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Introduction 1/2

» We consider the propagation of waves in a 2D acoustic waveguide (also
relevant in optics, microwaves, water-waves theory,...).

Au+k?u = 0 inQ,

(#) Opu = 0 on 0f2

Y
La

» We fix k € (m;27) so that two modes can propagate:

wi(z,y) = eF P70 (y),  e1ly) =673 Bi=k
wy (o) = e E00(y), aly) = By PV 2cos(my), o= VEE — 72
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Introduction 2/2

» We define the reflection and transmission matrices

R— ( 11 T12 ) c C2%2 T — ( t11 t12 ) c 022,

o1 122 to1 a2

» From conservation of energy, we have, for i = 1, 2,
2

D oIl + [t = 1.
j=1
Goal of the talk
We wish to construct a mode converter, that is a geometry such that:

1) energy is completely transmitted ( 0 0 ) ( 0 1 )
. . ~ T~ .
2) mode 1/2 is converted into mode 2/1 0 0 Lo
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Introduction 2/2

» We define the reflection and transmission matrices

R— ( 11 T12 ) c C2%2 T — ( t11 t12 ) c 022,

o1 122 to1 a2

» From conservation of energy, we have, for i = 1, 2,
2
2 2
> Iri* + [t = 1.
j=1

Goal of the talk

We wish to construct a mode converter, that is a geometry such that:

1) energy is completely transmitted R~ ( 0 0 ) T ~ ( 0 1 )
2) mode 1/2 is converted into mode 2/1 0 0 Loy

Difficulty: the scattering coefficients have a non explicit and non
linear dependence wrt the geometry.

— Due to local minima, we wish to avoid optimization methods

(Lunévilleetal. 98, Lebbe et al. 19). .



Outline of the talk

@ Choice of geometry

9 Asymptotic analysis in presence of thin resonators

@ Mode converter

4 /27



@ Choice of geometry
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Geometry 1/3

» We decide to work in a geometry 2° made of two half-waveguides
connected by two thin ligaments of width 0 < ¢ <« 1.

Q° =1L, UL UL UTL,

» This may seem paradoxical because in general in this Q¢ energy is
mostly backscattered:

A (L0) ma(0 0.
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» We decide to work in a geometry €2° made of two half-waveguides
connected by two thin ligaments of width 0 < ¢ <« 1.
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» This may seem paradoxical because in general in this ¢, energy is
mostly backscattered:

Raz((l)(l)) T5%(88>
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Geometry 2/3

» We impose 2° to be symmetric wrt (Oy). Set w® := {(z,y) € Q° |z < 0}.

» In the half-waveguide w®, consider the two problems with Artificial
Boundary Conditions (ABC)

Aug, + k?u; = 0 in w® Aug, + k*uf, = 0 in w®
(%) Jyufy = 0 on dw® \ ¢ (27 0,uf = 0 on Ow® \ ¢
Oyuy = 0 on X¢ up = 0 on X°

where ¥° := dw® \ 90Q°.
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Geometry 3/3

» For (£7¢),i= N, D, we have the solutions
2 _
uf; = wy(z,y)+ > =1 By (z,y) + ...

2 _
us, = wy(w,y)+ > =1 Bopjwy (z,y) + ...

» This defines two scattering matrices RS, R5, € C**2 and there holds

N+ R e Ry R

E:
R 2 2
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Geometry 3/3

» For (£7¢),i= N, D, we have the solutions
2 _
uf; = wy(z,y)+ > =1 By (z,y) + ...

2 -
uhy = w (o) X, By @)+

» This defines two scattering matrices RS, R5, € C**2 and there holds

N+ R e Ry R

R =
2 2

» Therefore our goal is to design w® such that

=(08) me(h )
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Q Asymptotic analysis in presence of thin resonators

9 /27



Setting

N

\9\‘ ‘ Main ingredient of our approach: outer resonators of width e < 1.

=

» To set ideas, we work on the problem with Neumann ABC

and focus our attention on u5.

(Z%)

Auf + k2us
o, u®
o,u

0 in w®
0 on Qwe \ ¥¢
0 on X¢
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First observations

» In the limit geometry w, we have the solution

— ot =
u = w; +owy

— T - -
w = w; +1lw; +0w;.

As mentioned above, in general the thin ligament has only a weak influence:

ut R u = Ri~1 and R5=0

But not always ...

» Below, for a fixed ¢, we vary the length ¢ of the ligament:

ol % Ri(0)
_ ol ! ¥ Ra(0)

El 05 0 05 1 11 / 27




Asymptotic analysis

To understand the phenomenon, we compute an asymptotic expansion
of u®, Rf, R5 as € — 0.

» To proceed we use techniques of matched asymptotic expansions
(see Beale 73, Gadyl’shin 93, Kozlovet al. 94, Nazarov96, Maz’yaet al. 00,
Joly & Tordeux 06, Lin, Shipman & Zhang 20, 18, Holley & Schnitzer19,... )
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Asymptotic analysis

» We work with the outer expansions
us(z,y) = ul(z,y) + ... in w,
u(z,y) =e v~ z) +0%x) +... in the resonator.
» Considering the restriction of (Z5%) to the thin resonator, when ¢ tends
to zero, we find that v~! must solve the homogeneous 1D problem
v+ k%0 =0 in (0;¢)

(Z37) v(0) = 9w(¢) = 0.
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Asymptotic analysis

» We work with the outer expansions
us(z,y) = ul(z,y) + ... in w,
u(z,y) =e v~ z) +0%x) +... in the resonator.

» Considering the restriction of (Z5%) to the thin resonator, when ¢ tends
to zero, we find that v~! must solve the homogeneous 1D problem

v+ k%0 =0 in (0;¢)

(Z37) v(0) = 9w(¢) = 0.

The features of (Z3P) play a key role in the physical phenomena
8' and in the asymptotic analysis.

» We denote by ¢%° (resonance lengths) the values of ¢, given by
0N =m(m+1/2)/k, m € N,

such that (#21P) admits the non zero solution v(z) = sin(kx).




Asymptotic analysis — Non resonant case

> Assume that £ £5°. Then we find v=! = 0 and when £ — 0, we get

ut(z,y) = u(z,y) +o(1) in w,
u®(z,y) = u(A) vo(x) + o(1) in the resonator,

R =1 +o(1), R5 =0 +o(1).

Here vo(z) = cos(kz) + tan(kf) sin(kx).
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Asymptotic analysis — Non resonant case

> Assume that £ £5°. Then we find v=! = 0 and when £ — 0, we get

ut(z,y) = u(z,y) +o(1) in €,
u®(z,y) = u(A) vo(x) + o(1) in the resonator,

R =1 +o(1), R5 =0 +o(1).

Here vo(z) = cos(kz) + tan(kf) sin(kx).

The thin resonator has no influence at order £°.

RE=0+...
19

— Not interesting for our purpose because we want R —14
5 = e
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Asymptotic analysis — Resonant case

» Now assume that £ = ¢ . Then we find v~ (2) = asin(kz) for some a
to determine.
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Asymptotic analysis — Resonant case
» In the ansatz u® = u® + ... in w, we deduce that we must take
u’ = u+ aky

where 7 is the outgoing Green function such that | Av+k*y=0inw
Ony =64 on Ow.
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» In the ansatz u® = u® + ... in w, we deduce that we must take
u’ = u+ aky

where v is the outgoing Green function such that | Av+k*y=0inw
Ony =64 on Ow.

» Then in the inner field expansion u°(x) = ak Y1(&) 4+ ¢ + ..., this sets
= u(A) + ak(l + 7 n|e)).

» Matching the constant behaviour in the resonator, we obtain

v2(0) = u(A) + ak(T + 7 'Ine| + Cz).
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Asymptotic analysis — Resonant case

» In the ansatz u® = u® + ... in w, we deduce that we must take
u’ = u+ aky

where v is the outgoing Green function such that | Av+k*y=0inw
Ony =64 on Ow.

» Then in the inner field expansion u°(x) = ak Y1(&) 4+ ¢ + ..., this sets
A =u(A) + ak(l' + 7 1n|e|).

» Thus for v°, we get the problem
0200 + k%00 =0 in (0;¢)
v2(0) = u(A) + ak(l' + 7 ne| + C=), 9,00 (¢) = 0.
» This is a Fredholm problem with a non zero kernel. A solution exists iff
the compatibility condition is satisfied. This sets
u(A)
'+ 7 tlnle| + C=

ak =

and ends the calculus of the first terms.
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Asymptotic analysis — Resonant case

» Finally for ¢ = {3°, when ¢ — 0, we obtain

us(z,y) = u(z,y) + aky(z,y) +o(1) inw,
uf(z,y) = e tasin(kz) + O(1) in the resonator,

R =1+ dau(A)/2 + o(1), R5 =0+ iau(A)/2 + o(1).

Here v is the outgoing Creen function such that | Av+k*y=0inw and
Ony =64 on dw
u(A)

k= .
¢ F'+nllnle|+Cs
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Asymptotic analysis — Resonant case

» Similarly for £ = £\° +en with € R fixed, by modifying only the last
step with the compatibility relation, when € — 0, we obtain

uf(z,y) = u(z,y) + a(mky(z,y) +o(1) inw,

u®(z,y) = e ta(n)sin(kz) + O(1)  in the resonator,

R§ =1+ da(n)u(A)/2 + o(1), R =0+ da(n)u(4)/2 + o(1).

Here ~ is the outgoing Green function such that | Av+k*y=0inw and
Ony =064 on dw

u(4)

k=— .
a(m) F'+7tlnle|+C=+1n
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Asymptotic analysis — Resonant case

» Similarly for £ = £\° +en with € R fixed, by modifying only the last
step with the compatibility relation, when € — 0, we obtain

uf(z,y) = u(z,y) + a(mky(z,y) +o(1) inw,

u®(z,y) = e ta(n)sin(kz) + O(1)  in the resonator,

R§ =1+ da(n)u(A)/2 + o(1), R =0+ da(n)u(4)/2 + o(1).

Here ~ is the outgoing Green function such that | Av+k*y=0inw and
Ony =064 on dw

u(A)
a(mk = — .
IF'+7llnle|+C=+n
00 This time the thin resonator has an influence at order £°
~ and it depends on the choice of 7!
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Asymptotic analysis — Resonant case

» Below, for several € R, we display the paths
{(e, 055 + e(n — 7 Y1Ineg|)), e > 0} Cc R2

pres S e—
e :

zl According to 7, the limit of the scattering coefficients along
the path as ¢ — 07 is different.

18 / 27
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Asymptotic analysis — Resonant case

» Below, for several € R, we display the paths
{(e, 055 + e(n — 7 YIngl), e > 0} C R2

res
EN

€0

gl According to 7, the limit of the scattering coefficients along
the path as ¢ — 0% is different.

» For a fixed small g, the scattering coefficients have a rapid variation for
{ varying in a neighbourhood of the resonance length.

— This is exactly what we observed in the numerics.
18 / 27



Asymptotic analysis — Resonant case

Varying the length of the ligament around the resonant
length, we can get a rapid and large variation of the
scattering coefficients.

— How to use that to design the mode converter ?

18 / 27



Asymptotic analysis — Neumann problem

» Using the expressions of u(A), Sm T and that Cz € R, we get in
particular for
(=108 —e(n | Ine|+ C=z + Re D),

when ¢ tends to zero,

[ 2831 cos(mya)?/B2 — 1 e 2 cos(mya)\/261/ P2
V7 981 cos(mya)2/Ba+1 777 T2 2Bycos(mya)?/Be+1
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Asymptotic analysis — Neumann problem

» Using the expressions of u(A), Sm T and that Cz € R, we get in
particular for

(=108 —e(n | Ine|+ C=z + Re D),

when ¢ tends to zero,

[ 2831 cos(mya)?/B2 — 1 e 2 cos(mya)\/261/ P2
V7 981 cos(mya)2/Ba+1 777 T2 2Bycos(mya)?/Be+1

» By choosing ya such that cos(mya) = —+/F2/(251) (doable), we get

RE=0+..., R5=1+...

and so by symmetry and unitarity of RY,

i, = ( (1) (1) ) +.... (initial goal).
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Asymptotic analysis — Dirichlet problem

» The analysis is completely similar for the Dirichlet problem
Aug, + k*u$ = 0 in w®
(25) Oyuf, = 0 on Ow® \ ¥°¢
up = 0 on X°

except that the corresponding 1D problem is

v+ k%0 =0 in (0;¢)

(Z5”) v(0) = wv(f) = 0.

» The associated resonance lengths are (5% := mm/k, m € N*.
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Asymptotic analysis — Dirichlet problem

» The analysis is completely similar for the Dirichlet problem
Aug, + k*u$ = 0 in w®
(25) Oyuf, = 0 on Ow® \ ¥°¢
up = 0 on X°

except that the corresponding 1D problem is

v+ k%0 =0 in (0;¢)

(Z5”) v(0) = wv(f) = 0.

» The associated resonance lengths are (5% := mm/k, m € N*.

» For £=0% —e(n!Ine|+ C= + Rel), ya s.t. cos(mya) = /B2/(251),
we get when € tends to zero

D= ( ,Ol _01 ) o (initial goal).
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@ Mode converter
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Mode converter

> We come back to the geometry A _smmmme Y
(note that curving the ligaments does

not change the main term in the asymp.)

» Finally we choose the ligament parameters such that

0 =058 — 5(7r_1|1n€| + Cz + ReT)
2
cos(mya,) = Fv/ B2/ (2B1), 0_ =05 —e(n ! Ing| + C= + Re D).

\‘[‘P’/_ - L is resonant for the Neumann pb. but not for the Dirichlet one;
& - L& is resonant for the Dirichlet pb. but not for the Neumann one.
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> We come back to the geometry A _smmmme Y
(note that curving the ligaments does

not change the main term in the asymp.)

» Finally we choose the ligament parameters such that

0 =058 — 5(7r_1|1n6| + Cz + ReT)
2
cos(mya,) = Fv/ B2/ (2B1), 0_ =05 —e(n ! Ing| + C= + Re D).

N

A @/_ - L is resonant for the Neumann pb. but not for the Dirichlet one;
& - L& is resonant for the Dirichlet pb. but not for the Neumann one.

For the Neumann pb., L% acts at order €% while L acts at higher order.

For the Dirichlet pb., L% acts at order £° while L% acts at higher order.

= The action of the two ligaments decouple at order €° (crucial point).

» Then as ¢ — 0 we have both

R;,:(? ;>+0(1) and Ry =( " ') +o).
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Mode converter - numerical results

» Thus tuning precisely the positions and lengths of the ligaments, we can
ensure absence of reflection and mode conversion:

\
- | N A
H\----

-

f
s
----l'\ ,

-

Numerics made with Freefem++.
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Remarks

© ya, are such that cos(mya, ) = F+/F2/(261)
’The junction points of the ligaments are symmetric wrt the axis {1/2} x R.‘

@ What we do is an approximation:

R (00 o (9 0y

]Better results for smaller . But then the tuning becomes more delicate.‘

— Compromise precision/robustness.

i [N -
o (- -

. Dy 1IIIIII
m%----:
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0 Choice of geometry

9 Asymptotic analysis in presence of thin resonators

© Mode converter
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Conclusion

What we did

& We explained how to design mode converters using thin resonators.
Two main ingredients:
- Around resonant lengths, effects of order €° with perturb. of width «.

- The 1D limit problems in the resonator provide a rather explicit
dependence wrt to the geometry.
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Conclusion

What we did

& We explained how to design mode converters using thin resonators.
Two main ingredients:
- Around resonant lengths, effects of order €° with perturb. of width «.

- The 1D limit problems in the resonator provide a rather explicit
dependence wrt to the geometry.

Possible extensions and open questions

1) We could work similarly in 3D.

2) Using close ideas, we can do passive cloaking in waveguides
— see the talk of J. Heleine on Thursday, room red 1, 3pm.

3) With Dirichlet BCs, other ideas must be found.
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Thank you for your attention!

@ L. Chesnel, J. Heleine and S.A. Nazarov. Design of a mode converter using thin
resonant slits. Comm. Math. Sci., vol. 20, 2:425-445, 2022.
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