problem, the modes are

Propagating
Evanescent

w±
n (x, y) = e±iβnx cos(nπy), βn =

√
k2 − n2π2, n ∈ J0, N − 1K

w±
n (x, y) = e∓βnx cos(nπy), βn =

√
n2π2 − k2, n ≥ N.

▶ For k ∈ (0; π), only 2 propagating modes w± = e±ikx. Set ui = w+.

▶ We have

u =
w+ + R w− + . . . for x ≤ −L

T w+ + . . . for x ≥ +L

The . . . are expo.
decaying terms.

Definition: R, T ∈ C are the reflection and transmission coefficients.
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Invisibility
▶ At infinity, one measures only R and/or T (other terms are too small).
▶ From conservation of energy, one has

|R|2 + |T |2 = 1.

Definition: Defect is said non reflecting if R = 0 (|T | = 1)
perfectly invisible if T = 1 (R = 0).

For T = 1, defect cannot be detected from far field measurements.

Remark: less ambitious than usual
cloaking and therefore, more accessi-
ble. Also relevant for applications.

GOAL
We explain how to use perturbative techniques to construct
geometries such that R = 0 or T = 1.
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General picture

▶ Perturbative technique: we construct small non reflecting defects using
variants of the implicit functions theorem.

R = 0

1 + h(x)

R = 0

4 / 51



Outline of lecture 2

1 A few notions of asymptotic analysis

2 Invisible smooth perturbations of the reference geometry

3 Non smooth invisible perturbations of the reference geometry
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1 A few notions of asymptotic analysis
Perturbation in the equation
Smooth perturbation of the domain

2 Invisible smooth perturbations of the reference geometry

3 Non smooth invisible perturbations of the reference geometry
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Perturbation of the Poisson’s problem

▶ We study a first simple example with a perturbation in the equation.
For Ω a bounded Lipschitz domain and f ∈ L2(Ω), consider the problem

(Pε) −∆uε + εuε = f in Ω
uε = 0 on ∂Ω.

▶ For all ε ≥ 0, (Pε) admits a unique solution uε in H1
0(Ω) (Lax-Milgram).

▶ We want to compute an expansion of uε to explicit its dependence with
respect to ε as ε → 0.

General procedure:
Step I: we propose an expansion (ansatz) and identify the terms of this
expansion.
Step II: we prove error estimates.
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Step I - ansatz

(Pε) −∆uε + εuε = f in Ω
uε = 0 on ∂Ω.

▶ Consider the ansatz

uε = u0 + εu1 + ε2u2 + . . .

where the terms u0, u1, u2, . . . have to be determined.

▶ Inserting the expansion in (Pε), letting ε tends to zero and identifying
the powers in ε, we get

−∆u0 = f in Ω
u0 = 0 on ∂Ω

∆u1 = u0 in Ω
u1 = 0 on ∂Ω

∆u2 = u1 in Ω
u2 = 0 on ∂Ω.

▶ Each of these problems admits a unique solution in H1
0(Ω).

→ This defines the expansion.
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Step II - error estimate 1/2
▶ The proof of error estimates generally relies on two points:

1) A stability estimate;
2) A consistency result.

Combining the two, then we get the desired error estimate.

1) Stability estimate. Green’s formula gives∫
Ω

|∇uε|2 + ε|uε|2 dx =
∫

Ω
fuε dx.

From the Poincaré inequality

∥φ∥L2(Ω) ≤ CP ∥φ∥H1
0(Ω) := ∥∇φ∥L2(Ω), ∀φ ∈ H1

0(Ω),

we deduce the stability estimate, for all ε > 0,

∥uε∥H1
0(Ω) ≤ CP ∥f∥L2(Ω). (∗)

“The solution of (Pε) is controlled uniformly (CP is independent
of ε, f) by the source term.”
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Step II - error estimate 2/2

2) Consistency results. Set ûε :=
N∑

n=0
εnun ∈ H1

0(Ω).

Inserting the error uε − ûε in (Pε), we obtain the discrepancy

(−∆ + ε)(uε − ûε) = f − (−
N∑

n=0
εn∆un +

N+1∑
n=1

εnun−1) = −εN+1uN .

Using this consistency result in the stability estimate (∗), we find

∥uε − ûε∥H1
0(Ω) ≤ CP εN+1∥uN ∥L2(Ω).

Noting that ∥uN ∥L2(Ω) ≤ CP ∥uN ∥H1
0(Ω) ≤ C3

P ∥uN−1∥H1
0(Ω), finally we get:

Proposition: We have the error estimate

∥uε − ûε∥H1
0(Ω) ≤ C2N+2

P εN+1∥f∥L2(Ω).

10 / 51



Step II - error estimate 2/2

2) Consistency results. Set ûε :=
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Smooth perturbation of the domain
▶ We perturb slightly (ε ≥ 0 is small) the geometry

Ω0

I := (−1; 1) × {0}

Ωε

εh(x)

Locally ∂Ωε coincides with the graph of x 7→ εh(x),
where h ∈ C ∞

0 (−1; 1) is a given profile function.

▶ We consider the Laplace problem in the perturbed domain

(Pε) −∆uε = f in Ωε

uε = 0 on ∂Ωε.

▶ For all ε ≥ 0, (Pε) has a unique solution uε in H1
0(Ωε) (Lax-Milgram).

What is the dependence of uε with respect to ε

→ This question has been extensively studied in shape optimization.
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A first formal approach
▶ Let O be a fixed neighbourhood of the perturbation. To simplify, we
assume that f ∈ L2(Ωε) is zero in O. In Ω0, we consider the ansatz

uε = u0 + εu1 + . . .

where the terms u0, u1 have to be determined.

▶ Observing that at the limit ε → 0, Ωε converges to Ω0, we get

−∆u0 = f in Ω0

u0 = 0 on ∂Ω0

−∆u1 = 0 in Ω0

u1(x, y) = −h(x)∂yu0(x, 0)1I(x, y) on ∂Ω0.

▶ For the boundary conditions, for (x, y) ∈ I, we can write
0 = uε(x, εh(x)) = uε(x, 0) + εh(x)∂yuε(x, 0) + . . .

= u0(x, 0) + εu1(x, 0) + εh(x)∂yu0(x, 0) + . . . .

This uniquely defines u0 and u1.

→ Let us see how to justify this formal calculus.
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Error estimates 1/3

To establish error estimates, we consider a change of variables to work
in a fixed geometry.

▶ For all ε ∈ [0; ε0], there is a smooth diffeomorphism

Φε : Ω0 → Ωε

x = (x1, x2) 7→ x = Φε(x) = x + εϕ(x).

Ω0

Φε(·)
Ωε

▶ With this choice, Φε is a small perturbation of the identity.

▶ We can take ϕ supported in O, of the form

ϕ(x) = (ϕ1(x), ϕ2(x)) = (0, h(x1)ρ(x2))

where ρ is smooth, compactly supported and equal to one in a vicinity of 0.

▶ Observe that we have Φε|Ω0\O = Id .
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Error estimates 2/3
▶ Set Uε = uε ◦ Φε, V = v ◦ Φε, F = f ◦ Φε. We have∫

Ωε=Φε(Ω0)
∇uε · ∇v dx =

∫
Ωε=Φε(Ω0)

fv dx

⇔
∫

Ω0

(Id + ε(Dϕ)⊤)−1∇Uε · (Id + ε(Dϕ)⊤)−1∇V JΦε dx =
∫

Ω0

F V JΦε dx.

Here
Dϕ =

(
∂x1 ϕ1 ∂x2 ϕ1
∂x1 ϕ2 ∂x2 ϕ2

)
=

(
0 0

ρ∂x1 h h∂x2 ρ

)
JΦε = det(Id + εDϕ) = 1 + εh∂x2 ρ.

▶ Thus we obtain the problem

Find Uε ∈ H1
0(Ω0) such that

−div(σε∇Uε) = F JΦε in Ω0

with
σε := JΦε (Id + ε(Dϕ))−1(Id + ε(Dϕ)⊤)−1 = Id + εσ1 + ε2σ2 + . . .

F JΦε = F + εh∂x2 ρF.
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Error estimates 3/3

Now the geometry is fixed and we have a pertubation in the equation.

▶ Considering the expansion
Uε = U0 + εU1 + ε2U2 + . . . ,

we can prove the following error estimate with C independent of ε ∈ (0; ε0]

∥Uε −
N∑

n=0
εnUn∥H1

0(Ω0) ≤ C εN+1∥f∥L2(Ω0).

▶ Since uε = Uε ◦ Φ−1
ε , this yields

∥uε −
N∑

n=0
εnUn ◦ Φ−1

ε ∥H1
0(Ωε) ≤ C εN+1∥f∥L2(Ω0).

▶ Using that
U0 ◦ Φ−1

ε + εU1 ◦ Φ−1
ε = U0 + ε (U1 − ∇U0 · ϕ) + . . .

U0 = u0, U1 − ∇U0 · ϕ = U1 − hρ∂x2U0 = u1,

finally we obtain ∥uε − (u0 + εu1)∥H1(Ω0\O) ≤ C ε2∥f∥L2(Ω0).
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Comments

▶ This is only to give a flavour. Much more refined results exist in the
literature concerning shape optimization.

M. Pierre and A. Henrot. Shape Variation and Optimization. A
Geometrical Analysis. EMS, 2018.

M.C. Delfour and J.P. Zolésio. Shapes and geometries: metrics,
analysis, differential calculus, and optimization. Society for Industrial
and Applied Mathematics, 2011.

▶ In particular:
- For this Dirichlet problem, smoothness assumptions of the geometry can
be considerably relaxed and result exist when Ω0 is only measurable.

- Higher order terms can be computed but then smoothness on f is required.
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1 A few notions of asymptotic analysis

2 Invisible smooth perturbations of the reference geometry
General scheme
Dirichlet problem
Neumann problem

3 Non smooth invisible perturbations of the reference geometry
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General picture

▶ Perturbative technique: we construct small non reflecting defects using
variants of the implicit functions theorem.

R = 0

1 + h(x)

R = 0
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Sketch of the method
1 + h(x)▶ For h ∈ C ∞

0 (R), denote R(h) ∈ C
the reflection coef. in the geometry:

Note that R(0) = 0
(no obstacle leads to null measurements).

Our goal: to find h ̸≡ 0 such that R(h) = 0.

▶ We look for h of the form h = εµ with ε > 0 small and µ to determine.

We can show that dR(0) : C ∞
0 (R) → C is onto

⇒ ∃µ0, µ1, µ2 s.t.

dR(0)(µ0) = 0, dR(0)(µ1) = 1, dR(0)(µ2) = i.

▶ Take µ = µ0 + τ1µ1 + τ2µ2 where the τn are real parameters to set:

0 = R(εµ) ⇔

Gε is a contraction ⇒ the fixed-point equation has a unique solution τ⃗ sol.

Set hsol := εµsol. We have R(hsol) = 0 (non reflecting perturbation).
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Calculus of the differential 1/2
εµ(x)

Ωε

(Pε)
∆uε + k2uε = 0 in Ωε

uε = 0 on ∂Ωε

uε − w+ is outgoing

▶ We need to compute dR(0)(µ) that is the term R1 in the expansion

R(εh) = R0 + εR1 + . . . .

▶ Inserting the expansion uε = u0 + εu1 + . . . in (Pε), we find

∆u0 + k2u0 = 0 in Ω0

u0 = 0 on ∂Ω0

u0 − w+ is outgoing

∆u1 + k2u1 = 0 in Ω0

u1 = −µ∂yu0 on ∂Ω0

u1 is outgoing.

▶ On the top wall, we have

0 = uε(x, εµ(x)) = uε(x, 1) + εµ(x)∂yuε(x, 1) + . . .

= u0(x, 1) + εu1(x, 1) + εµ(x)∂yu0(x, 1) + . . . .

22 / 51



Calculus of the differential 1/2
εµ(x)

Ωε

(Pε)
∆uε + k2uε = 0 in Ωε

uε = 0 on ∂Ωε

uε − w+ is outgoing

▶ We need to compute dR(0)(µ) that is the term R1 in the expansion

R(εh) = R0 + εR1 + . . . .

▶ Inserting the expansion uε = u0 + εu1 + . . . in (Pε),

we find

∆u0 + k2u0 = 0 in Ω0

u0 = 0 on ∂Ω0

u0 − w+ is outgoing

∆u1 + k2u1 = 0 in Ω0

u1 = −µ∂yu0 on ∂Ω0

u1 is outgoing.

▶ On the top wall, we have

0 = uε(x, εµ(x)) = uε(x, 1) + εµ(x)∂yuε(x, 1) + . . .

= u0(x, 1) + εu1(x, 1) + εµ(x)∂yu0(x, 1) + . . . .

22 / 51



Calculus of the differential 1/2
εµ(x)

Ωε

(Pε)
∆uε + k2uε = 0 in Ωε

uε = 0 on ∂Ωε

uε − w+ is outgoing

▶ We need to compute dR(0)(µ) that is the term R1 in the expansion

R(εh) = R0 + εR1 + . . . .

▶ Inserting the expansion uε = u0 + εu1 + . . . in (Pε), we find

∆u0 + k2u0 = 0 in Ω0

u0 = 0 on ∂Ω0

u0 − w+ is outgoing

∆u1 + k2u1 = 0 in Ω0

u1 = −µ∂yu0 on ∂Ω0

u1 is outgoing.

▶ On the top wall, we have

0 = uε(x, εµ(x)) = uε(x, 1) + εµ(x)∂yuε(x, 1) + . . .

= u0(x, 1) + εu1(x, 1) + εµ(x)∂yu0(x, 1) + . . . .

22 / 51



Calculus of the differential 1/2
εµ(x)

Ωε

(Pε)
∆uε + k2uε = 0 in Ωε

uε = 0 on ∂Ωε

uε − w+ is outgoing

▶ We need to compute dR(0)(µ) that is the term R1 in the expansion

R(εh) = R0 + εR1 + . . . .

▶ Inserting the expansion uε = u0 + εu1 + . . . in (Pε), we find

∆u0 + k2u0 = 0 in Ω0

u0 = 0 on ∂Ω0

u0 − w+ is outgoing

∆u1 + k2u1 = 0 in Ω0

u1 = −µ∂yu0 on ∂Ω0

u1 is outgoing.

▶ On the top wall, we have

0 = uε(x, εµ(x)) = uε(x, 1) + εµ(x)∂yuε(x, 1) + . . .

= u0(x, 1) + εu1(x, 1) + εµ(x)∂yu0(x, 1) + . . . .

22 / 51



Calculus of the differential 1/2
εµ(x)

Ωε

(Pε)
∆uε + k2uε = 0 in Ωε

uε = 0 on ∂Ωε

uε − w+ is outgoing

▶ We need to compute dR(0)(µ) that is the term R1 in the expansion

R(εh) = R0 + εR1 + . . . .

▶ Inserting the expansion uε = u0 + εu1 + . . . in (Pε), we find

∆u0 + k2u0 = 0 in Ω0

u0 = 0 on ∂Ω0
u0 − w+ is outgoing

∆u1 + k2u1 = 0 in Ω0

u1 = −µ∂yu0 on ∂Ω0

u1 is outgoing.

▶ On the top wall, we have

0 = uε(x, εµ(x)) = uε(x, 1) + εµ(x)∂yuε(x, 1) + . . .

= u0(x, 1) + εu1(x, 1) + εµ(x)∂yu0(x, 1) + . . . .

22 / 51



Calculus of the differential 2/2
▶ We have u0 = w+ and u1 is uniquely defined.

▶ Set Σ±L = {±L} × (−1; 0) for L large enough. From the known formula

2iβ1R(εµ) =
∫

Σ±L

∂nuεw+ − uε∂nw+dσ, where ∂n = ±∂x at x = ±L,

we infer that R0 = 0, 2iβ1dR(0)(µ) =
∫

Σ±L

∂nu1w+ − u1∂nw+dσ.

Integrating by parts, finally we get the final result:
Proposition:

dR(0)(µ) = i

2β1

∫ L

−L

µ(x)(∂yw+(x, 1))2 dx = iπ2

β1

∫ L

−L

µ(x)e2iβ1x dx.

- Working with symmetries, one checks that dR(0) : C ∞
0 (R) → C is onto .

- Error estimates allow one to prove that Gε is a contraction of any
closed ball for ε small enough.

⇒ Thus we can create geometries Ωε where Rε = 0 for the Dirichlet pb.

23 / 51



Calculus of the differential 2/2
▶ We have u0 = w+ and u1 is uniquely defined.

▶ Set Σ±L = {±L} × (−1; 0) for L large enough. From the known formula

2iβ1R(εµ) =
∫

Σ±L

∂nuεw+ − uε∂nw+dσ, where ∂n = ±∂x at x = ±L,

we infer that R0 = 0, 2iβ1dR(0)(µ) =
∫

Σ±L

∂nu1w+ − u1∂nw+dσ.

Integrating by parts, finally we get the final result:
Proposition:

dR(0)(µ) = i

2β1

∫ L

−L

µ(x)(∂yw+(x, 1))2 dx = iπ2

β1

∫ L

−L

µ(x)e2iβ1x dx.

- Working with symmetries, one checks that dR(0) : C ∞
0 (R) → C is onto .

- Error estimates allow one to prove that Gε is a contraction of any
closed ball for ε small enough.

⇒ Thus we can create geometries Ωε where Rε = 0 for the Dirichlet pb.

23 / 51



Calculus of the differential 2/2
▶ We have u0 = w+ and u1 is uniquely defined.

▶ Set Σ±L = {±L} × (−1; 0) for L large enough. From the known formula

2iβ1R(εµ) =
∫

Σ±L

∂nuεw+ − uε∂nw+dσ, where ∂n = ±∂x at x = ±L,

we infer that R0 = 0, 2iβ1dR(0)(µ) =
∫

Σ±L

∂nu1w+ − u1∂nw+dσ.

Integrating by parts, finally we get the final result:
Proposition:

dR(0)(µ) = i

2β1

∫ L

−L

µ(x)(∂yw+(x, 1))2 dx = iπ2

β1

∫ L

−L

µ(x)e2iβ1x dx.

- Working with symmetries, one checks that dR(0) : C ∞
0 (R) → C is onto .

- Error estimates allow one to prove that Gε is a contraction of any
closed ball for ε small enough.

⇒ Thus we can create geometries Ωε where Rε = 0 for the Dirichlet pb.

23 / 51



Calculus of the differential 2/2
▶ We have u0 = w+ and u1 is uniquely defined.

▶ Set Σ±L = {±L} × (−1; 0) for L large enough. From the known formula

2iβ1R(εµ) =
∫

Σ±L

∂nuεw+ − uε∂nw+dσ, where ∂n = ±∂x at x = ±L,

we infer that R0 = 0, 2iβ1dR(0)(µ) =
∫

Σ±L

∂nu1w+ − u1∂nw+dσ.

Integrating by parts, finally we get the final result:
Proposition:

dR(0)(µ) = i

2β1

∫ L

−L

µ(x)(∂yw+(x, 1))2 dx = iπ2

β1

∫ L

−L

µ(x)e2iβ1x dx.

- Working with symmetries, one checks that dR(0) : C ∞
0 (R) → C is onto .

- Error estimates allow one to prove that Gε is a contraction of any
closed ball for ε small enough.

⇒ Thus we can create geometries Ωε where Rε = 0 for the Dirichlet pb.

23 / 51



Calculus of the differential 2/2
▶ We have u0 = w+ and u1 is uniquely defined.

▶ Set Σ±L = {±L} × (−1; 0) for L large enough. From the known formula

2iβ1R(εµ) =
∫

Σ±L

∂nuεw+ − uε∂nw+dσ, where ∂n = ±∂x at x = ±L,

we infer that R0 = 0, 2iβ1dR(0)(µ) =
∫

Σ±L

∂nu1w+ − u1∂nw+dσ.

Integrating by parts, finally we get the final result:
Proposition:

dR(0)(µ) = i

2β1

∫ L

−L

µ(x)(∂yw+(x, 1))2 dx = iπ2

β1

∫ L

−L

µ(x)e2iβ1x dx.

- Working with symmetries, one checks that dR(0) : C ∞
0 (R) → C is onto .

- Error estimates allow one to prove that Gε is a contraction of any
closed ball for ε small enough.

⇒ Thus we can create geometries Ωε where Rε = 0 for the Dirichlet pb.
23 / 51



Comments
▶ We can check that hsol = εµsol ̸≡ 0 (work by contradiction).

▶ The invisible perturbation coincides with the graph of the function
ε(µ0 + τ sol

1 µ1 + τ sol
2 µ2)

where µ0 ∈ ker dR(0) (remind that dR(0) : C ∞
0 (R) → C).

⇒ There exist an infinite number of non reflecting geometries.

▶ We can show that |τ sol
1 | + |τ sol

2 | = O(ε). Therefore we can choose the
principal form of the non reflecting perturbation.
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Numerical implementation 1/2

▶ We can solve the fixed point equation

τ⃗ = Gε(τ⃗)

using an iterative procedure.

▶ Pick ε > 0, choose µ0, µ1, µ2 once for all. Set τ⃗ 0 = (0, 0) and for p ∈ N

τ⃗ p+1 = Gε(τ⃗ p).

▶ Denote µp := µ0 + τp
1 µ1 + τp

2 µ2. We obtain the recursive equation

τ⃗ p+1 = τ⃗ p − ε−1(ℜe R(εµp), ℑm R(εµp)).

▶ Stop the algorithm when |R| < 10−5. If it does not converge, decrease ε.

We have to mesh a new domain Ωε
p at each step p ≥ 0.
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Numerical implementation 2/2

▶ An example of non reflecting perturbation obtained after 24 iterations
(ε = 0.2).

uε

uε − w+

w+

▶ The algorithm converges though ε is not that small!
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T = 1 for the Dirichlet problem
▶ Can we use this approach to construct defects such that T = 1?

▶ Let us consider the quantity T − 1. Working as before, we obtain

Proposition:
dT (0)(µ) = i

2β1

∫ L

−L

µ(x)∂yw+(x, 1)∂yw−(x, 1) dx

= iπ2

β1

∫ L

−L

µ(x) dx.

▶ Unfortunately, dT (0) : C ∞
0 (R) → C is not onto... But this was expected

due to conservation of energy !

▶ We note that we can impose ℑm Tε = 0. With Rε = 0 (three parameters
to tune) and conservation of energy, this implies Tε = 1 or Tε = −1.

→ for ε small, necessarily one has Tε = 1.

We can create geometries Ωε where Tε = 1 for the Dirichlet pb.
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Numerics

▶ An example of perfectly invisible perturbation.

uε

uε − w+

w+

▶ The scattered field is exponentially decaying both at ±∞ and this time
there is no phase shift for the transmitted field.
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3 Non smooth invisible perturbations of the reference geometry
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Calculus of the differential 1/2
εh(x)

Ωε

(Pε)
∆uε + k2uε = 0 in Ωε

∂nε uε = 0 on ∂Ωε

uε − w+ is outgoing

▶ We need to compute dR(0)(µ) that is the term R1 in the expansion
R(εh) = R0 + εR1 + . . . .

▶ Inserting the expansion uε = u0 + εu1 + . . . in (Pε), we find
∆u0 + k2u0 = 0 in Ω0

∂yu0 = 0 on ∂Ω0

u0 − w+ is outgoing

∆u1 + k2u1 = 0 in Ω0

∂yu1 = h′(x)∂xu0 on ∂Ω0

u1 is outgoing.
On the top wall, we have

nε =
1√

1 + ε2(h′(x))2

(
−εh′(x)

1

)
=

(
0
1

)
+ ε

(
−h′(x)

0

)
+ . . .

∇uε(x, εh(x)) = ∇uε(x, 0) + εh(x)
(

∂2
xyuε(x, 0)

∂2
yyuε(x, 0)

)
+ . . .

so that we get 0 = nε · ∇uε(x, εh(x)) = ∂yu0 + ε (∂yu1 − εh′(x)∂xu0) + . . . .

We use that u0 = w+

⇒ ∂2
yyu0 = 0
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Calculus of the differential 2/2
▶ We have u0 = w+ and u1 is uniquely defined.

▶ Set Σ±L = {±L} × (−1; 0) for L large enough. From the known formula

2ikR(εµ) =
∫

Σ±L

∂nuεw+ − uε∂nw+dσ, where ∂n = ±∂x at x = ±L,

we infer that R0 = 0, 2ikdR(0)(µ) =
∫

Σ±L

∂nu1w+ − u1∂nw+dσ.

Integrating by parts, finally we get the final result:
Proposition:

dR(0)(µ) = −1
2

∫ L

−L

∂xh(x)(w+(x, 0))2 dx = −1
2

∫ L

−L

∂xh(x)e2ikx dx.

- Again one can check that dR(0) : C ∞
0 (R) → C is onto .

- Error estimates allow one to prove that Gε is a contraction of any
closed ball for ε small enough.

Thus we can construct geometries Ωε where Rε = 0 for the Neumann pb.
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Numerics for the Neumann problem 1/2
▶ An example of non reflecting perturbation obtained after 15 iterations
(ε = 0.4).

uε

uε − w+

w+

▶ Again, the algorithm converges though ε is not that small.
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Numerics for the Neumann problem 2/2
▶ Other example non reflecting perturbation.

uε

uε − w+

w+

▶ The defect lies below the line y = 1. Symmetrisation:

uε
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T = 1 for the Neumann problem?

Proposition: We have

dT (0)(µ) = 1
2ik

∫ L

−L

∂xµ∂xw+w− dx

= 1
2

∫ L

−L

∂xµ dx = 0.

dT (0) is null ⇒ the approach fails to impose T = 1.
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1 A few notions of asymptotic analysis

2 Invisible smooth perturbations of the reference geometry

3 Non smooth invisible perturbations of the reference geometry
An example of singularly perturbed problem
Invisible clouds of small obstacles
Perfect invisibility for the Neumann problem
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An example of singularly perturbed problem
▶ For a > 0, a ̸= 1, consider the 1D problem

(Pε)
εu′′

ε (x) + u′
ε(x) − a = 0 in Ω := (0; 1)

uε(0) = 0, uε(1) = 1.

▶ Its solution is given by uε(x) = ax + (1 − a)
1 − e−x/ε

1 − e−1/ε
.

▶ Let us try to write a representation of uε as before:
uε(x) = u0 + εu1(x) + . . . . (∗)

Inserting (∗) in (Pε), we find u′
0 = a in Ω, u0(0) = 0, u0(1) = 1. Impossible.

▶ On the other hand, for x ∈ (0; 1], we have
lim
ε→0

uε(x) = û0(x) with û0(x) = ax + (1 − a).

But since ∥uε(x) − û0(x)∥L∞(Ω) = |1 − a|, (uε) does not cv to û0 in H1(Ω) .

The expansion (∗) does not provide a good representation of uε.
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An example of singularly perturbed problem

uε(x) = ax + (1 − a)
1 − e−x/ε

1 − e−1/ε
û0(x) = ax + (1 − a).

▶ What happens is that the function uε has a rapid variation near the
origin when ε → 0:

1ε = 0.2

uε

û0

▶ Our expansion fails to provide a good representation of uε due to this
boundary layer phenomenon. We say that (Pε) is a singularly perturbed
problem.
▶ To approximate correctly uε near the origin, we will have to incorporate
terms which depend on the rapid variable x/ε.
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▶ Our expansion fails to provide a good representation of uε due to this
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▶ To approximate correctly uε near the origin, we will have to incorporate
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▶ What happens is that the function uε has a rapid variation near the
origin when ε → 0:

1ε = 0.05

uε

û0

▶ Our expansion fails to provide a good representation of uε due to this
boundary layer phenomenon. We say that (Pε) is a singularly perturbed
problem.
▶ To approximate correctly uε near the origin, we will have to incorporate
terms which depend on the rapid variable x/ε.
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▶ What happens is that the function uε has a rapid variation near the
origin when ε → 0:

1ε = 0.02

uε

û0

▶ Our expansion fails to provide a good representation of uε due to this
boundary layer phenomenon. We say that (Pε) is a singularly perturbed
problem.
▶ To approximate correctly uε near the origin, we will have to incorporate
terms which depend on the rapid variable x/ε.

37 / 51



An example of singularly perturbed problem

uε(x) = ax + (1 − a)
1 − e−x/ε

1 − e−1/ε
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1 A few notions of asymptotic analysis

2 Invisible smooth perturbations of the reference geometry

3 Non smooth invisible perturbations of the reference geometry
An example of singularly perturbed problem
Invisible clouds of small obstacles
Perfect invisibility for the Neumann problem
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One small obstacle

Can one hide a small Dirichlet obstacle centered at M1

▶ Set Oε
1 := M1 + εO where M1 ∈ R × ω and O is a bounded Lipschitz

domain. We consider the problem

Oε
1 (Pε)

∆uε + k2uε = 0 in Ωε := Ω \ Oε
1

uε = 0 on ∂Ωε

uε − w+ is outgoing.

▶ We obtain

Rε = 0 + ε (4iπ cap(O)w+(M1)2) + O(ε2)

Tε = 1 + ε (4iπ cap(O)|w+(M1)|2) + O(ε2).

Non zero terms!
(cap(O) > 0)

⇒ One single small obstacle cannot be non reflecting.
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Derivation of the asymptotic of uε 1/3
▶ To simplify, we remove the index 1 of the obstacle. Consider the ansatz

uε = u0 + ζ(x) v0(ε−1(x − M)) + ε
(

u1 + ζ(x) v1(ε−1(x − M))
)

+ . . .

where ζ ∈ C ∞
0 (Ω0) is equal to one in a neighbourhood of M .

▶ Inserting this expansion in (Pε), first we find

∆u0 + k2u0 = 0 in Ω0 = R × ω
u0 = 0 on ∂Ω0

u0 − w+ is outgoing.

and so u0 = w+ (coherent since at the limit ε → 0, the obstacle disappears).

▶ v0 serves to impose Dirichlet BC on ∂Oε at order ε0. For x ∈ ∂Oε,

u0(x) = u0(M) + (x − M) · ∇u0(M) + . . . (note that x − M is of order ε).

Therefore we impose v0 = −u0(M) on ∂O .
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(

u1 + ζ(x) v1(ε−1(x − M))
)

+ . . .

where ζ ∈ C ∞
0 (Ω0) is equal to one in a neighbourhood of M .

▶ Inserting this expansion in (Pε), first we find

∆u0 + k2u0 = 0 in Ω0 = R × ω
u0 = 0 on ∂Ω0

u0 − w+ is outgoing.

and so u0 = w+ (coherent since at the limit ε → 0, the obstacle disappears).

▶ v0 serves to impose Dirichlet BC on ∂Oε at order ε0. For x ∈ ∂Oε,
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Derivation of the asymptotic of uε 2/3
▶ Introduce the fast variable ξ = ε−1(x − M). In a vicinity of M , we have

(∆x + k2Id)
(
v0(ε−1(x − M)) + ε v1(ε−1(x − M)) + . . .

)
= ε−2 ∆ξv0(ξ) + ε−1 ∆ξv1(ξ) + . . . .

▶ Therefore we impose ∆ξv0 = 0 in R3 \ O and so we take

v0(ξ) = −u0(M) W (ξ) .

where W is the capacity potential for O (W is harmonic in R3 \ O, vanishes
at infinity and verifies W = 1 on ∂O).
▶ As |ξ| → +∞, we have

W (ξ) = cap(O)
|ξ|

+ q⃗ · ∇Φ(ξ) + O(|ξ|−3),

where Φ := ξ 7→ −1/(4π|ξ|) is the Green function of the Laplacian in R3,
cap(O) > 0, q⃗ ∈ R3.
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Derivation of the asymptotic of uε 3/3
▶ Now, we turn to the terms of order ε in the expansion of uε

uε = u0 + ζ(x) v0(ε−1(x − M)) + ε
(

u1 + ζ(x) v1(ε−1(x − M))
)

+ . . . .

▶ By inserting u0 + ζ(x) v0(ε−1(x − M)) into (Pε) and replacing v0 by its
main contribution at infinity, we find that u1 must solve

−∆u1 − k2u1 = −
(
[∆x, ζ] + k2ζId

) (
w+(M) cap(O)

|x − M |

)
in Ω0

u1 = 0 on ∂Ω0.

where [∆x, ζ]φ := ∆x(ζφ) − ζ∆xφ = 2∇φ · ∇ζ + φ∆ζ (commutator).

→ This uniquely defines u1 .
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Asymptotic of the scattering coefficients
▶ We consider the ansatz

Rε = R0 + εR1 + . . . Tε = T0 + εT1 + . . . .

▶ Set Σ±L = {±L} × ω for L large enough. From the known formula

2ikRε =
∫

Σ±L

∂nuεw+ − uε∂nw+dσ, 2ikTε =
∫

Σ±L

∂nuεw− − uε∂nw−dσ,

where ∂n = ±∂x at x = ±L,

we obtain R0 = 0, T0 = 1,

2ikR1 =
∫

Σ±L

∂nu1w+ − u1∂nw+dσ, 2ikT1 =
∫

Σ±L

∂nu1w− − u1∂nw−dσ.

Integrating by parts, finally we get the final result:

Proposition: We have

Rε = 0 + ε (4iπ cap(O)w+(M1)2) + O(ε2)

Tε = 1 + ε (4iπ cap(O)|w+(M1)|2) + O(ε2).
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Several small obstacles

▶ One small obstacle cannot be non
reflecting. Let us try with TWO,
located at M1, M2.

Oε
1

Oε
2

▶ We obtain Rε = 0 + ε (4iπ cap(O)
2∑

n=1
w+(Mn)2) + O(ε2)

Tε = 1 + ε (4iπ cap(O)
2∑

n=1
|w+(Mn)|2) + O(ε2).

We can find M1, M2 such that Rε = O(ε2). Then moving Oε
1 from M1 to

M1 + ετ , and choosing a good τ ∈ R3 (fixed point), we can get Rε = 0 .

Comments:
→ Hard part is to justify the asymptotics for the fixed point problem.
→ We cannot impose Tε = 1 with this strategy.
→ When there are more propagating waves, we need more obstacles.

Acting as a team, obstacles can become invisible!
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1 A few notions of asymptotic analysis

2 Invisible smooth perturbations of the reference geometry

3 Non smooth invisible perturbations of the reference geometry
An example of singularly perturbed problem
Invisible clouds of small obstacles
Perfect invisibility for the Neumann problem
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T = 1 for the Neumann problem
▶ We study the same problem in the geometry Ωε

ε

ε
ε

h1
h2 h3

Ωε

M1 M2 M3

Singular perturbation
of the geometry!

▶ We obtain Rε = 0 + ε
(

ik
∑3

n=1(w+(Mn))2 tan(khn)
)

+ O(ε2)

Tε = 1 + ε
(

i/2
∑3

n=1 tan(khn)
)

+ O(ε2)

1) We can find Mn, hn such that Rε = O(ε2) and Tε = 1 + O(ε2) .
2) Then changing hn into hn + τn, and choosing a good τ = (τ1, τ2, τ3) ∈ R3

(fixed point), we can get Rε = 0 and ℑm Tε = 0 .
3) Energy conservation + [Tε = 1 + O(ε)] ⇒ Tε = 1 .
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Numerical results
▶ Perturbed waveguide ( ℜe (uε(x, y)e−iωt) )

▶ Reference waveguide ( ℜe (ui(x, y)e−iωt) )
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Comments

▶ We could also have hidden gardens of flowers!
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Conclusion of lecture 2

What we did

1) Perturbation in the PDE. Recall the standard scheme
Step I: ansatz and identification of the terms of the ansatz;
Step II: error estimates (stability estimate + consistency result).

2) Smooth perturbation of the geometry. Use a change of variable to
show error estimates in a fixed geometry.

3) Construction of smooth and non smooth invisible defects in
waveguides.

Use the first term in the asymptotic whose dependence wrt the
perturbation is explicit and linear to cancel the whole expansion
by solving a fixed point problem.

Next lecture

♠ We will explain how to use resonant phenomena to construct large
invisible defects.
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