Summer school "EUR MINT 2025 - Control, Inverse Problems and Spectral Theory"

A few techniques to achieve invisibility in waveguides

Lecture 3: Playing with resonances to achieve invisibility

Lucas Chesnel

Idefix team, EDF/Ensta/Inria, France

Toulouse, 26/06/2025

Lecture 2

 We explained how to construct small non reflecting or invisible obstacles by working with perturbative techniques.

Lecture 2

 We explained how to construct small non reflecting or invisible obstacles by working with perturbative techniques.

• We wish to obtain non reflection or invisibility for large obstacles by working with resonant phenomena.

Construction of non reflecting obstacles using Fano resonance

- A 1D toy problem
- The Fano resonance in 2D waveguides
- Non reflection and complete reflection
- Numerical experiments

► Fano resonance phenomenon appears in many fields in physics. First, we illustrate it for a simple 1D problem.

• Consider the scattering problem

$$\varphi'' + k^2 \varphi = 0 \text{ in } \Omega, \qquad \begin{cases} \varphi_1 = \varphi_2 = \varphi_3 \text{ at } O \\ \varphi'_1 = \varphi'_2 + \varphi'_3 \text{ at } O \\ \varphi'_2 = \varphi'_3 = 0 \text{ on } \partial \Omega \end{cases} \quad \text{with } \underbrace{\varphi_1 = e^{ikx} + R e^{-ikx}}_{\text{radiation condition}}, R \in \mathbb{C}.$$

• Consider the scattering problem

$$\varphi'' + k^2 \varphi = 0 \text{ in } \Omega, \qquad \begin{vmatrix} \varphi_1 = \varphi_2 = \varphi_3 \text{ at } O \\ \varphi'_1 = \varphi'_2 + \varphi'_3 \text{ at } O \\ \varphi'_2 = \varphi'_3 = 0 \text{ on } \partial \Omega \end{vmatrix} \text{ with } \underbrace{\varphi_1 = e^{ikx} + R e^{-ikx}}_{\text{radiation condition}}, R \in \mathbb{C}.$$

► Well-posedness \Leftrightarrow invertibility of a 3 × 3 system $\mathbb{M}\Phi = F$.

• Consider the scattering problem

$$\varphi'' + k^2 \varphi = 0 \text{ in } \Omega, \qquad \begin{vmatrix} \varphi_1 = \varphi_2 = \varphi_3 \text{ at } O \\ \varphi'_1 = \varphi'_2 + \varphi'_3 \text{ at } O \\ \varphi'_2 = \varphi'_3 = 0 \text{ on } \partial \Omega \end{vmatrix} \text{ with } \underbrace{\varphi_1 = e^{ikx} + R e^{-ikx}}_{\text{radiation condition}}, R \in \mathbb{C}.$$

• Well-posedness \Leftrightarrow invertibility of a 3×3 system $\mathbb{M}\Phi = F$.

• Uniqueness $\Leftrightarrow k \notin (2\mathbb{N}+1)\pi/2$. Existence for all $k \in \mathbb{R}$ $(F \in \ker {}^{t}\mathbb{M}^{\perp})$

$$\mathbf{R} = \frac{\cos(k) + 2i\sin(k)}{\cos(k) - 2i\sin(k)}.$$

• We perturb the geometry: $\Omega^{\varepsilon} = \Omega_1 \cup \Omega_2 \cup \Omega_3^{\varepsilon}$ with $\Omega_3^{\varepsilon} = (0; 1 + \varepsilon)$.

► We perturb the geometry: $\Omega^{\varepsilon} = \Omega_1 \cup \Omega_2 \cup \Omega_3^{\varepsilon}$ with $\Omega_3^{\varepsilon} = (0; 1 + \varepsilon)$. Well-posedness in $\Omega^{\varepsilon} \Leftrightarrow$ invertibility of a 3 × 3 system $\mathbb{M}^{\varepsilon} \Phi^{\varepsilon} = F$.

$$R^{\varepsilon} = \frac{\cos(k)\cos(k(1+\varepsilon)) + i\sin(k(2+\varepsilon))}{\cos(k)\cos(k(1+\varepsilon)) - i\sin(k(2+\varepsilon))}.$$

• We perturb the geometry: $\Omega^{\varepsilon} = \Omega_1 \cup \Omega_2 \cup \Omega_3^{\varepsilon}$ with $\Omega_3^{\varepsilon} = (0; 1 + \varepsilon)$. Well-posedness in $\Omega^{\varepsilon} \Leftrightarrow$ invertibility of a 3×3 system $\mathbb{M}^{\varepsilon} \Phi^{\varepsilon} = F$.

$$R^{\varepsilon} = \frac{\cos(k)\cos(k(1+\varepsilon)) + i\sin(k(2+\varepsilon))}{\cos(k)\cos(k(1+\varepsilon)) - i\sin(k(2+\varepsilon))}.$$

• We perturb the geometry: $\Omega^{\varepsilon} = \Omega_1 \cup \Omega_2 \cup \Omega_3^{\varepsilon}$ with $\Omega_3^{\varepsilon} = (0; 1 + \varepsilon)$. Well-posedness in $\Omega^{\varepsilon} \Leftrightarrow$ invertibility of a 3×3 system $\mathbb{M}^{\varepsilon} \Phi^{\varepsilon} = F$.

$$R^{\varepsilon} = \frac{\cos(k)\cos(k(1+\varepsilon)) + i\sin(k(2+\varepsilon))}{\cos(k)\cos(k(1+\varepsilon)) - i\sin(k(2+\varepsilon))}.$$

• We perturb the geometry: $\Omega^{\varepsilon} = \Omega_1 \cup \Omega_2 \cup \Omega_3^{\varepsilon}$ with $\Omega_3^{\varepsilon} = (0; 1 + \varepsilon)$. Well-posedness in $\Omega^{\varepsilon} \Leftrightarrow$ invertibility of a 3×3 system $\mathbb{M}^{\varepsilon} \Phi^{\varepsilon} = F$.

$$R^{\varepsilon} = \frac{\cos(k)\cos(k(1+\varepsilon)) + i\sin(k(2+\varepsilon))}{\cos(k)\cos(k(1+\varepsilon)) - i\sin(k(2+\varepsilon))}.$$

• We perturb the geometry: $\Omega^{\varepsilon} = \Omega_1 \cup \Omega_2 \cup \Omega_3^{\varepsilon}$ with $\Omega_3^{\varepsilon} = (0; 1 + \varepsilon)$. Well-posedness in $\Omega^{\varepsilon} \Leftrightarrow$ invertibility of a 3×3 system $\mathbb{M}^{\varepsilon} \Phi^{\varepsilon} = F$.

$$R^{\varepsilon} = \frac{\cos(k)\cos(k(1+\varepsilon)) + i\sin(k(2+\varepsilon))}{\cos(k)\cos(k(1+\varepsilon)) - i\sin(k(2+\varepsilon))}.$$

• We perturb the geometry: $\Omega^{\varepsilon} = \Omega_1 \cup \Omega_2 \cup \Omega_3^{\varepsilon}$ with $\Omega_3^{\varepsilon} = (0; 1 + \varepsilon)$. Well-posedness in $\Omega^{\varepsilon} \Leftrightarrow$ invertibility of a 3×3 system $\mathbb{M}^{\varepsilon} \Phi^{\varepsilon} = F$.

$$R^{\varepsilon} = \frac{\cos(k)\cos(k(1+\varepsilon)) + i\sin(k(2+\varepsilon))}{\cos(k)\cos(k(1+\varepsilon)) - i\sin(k(2+\varepsilon))}.$$

• We perturb the geometry: $\Omega^{\varepsilon} = \Omega_1 \cup \Omega_2 \cup \Omega_3^{\varepsilon}$ with $\Omega_3^{\varepsilon} = (0; 1 + \varepsilon)$. Well-posedness in $\Omega^{\varepsilon} \Leftrightarrow$ invertibility of a 3×3 system $\mathbb{M}^{\varepsilon} \Phi^{\varepsilon} = F$.

$$R^{\varepsilon} = \frac{\cos(k)\cos(k(1+\varepsilon)) + i\sin(k(2+\varepsilon))}{\cos(k)\cos(k(1+\varepsilon)) - i\sin(k(2+\varepsilon))}.$$

• Set $R(\varepsilon, k) = e^{i\theta(\varepsilon, k)}$ (functions of two variables).

ε

• Set $R(\varepsilon, k) = e^{i\theta(\varepsilon, k)}$ (functions of two variables).

• Set $R(\varepsilon, k) = e^{i\theta(\varepsilon, k)}$ (functions of two variables).

Next steps

Prove a similar Fano resonance phenomenon for a 2D waveguide.
 Use it to provide examples of non reflection and complete reflection.

Construction of non reflecting obstacles using Fano resonance

- A 1D toy problem
- The Fano resonance in 2D waveguides
- Non reflection and complete reflection
- Numerical experiments

Setting

Scattering in time-harmonic regime in a symmetric (to simplify) acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.

(*)
$$\begin{vmatrix} \Delta v + \lambda v &= 0 & \text{in } \Omega, \\ \partial_n v &= 0 & \text{on } \partial\Omega. \end{vmatrix}$$

Setting

Scattering in time-harmonic regime in a symmetric (to simplify) acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.

• We assume that trapped modes exist for $\lambda = \lambda^0 \in (0; \pi^2)$:

 $u_{\rm tr} \in {\rm H}^1(\Omega) \setminus \{0\}$ satisfies (*) for $\lambda = \lambda^0$ (non uniqueness).

Setting

Scattering in time-harmonic regime in a symmetric (to simplify) acoustic waveguide Ω coinciding with $\{(x, y) \in \mathbb{R} \times (0; 1)\}$ outside a compact region.

• We assume that trapped modes exist for $\lambda = \lambda^0 \in (0; \pi^2)$: $u_{tr} \in H^1(\Omega) \setminus \{0\}$ satisfies (*) for $\lambda = \lambda^0$ (non uniqueness).

Due to symmetry, u_{tr} is also a trapped mode for the half waveguide pb.

$$\begin{aligned} \Delta v + \lambda v &= 0 & \text{in } \omega, \\ \partial_n v &= 0 & \text{on } \partial \omega \cap \partial \Omega, \\ \text{ABC}(v) &= v/\partial_n v &= 0 & \text{on } \partial \omega \setminus \partial \Omega. \end{aligned}$$
depends on the sym.)

$$(\mathscr{P}) \begin{vmatrix} \Delta v + \lambda v &= 0 & \text{in } \omega, \\ \partial_n v &= 0 & \text{on } \partial \omega \cap \partial \Omega, \\ ABC(v) &= 0 & \text{on } \partial \omega \setminus \partial \Omega. \end{vmatrix}$$

▶ For this problem with $k := \sqrt{\lambda} \in (0; \pi)$, only one propagating mode

$$w_{\pm}(x,y) = e^{\pm ikx}.$$

$$(\mathscr{P}) \begin{vmatrix} \Delta v + \lambda v &= 0 & \text{in } \omega, \\ \partial_n v &= 0 & \text{on } \partial \omega \cap \partial \Omega, \\ \text{ABC}(v) &= 0 & \text{on } \partial \omega \setminus \partial \Omega. \end{vmatrix}$$

► For this problem with $k := \sqrt{\lambda} \in (0; \pi)$, only one propagating mode $w_{\pm}(x, y) = e^{\pm ikx}$.

• (\mathscr{P}) admits the solution

$$v = w_+ + R w_- + \tilde{v},$$

where $R \in \mathbb{C}$ and \tilde{v} is expo. decaying (uniqueness \Leftrightarrow abs. of trapped modes).

$$(\mathscr{P}) \begin{vmatrix} \Delta v + \lambda v &= 0 & \text{in } \omega, \\ \partial_n v &= 0 & \text{on } \partial \omega \cap \partial \Omega, \\ \text{ABC}(v) &= 0 & \text{on } \partial \omega \setminus \partial \Omega. \end{vmatrix}$$

► For this problem with $k := \sqrt{\lambda} \in (0; \pi)$, only one propagating mode $w_{\pm}(x, y) = e^{\pm ikx}$.

 (\mathscr{P}) admits the solution

$$v = w_+ + R w_- + \tilde{v},$$

where $R \in \mathbb{C}$ and \tilde{v} is expo. decaying (uniqueness \Leftrightarrow abs. of trapped modes).

• R is uniquely defined (even for $\lambda = \lambda^0$) and |R| = 1 (cons. of energy).

Small perturbation of the geometry

• We perturb slightly ($\varepsilon \ge 0$ is small) the geometry

Locally $\partial \omega^{\varepsilon}$ coincides with the graph of $x \mapsto 1 + \varepsilon H(x)$, where $H \in \mathscr{C}_0^{\infty}(\mathbb{R})$ is a given profile function.

Small perturbation of the geometry

• We perturb slightly ($\varepsilon \ge 0$ is small) the geometry

Locally $\partial \omega^{\varepsilon}$ coincides with the graph of $x \mapsto 1 + \varepsilon H(x)$, where $H \in \mathscr{C}_0^{\infty}(\mathbb{R})$ is a given profile function.

For a given H, the scattering/reflection coefficient R is a function of ε , λ .

We can study the behaviour of $(\varepsilon, \lambda) \mapsto R(\varepsilon, \lambda)$ in a neighbourhood of $(0, \lambda^0)$ where trapped modes exist.

Small perturbation of the geometry

• We perturb slightly ($\varepsilon \ge 0$ is small) the geometry

Locally $\partial \omega^{\varepsilon}$ coincides with the graph of $x \mapsto 1 + \varepsilon H(x)$, where $H \in \mathscr{C}_0^{\infty}(\mathbb{R})$ is a given profile function.

For a given H, the scattering/reflection coefficient R is a function of ε , λ .

We can study the behaviour of $(\varepsilon, \lambda) \mapsto R(\varepsilon, \lambda)$ in a neighbourhood of $(0, \lambda^0)$ where trapped modes exist.

 \rightarrow One proves that R is **not continuous** at $(0, \lambda^0)$ (one approach: work with the augmented scattering matrix which is **continuous** at $(0, \lambda^0)$).

PROPOSITION: There is $\lambda'_p > 0$ such that $\begin{aligned} &\lim_{\varepsilon \to 0} R(\varepsilon, \lambda^0 + \varepsilon \lambda') = R, & \text{for } \lambda' \neq \lambda'_p \\ &\lim_{\varepsilon \to 0} R(\varepsilon, \lambda^0 + \varepsilon \lambda'_p + \varepsilon^2 \mu) = R + \frac{a}{ib\mu - c}, & \mu \in \mathbb{R}. \end{aligned}$ Here a, b, c are some constants that one can characterize.

 \rightarrow When $\mu \in \mathbb{R}$, the quantity $R + \frac{a}{ib\mu - c}$ runs on the whole unit circle.

PROPOSITION: There is $\lambda'_p > 0$ such that $\begin{vmatrix} \lim_{\varepsilon \to 0} R(\varepsilon, \lambda^0 + \varepsilon \lambda') = R, & \text{for } \lambda' \neq \lambda'_p \\\\ \lim_{\varepsilon \to 0} R(\varepsilon, \lambda^0 + \varepsilon \lambda'_p + \varepsilon^2 \mu) = R + \frac{a}{ib\mu - c}, & \mu \in \mathbb{R}. \end{aligned}$ Here a, b, c are some constants that one can characterize.

 \rightarrow When $\mu \in \mathbb{R}$, the quantity $R + \frac{a}{ib\mu - c}$ runs on the whole unit circle.

 \rightarrow We find the same picture as in 1D: $R(\cdot, \cdot)$ is not continuous at $(0, \lambda^0)$.

PROPOSITION: There is $\lambda'_p > 0$ such that $\begin{array}{l} \lim_{\varepsilon \to 0} R(\varepsilon, \lambda^0 + \varepsilon \lambda') = R, & \text{for } \lambda' \neq \lambda'_p \\\\ \lim_{\varepsilon \to 0} R(\varepsilon, \lambda^0 + \varepsilon \lambda'_p + \varepsilon^2 \mu) = R + \frac{a}{ib\mu - c}, & \mu \in \mathbb{R}. \end{array}$ Here a, b, c are some constants that one can characterize.

 \rightarrow When $\mu \in \mathbb{R}$, the quantity $R + \frac{a}{ib\mu - c}$ runs on the whole unit circle.

 \rightarrow We find the same picture as in 1D: $R(\cdot, \cdot)$ is not continuous at $(0, \lambda^0)$.

 \rightarrow For a small given ε_0 , $\lambda \mapsto R(\varepsilon_0, \lambda)$ exhibits a quick change at $\lambda^0 + \varepsilon^0 \lambda'_{p_{12/46}}$.

PROPOSITION: There is $\lambda'_p > 0$ such that $\begin{vmatrix} \lim_{\varepsilon \to 0} R(\varepsilon, \lambda^0 + \varepsilon \lambda') = R, & \text{for } \lambda' \neq \lambda'_p \\ \lim_{\varepsilon \to 0} R(\varepsilon, \lambda^0 + \varepsilon \lambda'_p + \varepsilon^2 \mu) = R + \frac{a}{ib\mu - c}, & \mu \in \mathbb{R}. \end{aligned}$ Here a, b, c are some constants that one can characterize.

 \rightarrow When $\mu \in \mathbb{R}$, the quantity $R + \frac{a}{ib\mu - c}$ runs on the whole unit circle.

 \rightarrow We find the same picture as in 1D: $R(\cdot, \cdot)$ is not continuous at $(0, \lambda^0)$.

 \rightarrow For a small given ε_0 , $\lambda \mapsto R(\varepsilon_0, \lambda)$ exhibits a quick change at $\lambda^0 + \varepsilon^0 \lambda'_{p_{12/46}}$.

Construction of non reflecting obstacles using Fano resonance

- A 1D toy problem
- The Fano resonance in 2D waveguides
- Non reflection and complete reflection
- Numerical experiments

2 Cloaking of given obstacles in acoustics using resonant ligaments
• We come back to the problem in the total waveguide Ω

▶ (*) admits the solution

$$v = \begin{vmatrix} e^{ikx} + R e^{-ikx} + \tilde{v}, & x < 0 & \text{(reflection)} \\ T e^{-ikx} + \tilde{v}, & x > 0 & \text{(transmission)} \end{vmatrix}$$

with $R, T \in \mathbb{C}$ and $\tilde{v} \in \mathrm{H}^1(\Omega)$. We have $|R|^2 + |T|^2 = 1$.

• We come back to the problem in the total waveguide Ω

(*) admits the solution

ω

$$v = \begin{vmatrix} e^{ikx} + R e^{-ikx} + \tilde{v}, & x < 0 & \text{(reflection)} \\ T e^{-ikx} + \tilde{v}, & x > 0 & \text{(transmission)} \end{vmatrix}$$

with $R, T \in \mathbb{C}$ and $\tilde{v} \in \mathrm{H}^1(\Omega)$. We have $|R|^2 + |T|^2 = 1$.

• Introduce the two half-waveguide problems

 $\begin{vmatrix} \Delta u + \lambda u = 0 & \text{in } \omega \\ \partial_n u = 0 & \text{on } \partial \omega \end{vmatrix}$

$$\begin{aligned} \Delta U + \lambda U &= 0 \quad \text{in } \omega \\ \partial_n U &= 0 \quad \text{on } \partial \omega \setminus \partial \Omega \\ U &= 0 \quad \text{on } \partial \omega \cap \partial \Omega. \end{aligned}$$

▶ Half-waveguide problems admit the solutions

$$u = e^{ikx} + R_N e^{-ikx} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^1(\omega)$$
$$U = e^{ikx} + R_D e^{-ikx} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^1(\omega).$$

▶ Half-waveguide problems admit the solutions

$$u = e^{ikx} + R_N e^{-ikx} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^1(\omega)$$
$$U = e^{ikx} + R_D e^{-ikx} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^1(\omega).$$

▶ Due to conservation of energy, one has

 $|\mathbf{R}_N| = |\mathbf{R}_D| = 1.$

▶ Half-waveguide problems admit the solutions

$$u = e^{ikx} + R_N e^{-ikx} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^1(\omega)$$
$$U = e^{ikx} + R_D e^{-ikx} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^1(\omega).$$

▶ Due to conservation of energy, one has

 $|\mathbf{R}_N| = |\mathbf{R}_D| = 1.$

▶ Half-waveguide problems admit the solutions

Due to conservation of energy, one has

$$u = e^{ikx} + \mathbf{R}_N e^{-ikx} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^1(\omega)$$
$$U = e^{ikx} + R_D e^{-ikx} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^1(\omega).$$

• Using that
$$v = \frac{u+U}{2}$$
 in ω , $v(x,y) = \frac{u(-x,y) - U(-x,y)}{2}$ in $\Omega \setminus \overline{\omega}$,
we deduce that $R = \frac{R_N + R_D}{2}$ and $T = \frac{R_N - R_D}{2}$.

 $|R_N| = |R_D| = 1.$

▶ Half-waveguide problems admit the solutions

Due to conservation of energy, one has

$$u = e^{ikx} + \mathbf{R}_N e^{-ikx} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^1(\omega)$$
$$U = e^{ikx} + R_D e^{-ikx} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^1(\omega).$$

• Using that
$$v = \frac{u+U}{2}$$
 in ω , $v(x,y) = \frac{u(-x,y) - U(-x,y)}{2}$ in $\Omega \setminus \overline{\omega}$,
we deduce that $R = \frac{R_N + R_D}{2}$ and $T = \frac{R_N - R_D}{2}$.
Non reflection $R = 0$
 $\Leftrightarrow R_N = -R_D$

 $|R_N| = |R_D| = 1.$

▶ Half-waveguide problems admit the solutions

Due to conservation of energy, one has

$$u = e^{ikx} + R_N e^{-ikx} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^1(\omega)$$
$$U = e^{ikx} + R_D e^{-ikx} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^1(\omega).$$

• Using that
$$v = \frac{u+U}{2}$$
 in ω , $v(x,y) = \frac{u(-x,y) - U(-x,y)}{2}$ in $\Omega \setminus \overline{\omega}$,
we deduce that $R = \frac{R_N + R_D}{2}$ and $T = \frac{R_N - R_D}{2}$.
Non reflection $R = 0$
 $\Leftrightarrow R_N = -R_D$

 $|R_N| = |R_D| = 1.$

▶ Half-waveguide problems admit the solutions

Due to conservation of energy, one has

$$u = e^{ikx} + R_N e^{-ikx} + \tilde{u}, \quad \text{with } \tilde{u} \in \mathrm{H}^1(\omega)$$
$$U = e^{ikx} + R_D e^{-ikx} + \tilde{U}, \quad \text{with } \tilde{U} \in \mathrm{H}^1(\omega).$$

 $|\mathbf{R}_{N}| = |\mathbf{R}_{D}| = 1.$

► Using that
$$v = \frac{u+U}{2}$$
 in ω , $v(x,y) = \frac{u(-x,y) - U(-x,y)}{2}$ in $\Omega \setminus \overline{\omega}$,
we deduce that $R = \frac{R_N + R_D}{2}$ and $T = \frac{R_N - R_D}{2}$.
Non reflection $R = 0$
 $\Leftrightarrow R_N = -R_D$ Perfect reflection $T = 0$
 $\Leftrightarrow R_N = R_D$

Non reflection and perfect reflection

$$R = \frac{R_N + R_D}{2} \qquad \qquad T = \frac{R_N - R_D}{2}$$

To set ideas, we assume that u_{tr} is symmetric w.r.t. (Oy). $\Rightarrow u_{tr}$ is a trapped mode for the pb with Neumann B.Cs.

i) No trapped modes for the Dirichlet pb at $\lambda = \lambda^0$. This implies $|R_D(\varepsilon, \lambda^0 + \varepsilon \lambda'_p + \varepsilon^2 \mu) - R_D(0, \lambda^0)| \le C \varepsilon, \quad \forall \varepsilon \in (0; \varepsilon_0], \ \mu \in [-c\varepsilon^{-1}; c\varepsilon].$

ii) $\mu \mapsto R_N(\varepsilon, \lambda^0 + \varepsilon \lambda'_p + \varepsilon^2 \mu)$ rushes on the unit circle for $\mu \in [-c\varepsilon^{-1}; c\varepsilon]$.

Non reflection and perfect reflection

$$R = \frac{R_N + R_D}{2} \qquad \qquad T = \frac{R_N - R_D}{2}$$

To set ideas, we assume that u_{tr} is symmetric w.r.t. (Oy). $\Rightarrow u_{tr}$ is a trapped mode for the pb with Neumann B.Cs.

i) No trapped modes for the Dirichlet pb at $\lambda = \lambda^0$. This implies $|R_D(\varepsilon, \lambda^0 + \varepsilon \lambda'_p + \varepsilon^2 \mu) - R_D(0, \lambda^0)| \le C \varepsilon, \quad \forall \varepsilon \in (0; \varepsilon_0], \ \mu \in [-c\varepsilon^{-1}; c\varepsilon].$

ii) $\mu \mapsto R_N(\varepsilon, \lambda^0 + \varepsilon \lambda'_p + \varepsilon^2 \mu)$ rushes on the unit circle for $\mu \in [-c\varepsilon^{-1}; c\varepsilon]$.

PROPOSITION: $\begin{vmatrix} \exists \lambda_{\varepsilon}, \text{ with } \lambda_{\varepsilon} - \lambda^{0} = O(\varepsilon), \text{ s.t. for } \varepsilon \text{ small}, R(\varepsilon, \lambda_{\varepsilon}) = 0 \text{ (non reflection)}. \\
\exists \tilde{\lambda}_{\varepsilon}, \text{ with } \tilde{\lambda}_{\varepsilon} - \lambda^{0} = O(\varepsilon), \text{ s.t. for } \varepsilon \text{ small}, T(\varepsilon, \tilde{\lambda}_{\varepsilon}) = 0 \text{ (perfect reflection)}. \end{aligned}$

Construction of non reflecting obstacles using Fano resonance

- A 1D toy problem
- The Fano resonance in 2D waveguides
- Non reflection and complete reflection
- Numerical experiments

The Fano resonance

- ▶ Numerics using FE methods (Freefem++) with DtN maps or PMLs.
- Left: domain ω^{ε} . Right: $u_{\rm tr}$ (trapped mode) for $\varepsilon = 0$.

The Fano resonance

- Numerics using FE methods (Freefem++) with DtN maps or PMLs.
- Left: domain ω^{ε} . Right: $u_{\rm tr}$ (trapped mode) for $\varepsilon = 0$.

Since $|R^{\varepsilon}| = 1$ (conservation of energy), $\exists \theta^{\varepsilon} \in] - \pi; \pi]$ s.t. $R^{\varepsilon} = e^{i\theta^{\varepsilon}}$.

Non reflection/perfect reflection

• Scattering coefficients for $k \in (2.5; 3.1)$.

Non reflection/perfect reflection

• Example of setting where $T(\varepsilon, \lambda^{\varepsilon}) = 0$ (perfect reflection).

Frequency behaviour

No shift
$$(\varepsilon = 0)$$
 | Small shift $(\varepsilon > 0)$

 $\blacktriangleright \quad k \mapsto \Re e \, v(k)$

• Trapped mode

• Complex resonance

Comments

What we did

- We illustrated the Fano resonance phenomenon in a 2D waveguide. If trapped modes exist for $(\varepsilon, \lambda) = (0, \lambda^0)$, then for $\varepsilon > 0$ small, $\lambda \mapsto R(\varepsilon, \lambda)$ has a quick variation at λ^0 . Symmetry is not needed.
- We use it to show examples of non reflection and perfect reflection.
 Symmetry is essential.
- ♠ The phenomenon appears with other B.C. (Dirichlet, ...), other kinds of perturbation (penetrable obstacles, ...), in any dimension.

Comments

What we did

- We illustrated the Fano resonance phenomenon in a 2D waveguide. If trapped modes exist for $(\varepsilon, \lambda) = (0, \lambda^0)$, then for $\varepsilon > 0$ small, $\lambda \mapsto R(\varepsilon, \lambda)$ has a quick variation at λ^0 . Symmetry is not needed.
- We use it to show examples of non reflection and perfect reflection.
 Symmetry is essential.
- ♠ The phenomenon appears with other B.C. (Dirichlet, ...), other kinds of perturbation (penetrable obstacles, ...), in any dimension.

Other directions

- 1) Without symmetry, one can show that T still passes through zero.
- 2) Is there non reflection/perfect reflection for $k > \pi$ (monomode regime was essential in the mechanism)?
- 3) What happens if λ^0 is not a simple eigenvalue?

Setting

▶ We consider the propagation of waves in a 2D acoustic waveguide with an obstacle (also relevant in optics, microwaves, water-waves theory,...).

• We fix $k \in (0; \pi)$ so that only the plane waves $e^{\pm ikx}$ can propagate.

Setting

▶ We consider the propagation of waves in a 2D acoustic waveguide with an obstacle (also relevant in optics, microwaves, water-waves theory,...).

• We fix $k \in (0; \pi)$ so that only the plane waves $e^{\pm ikx}$ can propagate.

▶ The scattering of these waves leads us to consider the solutions of (\mathscr{P}) with the decomposition

$$u_{+} = \begin{vmatrix} e^{ikx} + R_{+} e^{-ikx} + \dots \\ T e^{+ikx} + \dots \end{vmatrix} \qquad u_{-} = \begin{vmatrix} T e^{-ikx} + \dots \\ e^{-ikx} + R_{-} e^{+ikx} + \dots \end{vmatrix} \qquad x \to -\infty$$

 $R_{\pm}, T \in \mathbb{C}$ are the scattering coefficients, the ... are exponded decaying terms.

Goal

We wish to slightly perturb the walls of the guide to obtain $R_{\pm} = 0$, T = 1 in the new geometry (as if there were no obstacle) \Rightarrow cloaking at "infinity".

Goal

We wish to slightly perturb the walls of the guide to obtain $R_{\pm} = 0$, T = 1 in the new geometry (as if there were no obstacle) \Rightarrow cloaking at "infinity".

Difficulty: the scattering coefficients have a not explicit and not linear dependence wrt the geometry.

We wish to cloak big obstacles and not only small perturbations.

2 Cloaking of given obstacles in acoustics using resonant ligaments

- Asymptotic analysis in presence of thin resonators
- Almost zero reflection
- Cloaking

Setting

• In this geometry, we have the scattering solutions

$$u_{+}^{\varepsilon} = \begin{vmatrix} e^{ikx} + R_{+}^{\varepsilon} e^{-ikx} + \dots \\ T^{\varepsilon} e^{+ikx} + \dots \end{vmatrix} u_{-}^{\varepsilon} = \begin{vmatrix} T^{\varepsilon} e^{-ikx} + \dots \\ e^{-ikx} + R_{-}^{\varepsilon} e^{+ikx} + \dots \end{vmatrix} x \to -\infty$$

Setting

• In this geometry, we have the scattering solutions

$$u_{+}^{\mathfrak{e}} = \begin{vmatrix} e^{ikx} + R_{+}^{\mathfrak{e}} e^{-ikx} + \dots \\ T^{\mathfrak{e}} e^{+ikx} + \dots \end{vmatrix} \quad u_{-}^{\mathfrak{e}} = \begin{vmatrix} T^{\mathfrak{e}} e^{-ikx} + \dots \\ e^{-ikx} + R_{-}^{\mathfrak{e}} e^{+ikx} + \dots \end{vmatrix} \quad x \to -\infty$$

In general, the thin ligament has only a weak influence on the scattering coefficients: $R_{\pm}^{\epsilon} \approx R_{\pm}, T^{\epsilon} \approx T$. But not always ...

• We vary the length of the ligament:

► For one particular length of the ligament, we get a standing mode (zero transmission):

To understand the phenomenon, we compute an asymptotic expansion of u_{+}^{ε} , R_{+}^{ε} , T^{ε} as $\varepsilon \to 0$.

$$u_{+}^{\boldsymbol{\varepsilon}} = \begin{vmatrix} e^{ikx} + R_{+}^{\boldsymbol{\varepsilon}} e^{-ikx} + \dots \\ T^{\boldsymbol{\varepsilon}} e^{+ikx} + \dots \end{vmatrix}$$

► To proceed we use techniques of matched asymptotic expansions (see Beale 73, Gadyl'shin 93, Kozlovet al. 94, Nazarov 96, Maz'ya et al. 00, Joly & Tordeux 06, Lin & Zhang 17, 18, Brandao, Holley, Schnitzer 20,...).

• We work with the outer expansions

$$\begin{split} u^{\varepsilon}_+(x,y) &= u^0(x,y) + \dots & \text{in } \Omega, \\ u^{\varepsilon}_+(x,y) &= \varepsilon^{-1} v^{-1}(y) + v^0(y) + \dots & \text{in the resonator} \end{split}$$

• Considering the restriction of $(\mathscr{P}^{\varepsilon})$ to the thin resonator, when ε tends to zero, we find that v^{-1} must solve the homogeneous 1D problem

$$(\mathscr{P}_{1\mathrm{D}}) \begin{vmatrix} \partial_y^2 v + k^2 v = 0 & \text{in } (1; 1+\ell) \\ v(1) = \partial_y v(1+\ell) = 0. \end{vmatrix}$$

• We work with the outer expansions

$$\begin{split} u^{\varepsilon}_+(x,y) &= u^0(x,y) + \dots & \text{ in } \Omega, \\ u^{\varepsilon}_+(x,y) &= \varepsilon^{-1} v^{-1}(y) + v^0(y) + \dots & \text{ in the resonator} \end{split}$$

• Considering the restriction of $(\mathscr{P}^{\varepsilon})$ to the thin resonator, when ε tends to zero, we find that v^{-1} must solve the homogeneous 1D problem

$$(\mathscr{P}_{1\mathrm{D}}) \begin{vmatrix} \partial_y^2 v + k^2 v = 0 & \text{in } (1; 1+\ell) \\ v(1) = \partial_y v(1+\ell) = 0. \end{vmatrix}$$

The features of (\mathscr{P}_{1D}) play a key role in the physical phenomena and in the asymptotic analysis.

• We work with the outer expansions

$$\begin{split} u^{\varepsilon}_+(x,y) &= u^0(x,y) + \dots & \text{ in } \Omega, \\ u^{\varepsilon}_+(x,y) &= \varepsilon^{-1} v^{-1}(y) + v^0(y) + \dots & \text{ in the resonator} \end{split}$$

• Considering the restriction of $(\mathscr{P}^{\varepsilon})$ to the thin resonator, when ε tends to zero, we find that v^{-1} must solve the homogeneous 1D problem

$$(\mathscr{P}_{1D}) \begin{vmatrix} \partial_y^2 v + k^2 v = 0 & \text{in } (1; 1+\ell) \\ v(1) = \partial_y v(1+\ell) = 0. \end{vmatrix}$$

The features of (\mathscr{P}_{1D}) play a key role in the physical phenomena and in the asymptotic analysis.

• We denote by $\ell_{\rm res}$ (resonance lengths) the values of ℓ , given by

$$\ell_{\rm res} := \pi (m + 1/2)/k, \qquad m \in \mathbb{N},$$

such that (\mathscr{P}_{1D}) admits the non zero solution $v(y) = \sin(k(y-1))$.

30

Asymptotic analysis – Non resonant case

• Assume that $\ell \neq \ell_{\text{res}}$. Then we find $v^{-1} = 0$ and when $\varepsilon \to 0$, we get

$$\begin{split} u_{\pm}^{\varepsilon}(x,y) &= u_{\pm} + o(1) & \text{in } \Omega, \\ u_{\pm}^{\varepsilon}(x,y) &= u_{\pm}(A) v_0(y) + o(1) & \text{in the resonator,} \\ R_{\pm}^{\varepsilon} &= R_{\pm} + o(1), \qquad T^{\varepsilon} = T + o(1). \end{split}$$

Here $v_0(y) = \cos(k(y-1) + \tan(k(y-\ell)\sin(k(y-1))))$.

Asymptotic analysis – Non resonant case

• Assume that $\ell \neq \ell_{\text{res}}$. Then we find $v^{-1} = 0$ and when $\varepsilon \to 0$, we get

$$\begin{split} u_{\pm}^{\varepsilon}(x,y) &= u_{\pm} + o(1) & \text{in } \Omega, \\ u_{\pm}^{\varepsilon}(x,y) &= u_{\pm}(A) v_0(y) + o(1) & \text{in the resonator,} \\ R_{\pm}^{\varepsilon} &= R_{\pm} + o(1), & T^{\varepsilon} &= T + o(1). \end{split}$$

Here $v_0(y) = \cos(k(y-1) + \tan(k(y-\ell))\sin(k(y-1)))$.

The thin resonator has no influence at order ε^0 .

 \rightarrow Not interesting for our purpose because we want $\begin{vmatrix} R_{\pm}^{\varepsilon} = 0 + \dots \\ T^{\varepsilon} = 1 + \dots \end{vmatrix}$

Asymptotic analysis – Resonant case

▶ Now assume that $\ell = \ell_{\text{res}}$. Then we find $v^{-1}(y) = a \sin(k(y-1))$ for some *a* to determine.
▶ Now assume that $\ell = \ell_{res}$. Then we find $v^{-1}(y) = a \sin(k(y-1))$ for some *a* to determine.

► Inner expansion. Set $\xi = \varepsilon^{-1}(\mathbf{x} - A)$ (stretched coordinates). Since

 $(\Delta_{\mathbf{x}} + k^2) u_+^{\varepsilon} (\varepsilon^{-1} (\mathbf{x} - A)) = \varepsilon^{-2} \Delta_{\xi} u^{\varepsilon} (\xi) + \dots,$

when $\varepsilon \to 0$, we are led to study the problem

$$(\star) \begin{vmatrix} -\Delta_{\xi}Y = 0 & \text{in } \Xi \\ \partial_{\nu}Y = 0 & \text{on } \partial \Xi \end{vmatrix}$$

▶ Now assume that $\ell = \ell_{res}$. Then we find $v^{-1}(y) = a \sin(k(y-1))$ for some *a* to determine.

► Inner expansion. Set $\xi = \varepsilon^{-1}(\mathbf{x} - A)$ (stretched coordinates). Since

$$(\Delta_{\mathbf{x}} + k^2)u_+^{\varepsilon}(\varepsilon^{-1}(\mathbf{x} - A)) = \varepsilon^{-2}\Delta_{\xi}u^{\varepsilon}(\xi) + \dots,$$

when $\varepsilon \to 0$, we are led to study the problem

$$(\star) \begin{vmatrix} -\Delta_{\xi}Y = 0 & \text{in } \Xi \\ \partial_{\nu}Y = 0 & \text{on } \partial \Xi. \end{cases}$$

• Problem (\star) admits a solution Y^1 (up to a constant) with the expansion

$$Y^{1}(\xi) = \begin{cases} \xi_{y} + C_{\Xi} + O(e^{-\pi\xi_{y}}) & \text{as } \xi_{y} \to +\infty, \quad \xi \in \Xi^{+} \\ \frac{1}{\pi} \ln \frac{1}{|\xi|} + O\left(\frac{1}{|\xi|}\right) & \text{as } |\xi| \to +\infty, \quad \xi \in \Xi^{-}. \end{cases}$$

▶ Now assume that $\ell = \ell_{res}$. Then we find $v^{-1}(y) = a \sin(k(y-1))$ for some *a* to determine.

► Inner expansion. Set $\xi = \varepsilon^{-1}(\mathbf{x} - A)$ (stretched coordinates). Since

$$(\Delta_{\mathbf{x}} + k^2)u_+^{\varepsilon}(\varepsilon^{-1}(\mathbf{x} - A)) = \varepsilon^{-2}\Delta_{\xi}u^{\varepsilon}(\xi) + \dots,$$

when $\varepsilon \to 0$, we are led to study the problem

$$(\star) \begin{vmatrix} -\Delta_{\xi}Y = 0 & \text{in } \Xi \\ \partial_{\nu}Y = 0 & \text{on } \partial \Xi. \end{cases}$$

Problem (*) admits a solution Y^1 (up to a constant) with the expansion

$$Y^{1}(\xi) = \begin{cases} \xi_{y} + C_{\Xi} + O(e^{-\pi\xi_{y}}) & \text{as } \xi_{y} \to +\infty, \quad \xi \in \Xi^{+} \\ \frac{1}{\pi} \ln \frac{1}{|\xi|} + O\left(\frac{1}{|\xi|}\right) & \text{as } |\xi| \to +\infty, \quad \xi \in \Xi^{-}. \end{cases}$$

► In a neighbourhood of A, we look for u_+^{ε} of the form $u_+^{\varepsilon}(x) = C^A Y^1(\xi) + c^A + \dots$ $(c^A, C^A \text{ constants to determine}).$

▶ Now assume that $\ell = \ell_{res}$. Then we find $v^{-1}(y) = a \sin(k(y-1))$ for some *a* to determine.

• Inner expansion. Set $\xi = \varepsilon^{-1}(\mathbf{x} - A)$ (stretched coordinates). Since

Since at A, the Taylor formula gives

$$u_{+}^{\varepsilon}(x) = \varepsilon^{-1}v^{-1}(y) + v^{0}(y) + \dots = 0 + (ak\xi_{y} + v^{0}(1)) + \dots,$$

_____A

we take $C^A = ak$.

• Problem (*) admits a solution Y^1 (up to a constant) with the expansion

$$Y^{1}(\xi) = \begin{cases} \xi_{y} + C_{\Xi} + O(e^{-\pi\xi_{y}}) & \text{as } \xi_{y} \to +\infty, \quad \xi \in \Xi^{+} \\ \frac{1}{\pi} \ln \frac{1}{|\xi|} + O\left(\frac{1}{|\xi|}\right) & \text{as } |\xi| \to +\infty, \quad \xi \in \Xi^{-}. \end{cases}$$

► In a neighbourhood of A, we look for u_+^{ε} of the form $u_+^{\varepsilon}(x) = C^A Y^1(\xi) + c^A + \dots$ (c^A , C^A constants to determine).

▶ Now assume that $\ell = \ell_{res}$. Then we find $v^{-1}(y) = a \sin(k(y-1))$ for some *a* to determine.

• Inner expansion. Set $\xi = \varepsilon^{-1}(\mathbf{x} - A)$ (stretched coordinates). Since

Since at A, the Taylor formula gives

$$u_{+}^{\varepsilon}(x) = \varepsilon^{-1}v^{-1}(y) + v^{0}(y) + \dots = 0 + (ak\xi_{y} + v^{0}(1)) + \dots,$$

_____A

we take $C^A = ak$.

• Problem (*) admits a solution Y^1 (up to a constant) with the expansion

$$Y^{1}(\xi) = \begin{cases} \xi_{y} + C_{\Xi} + O(e^{-\pi\xi_{y}}) & \text{as } \xi_{y} \to +\infty, \quad \xi \in \Xi^{+} \\ \frac{1}{\pi} \ln \frac{1}{|\xi|} + O\left(\frac{1}{|\xi|}\right) & \text{as } |\xi| \to +\infty, \quad \xi \in \Xi^{-}. \end{cases}$$

► In a neighbourhood of A, we look for u_+^{ε} of the form $u_+^{\varepsilon}(x) = ak Y^1(\xi) + c^A + \dots$ (c^A , C^A constants to determine).

▶ In the ansatz $u_{+}^{\varepsilon} = u^{0} + \dots$ in Ω , we deduce that we must take

$$u_0 = u_+ + \frac{ak\gamma}{2}$$

where γ is the outgoing Green function such that $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \Omega \\ \partial_n \gamma = \delta_A \text{ on } \partial\Omega. \end{vmatrix}$

• In the ansatz $u_{+}^{\varepsilon} = u^{0} + \dots$ in Ω , we deduce that we must take

 $u_0 = u_+ + \frac{ak\gamma}{2}$

where γ is the outgoing Green function such that $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \Omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \Omega. \end{vmatrix}$

• Then in the inner field expansion $u_+^{\varepsilon}(x) = ak Y^1(\xi) + c^A + \dots$, this sets

 $c^{A} = u_{+}(A) + \frac{ak}{(\Gamma + \pi^{-1} \ln |\varepsilon|)}.$

• In the ansatz $u_{+}^{\varepsilon} = u^{0} + \dots$ in Ω , we deduce that we must take

 $u_0 = u_+ + \frac{ak\gamma}{2}$

where γ is the outgoing Green function such that $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \Omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \Omega. \end{vmatrix}$

► Then in the inner field expansion $u_+^{\varepsilon}(x) = ak Y^1(\xi) + c^A + \dots$, this sets $c^A = u_+(A) + ak(\Gamma + \pi^{-1} \ln |\varepsilon|).$

• Matching the constant behaviour in the resonator, we obtain $v^0(1) = u_+(A) + ak(\Gamma + \pi^{-1} \ln |\varepsilon| + C_{\Xi}).$

• In the ansatz $u_{+}^{\varepsilon} = u^{0} + \dots$ in Ω , we deduce that we must take

 $u_0 = u_+ + \frac{ak\gamma}{2}$

where γ is the outgoing Green function such that $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \Omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \Omega. \end{vmatrix}$

► Then in the inner field expansion $u_+^{\varepsilon}(x) = ak Y^1(\xi) + c^A + \dots$, this sets $c^A = u_+(A) + ak(\Gamma + \pi^{-1} \ln |\varepsilon|).$

$$\begin{split} \blacktriangleright \quad \text{Thus for } v^0, \text{ we get the problem} \\ \left| \begin{array}{l} \partial_y^2 v^0 + k^2 v^0 = 0 & \text{ in } (1; 1+\ell) \\ v^0(1) = u_+(A) + ak(\Gamma + \pi^{-1} \ln |\varepsilon| + C_{\Xi}), \end{array} \right. \quad \partial_y v^0(1+\ell) = 0. \end{split}$$

• In the ansatz $u_{+}^{\varepsilon} = u^{0} + \dots$ in Ω , we deduce that we must take

 $u_0 = u_+ + \frac{ak\gamma}{2}$

where γ is the outgoing Green function such that $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \Omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \Omega. \end{vmatrix}$

► Then in the inner field expansion $u_+^{\varepsilon}(x) = ak Y^1(\xi) + c^A + \dots$, this sets $c^A = u_+(A) + ak(\Gamma + \pi^{-1} \ln |\varepsilon|).$

▶ This is a Fredholm problem with a non zero kernel. A solution exists iff the compatibility condition is satisfied. This sets

$$ak = -\frac{u_+(A)}{\Gamma + \pi^{-1}\ln|\varepsilon| + C_{\Xi}}$$

and ends the calculus of the first terms.

Finally for $\ell = \ell_{\text{res}}$, when $\varepsilon \to 0$, we obtain

$$\begin{split} u_{+}^{\varepsilon}(x,y) &= u_{+}(x,y) + \ ak\gamma(x,y) + o(1) & \text{ in } \Omega, \\ u_{+}^{\varepsilon}(x,y) &= \varepsilon^{-1}a\sin(k(y-1)) + O(1) & \text{ in the resonator}, \\ R_{+}^{\varepsilon} &= R_{+} + \ iau_{+}(A)/2 + o(1), \qquad T^{\varepsilon} = T + \ iau_{-}(A)/2 + o(1). \end{split}$$

Here γ is the outgoing Green function such that $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \Omega \\ \partial_n \gamma = \delta_A \text{ on } \partial\Omega \end{vmatrix}$ and

$$ak = -\frac{u_+(A)}{\Gamma + \pi^{-1}\ln|\varepsilon| + C_{\Xi}}.$$

Finally for $\ell = \ell_{\text{res}}$, when $\varepsilon \to 0$, we obtain

$$\begin{split} u_{+}^{\varepsilon}(x,y) &= u_{+}(x,y) + \frac{ak\gamma(x,y)}{ak\gamma(x,y)} + o(1) & \text{in } \Omega, \\ u_{+}^{\varepsilon}(x,y) &= \varepsilon^{-1}a\sin(k(y-1)) + O(1) & \text{in the resonator,} \\ R_{+}^{\varepsilon} &= R_{+} + \frac{iau_{+}(A)/2}{ak\gamma(x,y)} + o(1), \qquad T^{\varepsilon} = T + \frac{iau_{-}(A)/2}{ak\gamma(x,y)} + o(1). \end{split}$$

Here γ is the outgoing Green function such that $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \Omega \\ \partial_n \gamma = \delta_A \text{ on } \partial\Omega \end{vmatrix}$ and

$$ak = -\frac{u_+(A)}{\Gamma + \pi^{-1} \ln |\varepsilon| + C_{\Xi}}$$

This time the thin resonator has an influence at order ε^0

Similarly for $\ell = \ell_{res} + \epsilon \eta$ with $\eta \in \mathbb{R}$ fixed, by modifying only the last step with the compatibility relation, when $\epsilon \to 0$, we obtain

$$\begin{split} u_{+}^{\varepsilon}(x,y) &= u_{+}(x,y) + \frac{a(\eta)k\gamma(x,y)}{a(\eta)k\gamma(x,y)} + o(1) & \text{in } \Omega, \\ u_{+}^{\varepsilon}(x,y) &= \varepsilon^{-1}a(\eta)\sin(k(y-1)) + O(1) & \text{in the resonator,} \\ R_{+}^{\varepsilon} &= R_{+} + \frac{ia(\eta)u_{+}(A)/2}{a(\eta)(1-h)(1-h)} + o(1), \qquad T^{\varepsilon} = T + \frac{ia(\eta)u_{-}(A)/2}{a(\eta)(1-h)(1-h)(1-h)} + o(1). \end{split}$$

Here γ is the outgoing Green function such that $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \Omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \Omega \end{vmatrix}$ and

$$a(\eta)k = -\frac{u_+(A)}{\Gamma + \pi^{-1}\ln|\varepsilon| + C_{\Xi} + \eta}$$

Similarly for $\ell = \ell_{res} + \epsilon \eta$ with $\eta \in \mathbb{R}$ fixed, by modifying only the last step with the compatibility relation, when $\epsilon \to 0$, we obtain

$$\begin{split} u_{+}^{\varepsilon}(x,y) &= u_{+}(x,y) + \frac{a(\eta)k\gamma(x,y)}{a(\eta)k\gamma(x,y)} + o(1) & \text{in } \Omega, \\ u_{+}^{\varepsilon}(x,y) &= \varepsilon^{-1}a(\eta)\sin(k(y-1)) + O(1) & \text{in the resonator}, \\ R_{+}^{\varepsilon} &= R_{+} + \frac{ia(\eta)u_{+}(A)/2}{a(\eta)(1-h)} + o(1), \qquad T^{\varepsilon} = T + \frac{ia(\eta)u_{-}(A)/2}{a(\eta)(1-h)} + o(1). \end{split}$$

Here γ is the outgoing Green function such that $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \Omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \Omega \end{vmatrix}$ and

$$a(\eta)k = -\frac{u_+(A)}{\Gamma + \pi^{-1}\ln|\varepsilon| + C_{\Xi} + \eta}.$$

This time the thin resonator has an influence at order ε^0 and it depends on the choice of η !

▶ Below, for several $\eta \in \mathbb{R}$, we display the paths

$$\{(\varepsilon, \ell_{\rm res} + \varepsilon(\eta - \pi^{-1} |\ln \varepsilon|)), \varepsilon > 0\} \subset \mathbb{R}^2.$$

According to η , the limit of the scattering coefficients along the path as $\varepsilon \to 0^+$ is different.

▶ Below, for several $\eta \in \mathbb{R}$, we display the paths

$$\{(\varepsilon, \ell_{\rm res} + \varepsilon(\eta - \pi^{-1}|\ln \varepsilon|)), \varepsilon > 0\} \subset \mathbb{R}^2.$$

According to η , the limit of the scattering coefficients along the path as $\varepsilon \to 0^+$ is different.

For a fixed small ε_0 , the scattering coefficients have a rapid variation for ℓ varying in a neighbourhood of the resonance length.

2 Cloaking of given obstacles in acoustics using resonant ligaments

- Asymptotic analysis in presence of thin resonators
- Almost zero reflection
- Cloaking

From this expansion, we find that asymptotically, when the length of the resonator is perturbed **around** ℓ_{res} , R_{+}^{ε} , T^{ε} run on **circles** whose **features depend on the choice for** A.

From this expansion, we find that asymptotically, when the length of the resonator is perturbed **around** ℓ_{res} , R_+^{ε} , T^{ε} run on **circles** whose **features depend on the choice for** A.

Using the expansions of $u_{\pm}(A)$ far from the obstacle, one shows:

PROPOSITION: There are **positions of the resonator** A such that the circle $\{R^0_+(\eta) \mid \eta \in \mathbb{R}\}$ passes **through zero**.

From this expansion, we find that asymptotically, when the length of the resonator is perturbed **around** ℓ_{res} , R_+^{ε} , T^{ε} run on **circles** whose **features depend on the choice for** A.

Using the expansions of $u_{\pm}(A)$ far from the obstacle, one shows:

PROPOSITION: There are **positions of the resonator** *A* such that the circle $\{R^0_+(\eta) \mid \eta \in \mathbb{R}\}$ passes **through zero**. $\Rightarrow \exists$ situations s.t. $R^{\varepsilon}_+ = 0 + o(1)$.

7 46

 \rightarrow Simulations realized with the <code>Freefem++</code> library.

• Example of situation where we have almost zero reflection ($\varepsilon = 0.01$).

 \rightarrow Simulations realized with the <code>Freefem++</code> library.

 \rightarrow Simulations realized with the <code>Freefem++</code> library.

To cloak the object, it remains to compensate the phase shift!

2 Cloaking of given obstacles in acoustics using resonant ligaments

- Asymptotic analysis in presence of thin resonators
- Almost zero reflection
- Cloaking

▶ Working with two resonators, we can create phase shifters, that is devices with almost zero reflection and any desired phase.

• Here the device is designed to obtain a phase shift approx. equal to $\pi/4$.

Cloaking with three resonators

• Gathering the two previous results, we can cloak any object with three resonators.

Cloaking with two resonators

▶ Working a bit more, one can show that two resonators are enough to cloak any object.

 $t \mapsto \Re e\left(u_+(x,y)e^{-ikt}\right)$

 $t \mapsto \Re e\left(u_{+}^{\varepsilon}(x, y)e^{-ikt}\right)$

 $t\mapsto \Re e\,(e^{i\,k\,(x\,-\,t\,)})$

Cloaking with two resonators

▶ Another example

 $t \mapsto \Re e\left(u_+(x,y)e^{-ikt}\right)$

$$t \mapsto \Re e \left(u_{+}^{\varepsilon}(x, y) e^{-ikt} \right)$$

 $t\mapsto \Re e\,(e^{i\,k\,(x\,-\,t\,)})$

Recap of the cloaking strategy

What we did

- We explained how to approximately cloak any object in monomode regime using thin resonators. Two main ingredients:
 - Around resonant lengths, effects of order ε^0 with perturb. of width ε .
 - The 1D limit problems in the resonator provide a rather explicit dependence wrt to the geometry.

Recap of the cloaking strategy

What we did

- We explained how to approximately cloak any object in monomode regime using thin resonators. Two main ingredients:
 - Around resonant lengths, effects of order ε^0 with perturb. of width ε .
 - The 1D limit problems in the resonator provide a rather explicit dependence wrt to the geometry.

Possible extensions and open questions

- 1) We can similarly hide penetrable obstacles or work in 3D.
- 2) We can do cloaking at a finite number of wavenumbers (thin structures are resonant at one wavenumber otherwise act at order ε).
- 3) With Dirichlet BCs, other ideas must be found.
- 4) Can we realize exact cloaking (T = 1 exactly)? This question is also related to robustness of the device.

Part I

- L. Chesnel, S.A. Nazarov. Non reflection and perfect reflection via Fano resonance in waveguides, Comm. Math. Sci., vol. 16, 7:1779-1800, 2018.
- S.P. Shipman, H. Tu. Total resonant transmission and reflection by periodic structures, SIAP, vol. 72, 1:216-239, 2012.

Part II

L. Chesnel, J. Heleine and S.A. Nazarov. Acoustic passive cloaking using thin outer resonators. submitted, ZAMP, vol. 73, 98, 2022.