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Introduction

» Consider the eigenvalue problem

Av+Xlv = 0 inQ,
o,v = 0 on 0N

» In bounded domains, small smooth perturbations of the geometry
slightly shift the spectrum in R (eigenvalues remain eigenvalues).
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» In bounded domains, small smooth perturbations of the geometry
slightly shift the spectrum in R (eigenvalues remain eigenvalues).

® -» @

B - e e
(@] O

» In unbounded waveguides, small perturbations of the geom. transform
eigenvalues embedded in the continuous spectrum into complex resonances.
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— See Aslanyan, Parnovski, Vassiliev, Q. J.Mech. Appl. Math., 00.
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What is the influence of these resonances on the scattering properties 2
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A 1D toy problem

» First, we consider a simple 1D problem.
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A 1D toy problem

Q=0 UNUQ3

o Q1 O 9 1

» Consider the scattering problem

p1 =2 =3 at O

©"+k*p =01in Q,
Qpé =0 on 9N radiation condition
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A 1D toy problem

Q=0 UNUQ3

(951 Oﬂgl

» Consider the scattering problem
p1 =12 =3 at O
Ok o =0inQ, | @) =¢h+¢sat O with p; =e* + Re ™ ReC.

— A =
=¥3= 0 on 99 radiation condition

» Well-posedness <« invertibility of a 3 x 3 system M® = F'.
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A 1D toy problem

Q=0 UNUQ3

(951 Oﬂgl

» Consider the scattering problem
p1 =12 =3 at O
Ok o =0inQ, | @) =¢h+¢sat O with p; =e* + Re ™ ReC.
©h = @5 =0 on 0N

radiation condition

» Well-posedness <« invertibility of a 3 x 3 system M® = F'.

» Uniqueness < k¢ (2N+1)7/2. Existence for all k € R (F € ker M),

_ cos(k) + 2isin(k)
~ cos(k) — 2isin(k)
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A 1D toy problem
» We perturb the geometry: Q° = Q; U Qs U Q5 with QF = (0;1 +¢).

. cos(k)cos(k(1l+¢)) +isin(k(2+¢))
~ cos(k) cos(k(1+¢)) —isin(k(2+¢))
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Figure: k> 0%(k) for several € (non uniqueness for e =0, k=m/2).
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A 1D toy problem

> Set R(e, k) = e=*) (functions of two variables).

(e, k) = 0(e, k)
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A 1D toy problem

> Set R(e, k) = (k) (functions of two variables).
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A 1D toy problem

> Set R(e, k) = (k) (functions of two variables).

(e, k) = 0(e, k)

-06 -04 -02 0 02 04 06

Goals of the talk

1) Prove a similar Fano resonance phenomenon in waveguides.
2) Show that zero transmission always occurs during the phenomenon.
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Outline of the talk

@ The Fano resonance in waveguides

Q Zero transmission

@ Numerical experiments
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@ The Fano resonance in waveguides
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Setting

» Let Q be a waveguide which coincides with {(z,y) € R x (0;1)} outside
a compact region. We consider the problem

(%) Av+Xlv = 0 inQ,
Opv 0 on 09.

» We assume that \° € (0;72) is an eigenvalue for (x) (non uniqueness).
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Setting

» Let Q be a waveguide which coincides with {(z,y) € R x (0;1)} outside
a compact region. We consider the problem

(%) Av + v 0 in €,
O Opv = 0 ondQ.

Q PR
We assume that \° € (0;72) is an eigenvalue for (x) (non uniqueness).

The scattering problem associated with (x) writes

Find v s.t. v — v; is outgoing and
(2)| Av+ M\ 0 in Q,
Opv 0 on 09.

For this problem with & := /A € (0;7), the modes are
Propagating | wi(x,y) = e*ke,
Evanescent

wk(z,y) = e cos(nmy), Bn=Vn2r2 -\, n> 1.
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Scattering problem

Find v s.t. v — v; is outgoing and

(9) Av+Xv = 0 inQ,
o,v = 0 on0N.
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Scattering problem

Find v s.t. v — v; is outgoing and

(@) Av+Xv = 0 inQ,
o,v = 0 on0N.

» For v; = wy, (&) admits the scattering solutions (existence)

v — wy + Riw_ + ... o — T w_+... forx <0
T T wy+... T w4+ R_wi+... forz >0

where Ry, T € C and ... are exponentially decaying terms.
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Scattering problem

Find v s.t. v — v; is outgoing and

(@) Av+Xv = 0 inQ,
o,v = 0 on0N.

» For v; = wy, (&) admits the scattering solutions (existence)

T w_+... forx <0
wo +R_wy + ... forx >0

| wye+Ryw_ ... .
’U+— T w++ v-=

where Ry, T € C and ... are exponentially decaying terms.

» The scattering matrix

is uniquely defined (even for A = \Y), unitary (SgT = Id) and symmetric.
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Small perturbation of the geometry 1/2

» We perturb slightly (¢ > 0 is small) the geometry

-

Locally 9Q° coincides with the graph of x — 1+ cH(x),
where H € 65°(R) is a given profile function.
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Small perturbation of the geometry 1/2

» We perturb slightly (¢ > 0 is small) the geometry

-

Locally 9Q° coincides with the graph of x — 1+ cH(x),
where H € 65°(R) is a given profile function.

» For a given H, the scattering matrix S is a function of € and A.

The following theorem describes the behaviour of (g, A) — S(e,\) in a
neighbourhood of (0, A\°) where trapped modes exist.
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Small perturbation of the geometry 2/2

THEOREM: Set S° = S(0,A"). There is A/, € R such that when ¢ — 0,

S(e, A 4+ eX) =S° + O(e) for N # )/

P
and, for any p € R,

TTT

S(e, A0 +eX, +e2u) =S° + ——— 4 0
EX e =S G e

(e)-

Here 7 € C? depends only on 2 and i = Au + B for some A # 0, B € R.

» Similar to the 1D picture:

)\O
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Small perturbation of the geometry 2/2

COMMENTS:
- S(+,-) is not continuous at (0, A°).

- For a small given ¢(, the map A\ — S(eg, \) varies quickly at A\° + 50)\;.

- Under certain conditions on H, the variation can be even quicker...
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Small perturbation of the geometry 2/2

COMMENTS:
- S(+,-) is not continuous at (0, A°).
- For a small given ¢(, the map A\ — S(eg, \) varies quickly at A\° + 50)\;.

- Under certain conditions on H, the variation can be even quicker...

INGREDIENTS OF THE PROOF:

- Use weighted Sobolev spaces with detached asymptotics to define scatter-
ing solutions with non standard radiation conditions.

- Define an augmented scattering matrix & (Nazarov, Plamenevsky, 94).

- Compute an asymptotic expansion of & which is smooth at (0, \”) because
uniqueness holds for the problem with non standard radiation conditions.

- Use the connection existing between S and & to get an expansion for S.
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© Zero transmission
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Symmetric waveguide 1/2

» We assume that  is symmetric with respect to the (Oy) axis.

Av+X v = 0 inQ,
Op,v = 0 on 0f.
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Symmetric waveguide 1/2

» We assume that  is symmetric with respect to the (Oy) axis.

Av+X v = 0 inQ,
Opv 0 on 90.

» Introduce the two half-waveguide problems
AU+ MU =0 inw

N ‘Au-l—a/\uig m"é 0,U =0 on dw\ 90
Vi nt =" onov U=0 on dwnom.
Ry \_Ep

» They admit the solutions
u = e** 4 Ryethr 4 .

U=¢e* 4 Rpe e

I

with |Ry| = |Rp| =1 (conservation of energy).
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Symmetric waveguide 1/2

» We assume that  is symmetric with respect to the (Oy) axis.

Av+X v = 0 inQ,
0 on 90.

Opv

» Introduce the two half-waveguide problems
AU+ MU =0 inw
0,U =0 on dw\ 90N
U=0 on dwnof.

Au+Adu=0 inw
Opu=0 on dw

-

~

Ry Rp

I

U3

» They admit the solutions
u = e** 4 Ryethr 4 .

U=¢e* 4 Rpe e

with |Ry| = |Rp| =1 (conservation of energy).

_ Ry-Rp
-

Ry + R
Ri=¥ and T

» One can prove that

13 / 23



Symmetric waveguide 2/2

_ RBn+Rp T_RN_RD

+ 2 2

» To set ideas, we assume that eigenfunctions are symmetric w.r.t. (Oy).
= They are eigenfunctions for the pb with Neumann B.Cs.

i) A% is not an eigenvalue for the pb with Dirichlet condition. This implies
|Rp(e, A’ + X, + &%) — Rp(0,X%)] < Ce, Ve € (0;¢0), p € [—ce™ 5 ce].

1

i) p = Ry (e, A% + el + &) rushes on the unit circle for p € [—ce™; ce].
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+ 2 2

» To set ideas, we assume that eigenfunctions are symmetric w.r.t. (Oy).
= They are eigenfunctions for the pb with Neumann B.Cs.

i) A% is not an eigenvalue for the pb with Dirichlet condition. This implies
|Rp(e, A’ + X, + &%) — Rp(0,X%)] < Ce, Ve € (0;¢0), p € [—ce™ 5 ce].

1

i) p— Ry (e, A° + eX, + e2p) rushes on the unit circle for p € [—ce™!; ce].

PROPOSITION:
INE, with A* — A0 = O(e), s.t. for € small, Ry (g, \°) = 0 (zero reflection ).

3Xe, with A* — X0 = O(e), s.t. for e small, T'(s,\*) = 0 (zero transmission |.

— Similar results in Shipmanand Tu, SIAMAppl. Math, 2012. We use a different

approach and consider a perturbation of the geometry. 14723



Non symmetric waveguide 1/2

@

» We can not work as before but we can still prove the following result.

Q

PROPOSITION:
INE, with A° — A% = O(e), s.t. for e small, T'(¢, \°) = 0 (zero transmission ).
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» We can not work as before but we can still prove the following result.

Q

PROPOSITION:

INE, with A° — A% = O(e), s.t. for e small, T'(¢, \°) = 0 (zero transmission ).

Proof. 1) Set 7°(y) = T'(, A’ + X, + e%1). The expansion of S yields

ab
TE(u)=T*(u)| < Ce  with  T™(u) = T+— ;
|7 () (1] (1) ifi — (a2 + [b]2)/2

where a, b are some constants.
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Non symmetric waveguide 1/2

@

» We can not work as before but we can still prove the following result.

Q

PROPOSITION:

INE, with A° — A% = O(e), s.t. for e small, T'(¢, \°) = 0 (zero transmission ).

Proof. 1) Set 7°(y) = T'(, A’ + X, + e%1). The expansion of S yields

ab
TE(u)=T*(u)| < Ce  with  T™(u) = T+— ;
|7 () (1] (1) ifi — (a2 + [b]2)/2

where a, b are some constants.

2) One can check that {72 (p) | 4 € R} is a circle passing through zero .
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Non symmetric waveguide 2/2

o Te(p)

1 T (1)

3) If o — T7(u) does not pass through zero, u — 2phase(7°(u)) varies
quickly. One can show that this contradicts the identity

T ()T () = =R () / RZ ()

which is a consequence of the unitarity of S°(y). O
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@ The unitarity structure of S is the key to conclude.
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Non symmetric waveguide 2/2

o Te(p)

1 T (1)

3) If o — T7(u) does not pass through zero, u — 2phase(7°(u)) varies
quickly. One can show that this contradicts the identity

T ()T () = =R () / RZ ()

which is a consequence of the unitarity of S°(y). O

g The unitarity structure of S is the key to conclude.

— Similar idea in Lee, Phys. Rev. Lett., 99 using a perturbation argument.
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e Numerical experiments
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Symmetric waveguide

» Numerics using FE methods (Freefem++) with DtN maps or PMLs.

18 / 23



Symmetric waveguide

» Left: waveguide. nght eigenfunction for e = 0 and k? := = 2.42.

i -__-
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Symmetric waveguide

» Left: waveguide. nght eigenfunction for ¢ = 0 and k0 := = 2.42.
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» Scattering coefficients for k € (2.2;2.7).
No shift (e = 0)

0.5

-0.51

-1 -0.5 0 0.5 1

k+— Ri(0,k) k— T(0,k)
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Symmetric waveguide

» Left: waveguide. nght eigenfunction for e = 0 and k° := = 2.42.

» Scattering coefficients for k € (2.2;2.7).
No shift (e = 0) Small shift (¢ > 0)

0.5F 0.5

-0.51 -0.51

. . . . 1 . . . .
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

k+— Ri(0,k) k— T(0,k) ki R(0.02,k) k— T(0.02,k) ) 9



Symmetric waveguide

» Example of setting where Ry (g,A%) =0 (zero reflection).
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Symmetric waveguide

» Example of setting where Ry (g,A%) =0 (zero reflection).

Rewvy I. -L* . . . i
L.
aece - [ N

» Example of setting where T'(g,A%) =0 (zero transmission).

|
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Non symmetric waveguide

» Left: waveguide. nght eigenfunction for ¢ = 0 and k° := =~ 2.03.

nsn
000
+ & -0.50

» Scattering coefficients for k € (1.8;2.2).

No shift (e = 0) Small shift (¢ > 0)
1ir 1ir
05 05
or or
05F -05¢
1 : : : : 1 : : : :
-1 -0.5 0 0.5 1 -1 -05 0 0.5 1
kv R (0,k) ki T(0,k) kv Ry (0.1,k) k+— T(0.1,k)
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Non symmetric waveguide

» Example of setting where T'(e,A\°) = 0 (zero transmission).

—_- |
Revs B ] § -
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Frequency behaviour

No shift (e = 0) | Small shift (¢ > 0)

> Lk Revy(k)

4§ e e Bl b HE R

» Complex spectrum computed with PMLs (we zoom at the real axis).

e Trapped mode e Complex resonance
4 1 4 4
0 X 0 X
\. \.
- ..’-. * o -1 ..... ° . ]
®e , . . °
2 ®e %, 2 ®e %,
o, o, Ceo, °
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4 'y Iy 4 'y ry
0 1 2 3 4 5 6 0 1 2 3 4 5 6
el % : | el % : |
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0.02 . -0.02 .
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@ The Fano resonance in waveguides

© Zero transmission

@ Numerical experiments
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Conclusion

What we did

& We proved the Fano resonance phenomenon in a 2D waveguide.
If trapped modes exist for (g,\) = (0, \°), then for e > 0 small,
A+ S(e, ) has a quick variation at \°. Symmetry is not needed.

& If Q symmetric w.r.t. (Oy), zero reflection, zero transmission occur.
If Q not symmetric, zero transmission occurs.

& The technique works with other B.C. (Dirichlet, ...), other kinds of
perturbation (penetrable obstacles, ...), in any dimension.
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Conclusion

What we did

& We proved the Fano resonance phenomenon in a 2D waveguide.
If trapped modes exist for (g,\) = (0, \°), then for e > 0 small,
A+ S(e, X) has a quick variation at \°. Symmetry is not needed.

& If Q symmetric w.r.t. (Oy), zero reflection, zero transmission occur.
If Q not symmetric, zero transmission occurs.

& The technique works with other B.C. (Dirichlet, ...), other kinds of
perturbation (penetrable obstacles, ...), in any dimension.

1) Is there zero reflection/zero transmission for k£ > 7 (monomode
regime was essential in the mechanism)?

2) What happens if A° is not a simple eigenvalue?
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