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Waveguide problem
I Scattering in time-harmonic regime of a plane wave in the acoustic
waveguide Ω coinciding with {(x, y) ∈ R× (0; 1)} outside a compact region.

Ω

+H−H

w+

Find v = vi + vs s. t.
−∆v = k2v in Ω,
∂nv = 0 on ∂Ω,

vs is outgoing.

I For k∈ (0;π), only 2 propagative modes w± = e±ikx/
√

2k. Set vi = w+.

I vs is outgoing ⇔ vs = s±w± + ṽs for ±x ≥ H,

with s± ∈ C, ṽs exponentially decaying at ±∞.

Definition: vi = incident field
v = total field
vs = scattered field.
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Invisibility and complete reflectivity
I At infinity, one measures the reflection coefficient R = s− and/or the

transmission coefficient T = 1 + s+ (other terms are too small).

I From conservation of energy, one has

|R|2 + |T |2 = 1.

Definition: Defect is said non reflective if R = 0 (|T | = 1)
perfectly invisible if T = 1 (R = 0).

completely reflective if T = 0 (|R| = 1).

For T = 1, defect cannot be detected from far field measurements.

For T = 0, defect is like a mirror.

GOAL
We explain how to construct waveguides such that

R = 0 (|T | = 1), T = 1 (R = 0) or T = 0 (|R| = 1).

I We shall assume that the wavenumber k is given.
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Existing methods
I Implicit functions theorem: we can construct small non reflective defects
(see A. Bera’s talk on Thursday).

R = 0

1 + εh(x)

Rε = 0

⇒ We obtain small defects such that R = 0 (harder to get T = 1).
Biblio.: Bonnet-Nazarov 13, Bonnet et al. 16.

I Fano resonance: if for a setting trapped modes exist, then perturbing
slightly the geometry and k, we can get R = 0 or T = 0.

⇒ Requires to start from a trapped mode.
Biblio.: Shipman-Tu 12, Hein et al. 12.

TALK
We propose another mechanism to get large defects s. t.

R = 0 (|T | = 1), T = 1 (R = 0) or T = 0 (|R| = 1).
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Geometrical setting
I We work in waveguides which are symmetric with respect to (Oy) and
which contain a branch of finite height .

`

L− 1

→ We will study the behaviour of the coefficients R, T ∈ C as L→ +∞.
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Outline of the talk

1 Main analysis

2 Numerical results

3 Variants and extensions
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Half-waveguide problems
I Consider a waveguide which is symmetric with respect (Oy) and which
contains a branch of finite height.

`

L− 1

ΩL
−∆v = k2v in ΩL
∂nv = 0 on ∂ΩL

I Introduce the two half-waveguide problems

`/2

ωL

Neumann/
Dirichlet

ΣL

−∆u = k2u in ωL
∂nu = 0 on ∂ωL

Neumann B.C.

−∆U = k2U in ωL
∂nU = 0 on ∂ωL \ ΣL
U = 0 on ΣL.

Mixed B.C.
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Relations for the scattering coefficients
I Half-waveguide problems admit the solutions

u = w+ +RN w− + ũ, with ũ ∈ H1(ωL)
U = w+ +RD w− + Ũ , with Ũ ∈ H1(ωL).

I Due to conservation of energy, one has
|RN | = |RD| = 1.

ωL

L

RDRN
RD

RN

I Using that v =
u + U

2 in ωL, v(x, y) =
u(−x, y)− U(−x, y)

2 in ΩL \ ωL,

we deduce that R =
RN + RD

2 and T =
RN −RD

2 .
Non reflectivity
⇔ RN = −RD

→ Now, we study the behaviour of RN = RN (L), RD = RD(L) as L→ +∞.
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Asymptotics of RN , RD 1/2
Depend on the nb. of propagative modes in the vertical branch of ω∞

`/2
ω∞

Σ∞

(PN ) −∆ϕ = k2ϕ in ω∞
∂nϕ = 0 on ∂ω∞

(PD)
−∆ϕ = k2ϕ in ω∞
∂nϕ = 0 on ∂ω∞ \ Σ∞
ϕ = 0 on Σ∞.

I Analysis for RD

• For ` ∈ (0;π/k), no prop. modes in the vertical branch of ω∞ for (PD).

• (PD) admits the solution

U∞ = w−1 +RD∞ w+
1 + Ũ∞, with Ũ∞ ∈ H1(ω∞), |RD∞| = 1.

• As L→ +∞, we have U = U∞ + . . . which implies |RD −RD∞| ≤ C e−βL.

For ` ∈ (0;π/k), L 7→ RD(L) tends to a constant on C := {z ∈ C, |z| = 1}.
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Asymptotic of RN , RD 2/2

1

2
ω∞

L

I Analysis for RN

• For ` ∈ (0; 2π/k), 2 prop. modes in the vertical branch of ω∞ for (PN )

w±2 = χt e
±iky/

√
k`

• (PN ) admits the solutions
u1
∞ = w−1 + s11 w

+
1 + s12 w

+
2 + ũ1

∞, with ũ1
∞ ∈ H1(ω∞)

u2
∞ = w−2 + s21 w

+
1 + s22 w

+
2 + ũ2

∞, with ũ2
∞ ∈ H1(ω∞).

• If s12 6= 0, we make the ansatz u = u1
∞ + a(L)u2

∞ + . . . .
On ΓL 0 = ∂nu = C (s12e

ikL + a(L) (−e−ikL + s22e
ikL)) + . . . .

• This gives a(L) and implies, as L→ +∞,

|RN −RNasy(L)| ≤ C e−βL with RNasy(L) = s11 +
s12 s21

e−2ikL − s22
.

• Unitarity of
(
s11 s12
s21 s22

)
⇒ L 7→ RNasy(L) runs periodically on C .

For ` ∈ (0; 2π/k), L 7→ RN (L) runs continuously and almost period. on C .
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u1
∞ = w−1 + s11 w
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1 + s12 w

+
2 + ũ1

∞, with ũ1
∞ ∈ H1(ω∞)

u2
∞ = w−2 + s21 w

+
1 + s22 w

+
2 + ũ2

∞, with ũ2
∞ ∈ H1(ω∞).

• If s12 6= 0, we make the ansatz u = u1
∞ + a(L)u2

∞ + . . . .
On ΓL 0 = ∂nu = C (s12e
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• This gives a(L) and implies, as L→ +∞,
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s12 s21
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.

• Unitarity of
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∞, with ũ2
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∞ ∈ H1(ω∞).

• If s12 6= 0, we make the ansatz u = u1
∞ + a(L)u2

∞ + . . . .
On ΓL 0 = ∂nu = C (s12e

ikL + a(L) (−e−ikL + s22e
ikL)) + . . . .

• This gives a(L) and implies, as L→ +∞,

|RN −RNasy(L)| ≤ C e−βL with RNasy(L) = s11 +
s12 s21

e−2ikL − s22
.

• Unitarity of
(
s11 s12
s21 s22

)
⇒ L 7→ RNasy(L) runs periodically on C .

For ` ∈ (0; 2π/k), L 7→ RN (L) runs continuously and almost period. on C .

11 / 29



Asymptotic of RN , RD 2/2

1

2

L

I Analysis for RN

• For ` ∈ (0; 2π/k), 2 prop. modes in the vertical branch of ω∞ for (PN )

w±2 = χt e
±iky/

√
k`

• (PN ) admits the solutions
u1
∞ = w−1 + s11 w

+
1 + s12 w

+
2 + ũ1
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∞, with ũ2
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Conclusions for ` ∈ (0; π/k), s12 6= 0

I Reminder: R =
RN +RD

2 and T =
RN −RD

2 .

Proposition: Asymptotically as L→ +∞, R (resp. T ) runs on the circle
of radius 1/2 centered at RD∞/2 (resp. −RD∞/2).

Proposition: There is an unbounded sequence (Ln) such that for L = Ln,
RN = −RD and so R = 0 (non reflectivity).

Proposition: There is an unbounded sequence (Ln) such that for L = Ln,
RN = RD and so T = 0 (complete reflectivity).

I Sequences (Ln) and (Ln) are almost periodic. As n→ +∞, we have
Ln+1 − Ln = π/k + . . . and Ln+1 − Ln = π/k + . . . .
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1 Main analysis

2 Numerical results

3 Variants and extensions
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Setting

I We compute numerically the scattering coefficients R, T for L ∈ (2; 10)
in the geometry ΩL

`

L− 1
ΩL

I We use a P2 finite element method with Dirichlet-to-Neumann maps.

I We set k = 0.8π and ` = 1 ∈ (0;π/k).

14 / 29



Numerical results
I Reflection coefficient R and transmission coefficient T for L ∈ (2; 10).

Due to conservation of energy, R and T are inside the unit disk of C.
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Numerical results
I Curve L 7→ − ln |R|. Peaks correspond to non reflectivity.
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Numerical results
I Curve L 7→ − ln |T |. Peaks correspond to complete reflectivity.
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Non reflectivity

I Total field v for L such that R = 0.

I Scattered field vs.
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Complete reflectivity

I Total field v for L such that T = 0.

18 / 29



Complete reflectivity

I Total field v for L such that T = 0.
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Complete reflectivity

I Total field v for L such that T = 0.
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Other non reflective geometry

I Scattered field vs
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1 Main analysis

2 Numerical results

3 Variants and extensions
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Analysis for ` ∈ (π/k; 2π/k)

I We still have R =
RN +RD

2 and T =
RN −RD

2 .

and analysis for L 7→ RN has been done previously.

I Now 2 prop. modes exist in the vertical branch of ω∞ for (PD).

I As before, we can show, with α =
√
k2 − (π/`)2,

|RD −RDasy(L)| ≤ C e−βL with RDasy(L) = S11 +
S12 S21

e−2iαL − S22
.

L 7→ RNasy(L) and L 7→ RDasy(L) run period. on C with different periods.

? The curves L 7→ R(L), T (L) still pass through zero an infinite nb. of times.

? Behaviours of L 7→ R(L), T (L) can be much more complex than before...
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Numerical results for ` ∈ (π/k; 2π/k)

I Asympt. curves of L 7→ R(L), T (L) for L ∈ (0; +∞) and ` such that

k = mα, m = 2 (α =
√
k2 − (π/`)2).
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Numerical results for ` ∈ (π/k; 2π/k)

I Asympt. curves of L 7→ R(L), T (L) for L ∈ (0; +∞) and ` such that

k = mα, m = 3 (α =
√
k2 − (π/`)2).
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Numerical results for ` ∈ (π/k; 2π/k)

I Asympt. curves of L 7→ R(L), T (L) for L ∈ (0; +∞) and ` such that

k = mα, m = 4 (α =
√
k2 − (π/`)2).
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Numerical results for ` ∈ (π/k; 2π/k)

I Asympt. curves of L 7→ R(L), T (L) for L ∈ (0; +∞) and ` such that

k = mα, m = 5 (α =
√
k2 − (π/`)2).
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Numerical results for ` ∈ (π/k; 2π/k)

I Asympt. curves of L 7→ R(L), T (L) for L ∈ (0; 100) and ` = 1.7 ( k/α /∈ Q ).

k = mα, (α =
√
k2 − (π/`)2).

22 / 29



Numerical results for ` ∈ (π/k; 2π/k)
I Non reflective geometry ( t 7→ <e (v(x, y)e−iωt) ).

I Completely reflective geometry ( t 7→ <e (v(x, y)e−iωt) ).
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The special case ` = 2π/k
I We did ` ∈ (0;π/k), ` ∈ (π/k; 2π/k). Now set ` = 2π/k in the geometry

` = 2π/k

L− 1
ΩL

I We still have R =
RN +RD

2 and T =
RN −RD

2 .

RN

RD

RD

? u = w+ +w− = C cos(kx) solves the Neum. pb. in ωL ⇒ RN = 1, ∀L > 1.

? L 7→ RD(L) still runs on the unit circle and goes through −1.

There is a sequence (Ln) such that T = 1 (perfect invisibility)
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The special case ` = 2π/k - perfect invisibility

I Works also in the geometry below (L is the height of the central branch).

I Perfectly invisible defect ( t 7→ <e (v(x, y)e−iωt) ).

I Reference waveguide ( t 7→ <e (v(x, y)e−iωt) ).
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The special case ` = 2π/k - trapped modes

I Set γ =
√
π2 − k2, w±1 =

e∓ikx
√

2k
and w±2 =

e−γx ∓ ieγx
√

2γ
cos(πy) .

I The Neumann problem in ωL admits the solutions
u1 = w−1 + s11 w

+
1 + s12 w

+
2 + ũ1, with ũ1 fastly expo. decaying

u2 = w−2 + s21 w
+
1 + s22 w

+
2 + ũ2, with ũ2 fastly expo. decaying.

I The augmented scattering matrix S =
(

s11 s12
s21 s22

)
is unitary.

Lemma: If s22 = −1 , the Neumann problems in ωL admits trapped modes.
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2 + ũ1, with ũ1 fastly expo. decaying

u2 = w−2 + s21 w
+
1 + s22 w

+
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Conclusion

What we did

♠ We explained how to construct waveguides such that R = 0, T = 0
(the method works also for the Dirichlet problem) or T = 1.

♠ We showed how to construct waveguides supporting trapped modes.

Future work

1) When the symmetry is broken, we can still do things...

2) Can we work at higher frequencies (several propagative modes)?

3) Can we deal with multi-channel waveguides?

4) For a given perturbation, can we study the frequencies such that
invisibility holds? ⇒ See A.-S. Bonnet-Ben Dhia’s talk on Wed..
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Thank you for your attention!!!
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