Waves 2022

Design of a mode converter using thin resonant ligaments

Lucas Chesnel¹

Coll. with J. Heleine², S.A. Nazarov³.

¹Idefix team, Inria/Institut Polytechnique de Paris/EDF, France ²Poems team, Inria/Ensta Paris, France ³FMM, St. Petersburg State University, Russia

PALAISEAU, 27/07/2022

▶ We consider the propagation of waves in a 2D acoustic waveguide (also relevant in optics, microwaves, water-waves theory,...).

$$(\mathscr{P}) \left| \begin{array}{rrr} \Delta u + k^2 u &=& 0 \quad \text{in } \Omega, \\ \partial_n u &=& 0 \quad \text{on } \partial \Omega \end{array} \right.$$

• We fix $k \in (\pi; 2\pi)$ so that two modes can propagate:

▶ We consider the propagation of waves in a 2D acoustic waveguide (also relevant in optics, microwaves, water-waves theory,...).

• We fix $k \in (\pi; 2\pi)$ so that two modes can propagate:

$$\begin{split} w_1^{\pm}(x,y) &= e^{\pm i\beta_1 x} \varphi_1(y), \qquad \varphi_1(y) = \beta_1^{-1/2}, \qquad \beta_1 = k \\ w_2^{\pm}(x,y) &= e^{\pm i\beta_2 x} \varphi_2(y), \qquad \varphi_2(y) = \beta_2^{-1/2} \sqrt{2} \cos(\pi y), \qquad \beta_2 = \sqrt{k^2 - \pi^2}. \end{split}$$

The scattering of the incident waves w_1^+, w_2^+ yields the solutions $u_1(x,y) = \begin{vmatrix} w_1^+(x,y) + \sum_{j=1}^2 r_{1j}w_j^-(x,y) + \dots & \text{on the left} \\ \sum_{j=1}^2 t_{1j}w_j^+(x,y) + \dots & \text{on the right} \end{vmatrix}$ $u_2(x,y) = \begin{vmatrix} w_2^+(x,y) + \sum_{j=1}^2 r_{2j}w_j^-(x,y) + \dots & \text{on the left} \\ \sum_{j=1}^2 t_{2j}w_j^+(x,y) + \dots & \text{on the right} \end{vmatrix}$

1/2

▶ We consider the propagation of waves in a 2D acoustic waveguide (also relevant in optics, microwaves, water-waves theory,...).

• We fix $k \in (\pi; 2\pi)$ so that two modes can propagate:

$$w_1^{\pm}(x,y) = e^{\pm i\beta_1 x} \varphi_1(y), \qquad \varphi_1(y) = \beta_1^{-1/2}, \qquad \beta_1 = k$$
$$w_2^{\pm}(x,y) = e^{\pm i\beta_2 x} \varphi_2(y), \qquad \varphi_2(y) = \beta_2^{-1/2} \sqrt{2} \cos(\pi y), \qquad \beta_2 = \sqrt{k^2 - \pi^2}.$$

The scattering of the incident waves w_1^+ , w_2^+ yields the solutions $u_1(x,y) = \begin{vmatrix} w_1^+(x,y) + \sum_{j=1}^2 r_{1j}w_j^-(x,y) + \dots & \text{on the left} \\ \sum_{j=1}^2 t_{1j}w_j^+(x,y) + \dots & \text{on the right} \\ u_2(x,y) = \begin{vmatrix} w_2^+(x,y) + \sum_{j=1}^2 r_{2j}w_j^-(x,y) + \dots & \text{on the right} \\ \sum_{j=1}^2 t_{2j}w_j^+(x,y) + \dots & \text{on the right} \end{vmatrix}$

• We define the reflection and transmission matrices $R = \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix} \in \mathbb{C}^{2 \times 2} \qquad T = \begin{pmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{pmatrix} \in \mathbb{C}^{2 \times 2}.$

From conservation of energy, we have, for i = 1, 2,

$$\sum_{j=1}^{2} |r_{ij}|^2 + |t_{ij}|^2 = 1.$$

Goal of the talk

We wish to construct a **mode converter**, that is a geometry such that: 1) energy is **completely transmitted** 2) mode 1/2 is **converted** into mode 2/1 $R \approx \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \quad T \approx \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$

• We define the reflection and transmission matrices $R = \begin{pmatrix} r_{11} & r_{12} \\ r_{21} & r_{22} \end{pmatrix} \in \mathbb{C}^{2 \times 2} \qquad T = \begin{pmatrix} t_{11} & t_{12} \\ t_{21} & t_{22} \end{pmatrix} \in \mathbb{C}^{2 \times 2}.$

From conservation of energy, we have, for i = 1, 2,

$$\sum_{j=1}^{2} |r_{ij}|^2 + |t_{ij}|^2 = 1.$$

Goal of the talk

We wish to construct a **mode converter**, that is a geometry such that:

1) energy is completely transmitted 2) mode 1/2 is converted into mode 2/1 $R \approx \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ $T \approx \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Difficulty: the scattering coefficients have a **non explicit** and **non linear** dependence wrt the geometry.

 \rightarrow Due to local minima, we wish to avoid optimization methods (Lunéville et al. 98, Lebbe et al. 19).

1 Choice of geometry

2 Asymptotic analysis in presence of thin resonators

• We decide to work in a geometry Ω^{ε} made of two half-waveguides connected by two thin ligaments of width $0 < \varepsilon \ll 1$.

• This may seem **paradoxical** because in general in this Ω^{ε} , energy is mostly backscattered:

$$R^{\varepsilon} \approx \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad T^{\varepsilon} \approx \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \dots$$
_{6 / 27}

• We decide to work in a geometry Ω^{ε} made of two half-waveguides connected by two thin ligaments of width $0 < \varepsilon \ll 1$.

 $\Re e \; u_1^\varepsilon$

 $\Re e \; u_2^\varepsilon$

• This may seem **paradoxical** because in general in this Ω^{ε} , energy is mostly backscattered:

$$R^{\varepsilon} \approx \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \qquad T^{\varepsilon} \approx \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \dots$$
_{6 / 27}

• We impose Ω^{ε} to be symmetric wrt (Oy). Set $\omega^{\varepsilon} := \{(x, y) \in \Omega^{\varepsilon} | x < 0\}$.

▶ In the half-waveguide ω^{ε} , consider the two problems with Artificial Boundary Conditions (ABC)

$$(\mathscr{P}_{N}^{\varepsilon}) \begin{vmatrix} \Delta u_{N}^{\varepsilon} + k^{2} u_{N}^{\varepsilon} = 0 \text{ in } \omega^{\varepsilon} \\ \partial_{\nu} u_{N}^{\varepsilon} = 0 \text{ on } \partial \omega^{\varepsilon} \setminus \Sigma^{\varepsilon} \quad (\mathscr{P}_{D}^{\varepsilon}) \end{vmatrix} \begin{vmatrix} \Delta u_{D}^{\varepsilon} + k^{2} u_{D}^{\varepsilon} = 0 \text{ in } \omega^{\varepsilon} \\ \partial_{\nu} u_{D}^{\varepsilon} = 0 \text{ on } \partial \omega^{\varepsilon} \setminus \Sigma^{\varepsilon} \\ \partial_{\nu} u_{N}^{\varepsilon} = 0 \text{ on } \Sigma^{\varepsilon} \end{vmatrix} \begin{vmatrix} \Delta u_{D}^{\varepsilon} + k^{2} u_{D}^{\varepsilon} = 0 \text{ in } \omega^{\varepsilon} \\ \partial_{\nu} u_{D}^{\varepsilon} = 0 \text{ on } \partial \omega^{\varepsilon} \setminus \Sigma^{\varepsilon} \\ u_{D}^{\varepsilon} = 0 \text{ on } \Sigma^{\varepsilon} \end{vmatrix}$$

where $\Sigma^{\varepsilon} := \partial \omega^{\varepsilon} \setminus \partial \Omega^{\varepsilon}$.

• For $(\mathscr{P}_i^{\varepsilon}), i = N, D$, we have the solutions

$$\begin{vmatrix} u_{i1}^{\varepsilon} &= w_{1}^{+}(x,y) + \sum_{j=1}^{2} R_{i1j}^{\varepsilon} w_{j}^{-}(x,y) + \dots \\ u_{i2}^{\varepsilon} &= w_{2}^{+}(x,y) + \sum_{j=1}^{2} R_{i2j}^{\varepsilon} w_{j}^{-}(x,y) + \dots \end{vmatrix}$$

• This defines two scattering matrices R_N^{ε} , $R_D^{\varepsilon} \in \mathbb{C}^{2 \times 2}$ and there holds

$$R^{\varepsilon} = \frac{R_N^{\varepsilon} + R_D^{\varepsilon}}{2} \qquad \qquad T^{\varepsilon} = \frac{R_N^{\varepsilon} - R_D^{\varepsilon}}{2}.$$

• For $(\mathscr{P}_i^{\varepsilon})$, i = N, D, we have the solutions

$$\begin{vmatrix} u_{i1}^{\varepsilon} &= w_{1}^{+}(x,y) + \sum_{j=1}^{2} R_{i1j}^{\varepsilon} w_{j}^{-}(x,y) + \dots \\ u_{i2}^{\varepsilon} &= w_{2}^{+}(x,y) + \sum_{j=1}^{2} R_{i2j}^{\varepsilon} w_{j}^{-}(x,y) + \dots \end{vmatrix}$$

• This defines two scattering matrices R_N^{ε} , $R_D^{\varepsilon} \in \mathbb{C}^{2 \times 2}$ and there holds

$$R^{\varepsilon} = \frac{R_N^{\varepsilon} + R_D^{\varepsilon}}{2} \qquad \qquad T^{\varepsilon} = \frac{R_N^{\varepsilon} - R_D^{\varepsilon}}{2}.$$

• Therefore our goal is to design ω^{ε} such that $R_N^{\varepsilon} \approx \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad R_D^{\varepsilon} \approx \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}.$

Main ingredient of our approach: outer resonators of width $\varepsilon \ll 1$.

To set ideas, we work on the problem with Neumann ABC

$$(\mathscr{P}_{N}^{\varepsilon}) \begin{vmatrix} \Delta u^{\varepsilon} + k^{2}u^{\varepsilon} = 0 \text{ in } \omega^{\varepsilon} \\ \partial_{\nu}u^{\varepsilon} = 0 \text{ on } \partial\omega^{\varepsilon} \setminus \Sigma^{\varepsilon} \\ \partial_{\nu}u^{\varepsilon} = 0 \text{ on } \Sigma^{\varepsilon} \end{vmatrix}$$

and focus our attention on u_{N1}^{ε} .

Main ingredient of our approach: outer resonators of width $\varepsilon \ll 1$.

To set ideas, we work on the problem with Neumann ABC

and focus our attention on u_{N1}^{ε} .

To simplify the presentation, we work with only one straight resonator

$$\omega^{\varepsilon} = \omega \cup L^{\varepsilon} \qquad \text{with} \qquad \begin{vmatrix} \omega & := (-\infty; 0) \times (0; 1) \\ L^{\varepsilon} & := [0; \ell) \times (y_A - \varepsilon/2; y_A + \varepsilon/2) \end{vmatrix}$$

Main ingredient of our approach: outer resonators of width $\varepsilon \ll 1$.

To set ideas, we work on the problem with Neumann ABC

and focus our attention on u_{N1}^{ε} .

To simplify the presentation, we work with only one straight resonator

$$\omega^{\varepsilon} = \omega \cup L^{\varepsilon} \qquad \text{with} \qquad \begin{vmatrix} \omega & := (-\infty; 0) \times (0; 1) \\ L^{\varepsilon} & := [0; \ell) \times (y_A - \varepsilon/2; y_A + \varepsilon/2) \end{vmatrix}$$

Main ingredient of our approach: outer resonators of width $\varepsilon \ll 1$.

To set ideas, we work on the problem with Neumann ABC

and focus our attention on u_{N1}^{ε} .

To simplify the presentation, we work with only one straight resonator

$$\omega^{\varepsilon} = \omega \cup L^{\varepsilon} \qquad \text{with} \qquad \begin{vmatrix} \omega & := (-\infty; 0) \times (0; 1) \\ L^{\varepsilon} & := [0; \ell) \times (y_A - \varepsilon/2; y_A + \varepsilon/2) \end{vmatrix}$$

and remove the index $_{N1}$.

Main ingredient of our approach: outer resonators of width $\varepsilon \ll 1$.

To set ideas, we work on the problem with Neumann ABC

and focus our attention on u^{ε} .

To simplify the presentation, we work with only one straight resonator

$$\omega^{\varepsilon} = \omega \cup L^{\varepsilon} \qquad \text{with} \qquad \begin{vmatrix} \omega & := (-\infty; 0) \times (0; 1) \\ L^{\varepsilon} & := [0; \ell) \times (y_A - \varepsilon/2; y_A + \varepsilon/2) \end{vmatrix}$$

and remove the index $_{N1}$.

First observations

• In the limit geometry ω , we have the solution

$$\omega = w_1^+ + w_1^-$$

= $w_1^+ + 1 w_1^- + 0 w_2^-.$

As mentioned above, in general the thin ligament has only a weak influence: $u^{\varepsilon} \approx u \implies R_1^{\varepsilon} \approx 1$ and $R_2^{\varepsilon} \approx 0$. But not always ...

• Below, for a fixed ε , we vary the length ℓ of the ligament:

 $* R_1(\ell) \\ * R_2(\ell)$

To understand the phenomenon, we compute an asymptotic expansion of u^{ε} , R_1^{ε} , R_2^{ε} as $\varepsilon \to 0$.

► To proceed we use techniques of matched asymptotic expansions (see Beale 73, Gadyl'shin 93, Kozlov et al. 94, Nazarov 96, Maz'ya et al. 00, Joly & Tordeux 06, Lin, Shipman & Zhang 20, 18, Holley & Schnitzer 19,...).

• We work with the outer expansions

$$\begin{split} u^{\varepsilon}(x,y) &= u^0(x,y) + \dots & \text{in } \omega, \\ u^{\varepsilon}(x,y) &= \frac{\varepsilon^{-1}v^{-1}(x) + v^0(x) + \dots & \text{in the resonator} \end{split}$$

• Considering the restriction of $(\mathscr{P}_N^{\varepsilon})$ to the thin resonator, when ε tends to zero, we find that v^{-1} must solve the homogeneous 1D problem

$$\left(\mathscr{P}_{N}^{\mathrm{1D}}\right) \left| \begin{array}{l} \partial_{x}^{2}v + k^{2}v = 0 & \text{in } (0;\ell) \\ v(0) = \partial_{x}v(\ell) = 0. \end{array} \right.$$

• We work with the outer expansions

$$\begin{split} u^{\varepsilon}(x,y) &= u^0(x,y) + \dots & \text{in } \omega, \\ u^{\varepsilon}(x,y) &= \frac{\varepsilon^{-1}v^{-1}(x) + v^0(x) + \dots & \text{in the resonator} \end{split}$$

• Considering the restriction of $(\mathscr{P}_N^{\varepsilon})$ to the thin resonator, when ε tends to zero, we find that v^{-1} must solve the homogeneous 1D problem

$$\left(\mathscr{P}_N^{\mathrm{1D}} \right) \left| \begin{array}{l} \partial_x^2 v + k^2 v = 0 & \text{ in } (0;\ell) \\ v(0) = \partial_x v(\ell) = 0. \end{array} \right.$$

The features of $(\mathscr{P}_N^{1\mathrm{D}})$ play a key role in the physical phenomena and in the asymptotic analysis.

• We work with the outer expansions

$$\begin{aligned} u^{\varepsilon}(x,y) &= u^{0}(x,y) + \dots & \text{in } \omega, \\ u^{\varepsilon}(x,y) &= \varepsilon^{-1} v^{-1}(x) + v^{0}(x) + \dots & \text{in the resonator} \end{aligned}$$

• Considering the restriction of $(\mathscr{P}_N^{\varepsilon})$ to the thin resonator, when ε tends to zero, we find that v^{-1} must solve the homogeneous 1D problem

$$\left(\mathscr{P}_N^{\mathrm{1D}} \right) \left| \begin{array}{l} \partial_x^2 v + k^2 v = 0 & \text{ in } (0;\ell) \\ v(0) = \partial_x v(\ell) = 0. \end{array} \right.$$

The features of $(\mathscr{P}_N^{1\mathrm{D}})$ play a key role in the physical phenomena and in the asymptotic analysis.

• We denote by ℓ_N^{res} (resonance lengths) the values of ℓ , given by

$$\ell_N^{\rm res} := \pi (m + 1/2)/k, \qquad m \in \mathbb{N},$$

such that $(\mathscr{P}_N^{1\mathrm{D}})$ admits the non zero solution $v(x) = \sin(kx)$.

12

• Assume that $\ell \neq \ell_N^{\text{res}}$. Then we find $v^{-1} = 0$ and when $\varepsilon \to 0$, we get

$$\begin{split} u^{\varepsilon}(x,y) &= u(x,y) + o(1) & \text{in } \omega, \\ u^{\varepsilon}(x,y) &= u(A) v_0(x) + o(1) & \text{in the resonator,} \\ R_1^{\varepsilon} &= 1 + o(1), \qquad R_2^{\varepsilon} &= 0 + o(1). \end{split}$$

Here $v_0(x) = \cos(kx) + \tan(k\ell)\sin(kx)$.

• Assume that $\ell \neq \ell_N^{\text{res}}$. Then we find $v^{-1} = 0$ and when $\varepsilon \to 0$, we get

$$\begin{aligned} u^{\varepsilon}(x,y) &= \underbrace{u(x,y)} + o(1) & \text{in } \Omega, \\ u^{\varepsilon}(x,y) &= u(A) v_0(x) + o(1) & \text{in the resonator,} \\ R_1^{\varepsilon} &= \underbrace{\mathbf{1}} + o(1), & R_2^{\varepsilon} &= \underbrace{\mathbf{0}} + o(1). \end{aligned}$$

Here $v_0(x) = \cos(kx) + \tan(k\ell)\sin(kx)$.

The thin resonator has no influence at order ε^0 .

 \rightarrow Not interesting for our purpose because we want $\begin{vmatrix} R_1^{\varepsilon} = 0 + \dots \\ R_2^{\varepsilon} = 1 + \dots \end{vmatrix}$

Now assume that $\ell = \ell_N^{\text{res}}$. Then we find $v^{-1}(x) = a \sin(kx)$ for some *a* to determine.

Now assume that $\ell = \ell_N^{\text{res}}$. Then we find $v^{-1}(x) = a \sin(kx)$ for some *a* to determine.

► Inner expansion. Set $\xi = \varepsilon^{-1}(\mathbf{x} - A)$ (stretched coordinates). Since

$$(\Delta_{\mathbf{x}} + k^2)u^{\varepsilon}(\varepsilon^{-1}(\mathbf{x} - A)) = \varepsilon^{-2}\Delta_{\xi}u^{\varepsilon}(\xi) + \dots,$$

when $\varepsilon \to 0$, we are led to study the problem

$$(\star) \begin{vmatrix} -\Delta_{\xi} Y = 0 & \text{in } \Xi \\ \partial_{\nu} Y = 0 & \text{on } \partial \Xi \end{vmatrix}$$

Now assume that $\ell = \ell_N^{\text{res}}$. Then we find $v^{-1}(x) = a \sin(kx)$ for some *a* to determine.

► Inner expansion. Set $\xi = \varepsilon^{-1}(\mathbf{x} - A)$ (stretched coordinates). Since

$$(\Delta_{\mathbf{x}} + k^2)u^{\varepsilon}(\varepsilon^{-1}(\mathbf{x} - A)) = \varepsilon^{-2}\Delta_{\xi}u^{\varepsilon}(\xi) + \dots,$$

when $\varepsilon \to 0$, we are led to study the problem

$$(\star) \begin{vmatrix} -\Delta_{\xi}Y = 0 & \text{in } \Xi \\ \partial_{\nu}Y = 0 & \text{on } \partial \Xi. \end{cases}$$

• Problem (\star) admits a solution Y^1 (up to a constant) with the expansion

$$Y^{1}(\xi) = \begin{cases} \xi_{x} + C_{\Xi} + O(e^{-\pi\xi_{x}}) & \text{as } \xi_{x} \to +\infty, \quad \xi \in \Xi^{+} \\ \frac{1}{\pi} \ln \frac{1}{|\xi|} + O\left(\frac{1}{|\xi|}\right) & \text{as } |\xi| \to +\infty, \quad \xi \in \Xi^{-}. \end{cases}$$

Now assume that $\ell = \ell_N^{\text{res}}$. Then we find $v^{-1}(x) = a \sin(kx)$ for some *a* to determine.

► Inner expansion. Set $\xi = \varepsilon^{-1}(\mathbf{x} - A)$ (stretched coordinates). Since

$$(\Delta_{\mathbf{x}} + k^2)u^{\varepsilon}(\varepsilon^{-1}(\mathbf{x} - A)) = \varepsilon^{-2}\Delta_{\xi}u^{\varepsilon}(\xi) + \dots,$$

when $\varepsilon \to 0$, we are led to study the problem

$$(\star) \begin{vmatrix} -\Delta_{\xi}Y = 0 & \text{in } \Xi \\ \partial_{\nu}Y = 0 & \text{on } \partial \Xi. \end{cases}$$

• Problem (*) admits a solution Y^1 (up to a constant) with the expansion

$$Y^{1}(\xi) = \begin{cases} \xi_{x} + C_{\Xi} + O(e^{-\pi\xi_{x}}) & \text{as } \xi_{x} \to +\infty, \quad \xi \in \Xi^{+} \\ \frac{1}{\pi} \ln \frac{1}{|\xi|} + O\left(\frac{1}{|\xi|}\right) & \text{as } |\xi| \to +\infty, \quad \xi \in \Xi^{-}. \end{cases}$$

• In a neighbourhood of A, we look for u^{ε} of the form $u^{\varepsilon}(\mathbf{x}) = C^A Y^1(\xi) + c^A + \dots \qquad (c^A, C^A \text{ constants to determine}).$

Now assume that $\ell = \ell_N^{\text{res}}$. Then we find $v^{-1}(x) = a \sin(kx)$ for some *a* to determine.

Inner expansion. Set $\xi = \varepsilon^{-1}(\mathbf{x} - A)$ (stretched coordinates). Since _____

Since at A, the Taylor formula gives

$$u^{\varepsilon}(\mathbf{x}) = \varepsilon^{-1} v^{-1}(x) + v^{0}(x) + \dots = 0 + (ak\xi_{x} + v^{0}(0)) + \dots,$$

we take $C^A = ak$.

Problem (\star) admits a solution Y^1 (up to a constant) with the expansion

$$Y^{1}(\xi) = \begin{cases} \xi_{x} + C_{\Xi} + O(e^{-\pi\xi_{x}}) & \text{as } \xi_{x} \to +\infty, \quad \xi \in \Xi^{+} \\ \frac{1}{\pi} \ln \frac{1}{|\xi|} + O\left(\frac{1}{|\xi|}\right) & \text{as } |\xi| \to +\infty, \quad \xi \in \Xi^{-}. \end{cases}$$

In a neighbourhood of A, we look for u^{ε} of the form $u^{\varepsilon}(\mathbf{x}) = C^A Y^1(\xi) + c^A + \dots \qquad (c^A, C^A \text{ constants to determine}).$

Now assume that $\ell = \ell_N^{\text{res}}$. Then we find $v^{-1}(x) = a \sin(kx)$ for some *a* to determine.

Inner expansion. Set $\xi = \varepsilon^{-1}(\mathbf{x} - A)$ (stretched coordinates). Since _____

Since at A, the Taylor formula gives

$$u^{\varepsilon}(\mathbf{x}) = \varepsilon^{-1} v^{-1}(x) + v^{0}(x) + \dots = 0 + (ak\xi_{x} + v^{0}(0)) + \dots,$$

we take $C^A = ak$.

Problem (\star) admits a solution Y^1 (up to a constant) with the expansion

$$Y^{1}(\xi) = \begin{cases} \xi_{x} + C_{\Xi} + O(e^{-\pi\xi_{x}}) & \text{as } \xi_{x} \to +\infty, \quad \xi \in \Xi^{+} \\ \frac{1}{\pi} \ln \frac{1}{|\xi|} + O\left(\frac{1}{|\xi|}\right) & \text{as } |\xi| \to +\infty, \quad \xi \in \Xi^{-}. \end{cases}$$

In a neighbourhood of A, we look for u^{ε} of the form $u^{\varepsilon}(\mathbf{x}) = ak Y^{1}(\xi) + c^{A} + \dots \qquad (c^{A}, C^{A} \text{ constants to determine}).$

▶ In the ansatz $u^{\varepsilon} = u^0 + \dots$ in ω , we deduce that we must take

$$u^0 = u + \frac{ak\gamma}{2}$$

where γ is the outgoing Green function such that $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \omega. \end{vmatrix}$

• In the ansatz $u^{\varepsilon} = u^0 + \dots$ in ω , we deduce that we must take

$$u^0 = u + \frac{ak\gamma}{2}$$

where γ is the outgoing Green function such that $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \omega. \end{vmatrix}$

► Then in the inner field expansion $u^{\varepsilon}(\mathbf{x}) = ak Y^{1}(\xi) + c^{A} + \dots$, this sets

$$c^{A} = u(A) + \frac{ak}{\Gamma} (\Gamma + \pi^{-1} \ln |\varepsilon|).$$

• In the ansatz $u^{\varepsilon} = u^0 + \dots$ in ω , we deduce that we must take

$$u^0 = u + \frac{ak\gamma}{2}$$

where γ is the outgoing Green function such that $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \omega. \end{vmatrix}$

- ► Then in the inner field expansion $u^{\varepsilon}(\mathbf{x}) = ak Y^{1}(\xi) + c^{A} + \dots$, this sets $c^{A} = u(A) + ak(\Gamma + \pi^{-1} \ln |\varepsilon|).$
- Matching the constant behaviour in the resonator, we obtain $v^0(0) = u(A) + ak(\Gamma + \pi^{-1} \ln |\varepsilon| + C_{\Xi}).$

▶ In the ansatz $u^{\varepsilon} = u^0 + \dots$ in ω , we deduce that we must take

$$u^0 = u + \frac{ak\gamma}{2}$$

where γ is the outgoing Green function such that $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \omega. \end{vmatrix}$

► Then in the inner field expansion $u^{\varepsilon}(\mathbf{x}) = ak Y^{1}(\xi) + c^{A} + \dots$, this sets $c^{A} = u(A) + ak(\Gamma + \pi^{-1} \ln |\varepsilon|).$

 $\begin{aligned} \blacktriangleright & \text{Thus for } v^0, \text{ we get the problem} \\ & \left| \begin{array}{l} \partial_x^2 v^0 + k^2 v^0 = 0 & \text{ in } (0; \ell) \\ v^0(0) = u(A) + ak(\Gamma + \pi^{-1} \ln |\varepsilon| + C_{\Xi}), & \partial_x v^0(\ell) = 0. \end{array} \right. \end{aligned}$

▶ In the ansatz $u^{\varepsilon} = u^0 + \dots$ in ω , we deduce that we must take

$$u^0 = u + \frac{ak\gamma}{2}$$

where γ is the outgoing Green function such that $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \omega. \end{vmatrix}$

• Then in the inner field expansion $u^{\varepsilon}(\mathbf{x}) = ak Y^{1}(\xi) + c^{A} + \dots$, this sets $c^{A} = u(A) + ak(\Gamma + \pi^{-1} \ln |\varepsilon|).$

► Thus for
$$v^0$$
, we get the problem
 $\begin{vmatrix} \partial_x^2 v^0 + k^2 v^0 = 0 & \text{in } (0; \ell) \\ v^0(0) = u(A) + ak(\Gamma + \pi^{-1} \ln |\varepsilon| + C_{\Xi}), & \partial_x v^0(\ell) = 0. \end{vmatrix}$

▶ This is a Fredholm problem with a non zero kernel. A solution exists iff the compatibility condition is satisfied. This sets

$$ak = -\frac{u(A)}{\Gamma + \pi^{-1}\ln|\varepsilon| + C_{\Xi}}$$

and ends the calculus of the first terms.

Finally for
$$\ell = \ell_N^{\text{res}}$$
, when $\varepsilon \to 0$, we obtain

$$\begin{split} &u^{\varepsilon}(x,y) = u(x,y) + ak\gamma(x,y) + o(1) \quad \text{in } \omega, \\ &u^{\varepsilon}(x,y) = \varepsilon^{-1}a\sin(kx) + O(1) \quad \text{in the resonator,} \\ &R_{1}^{\varepsilon} = 1 + iau(A)/2 + o(1), \qquad R_{2}^{\varepsilon} = 0 + iau(A)/2 + o(1). \end{split}$$

Here γ is the outgoing Green function such that $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \omega \end{vmatrix}$ and

$$ak = -\frac{u(A)}{\Gamma + \pi^{-1} \ln |\varepsilon| + C_{\Xi}}$$

Finally for
$$\ell = \ell_N^{\text{res}}$$
, when $\varepsilon \to 0$, we obtain

$$\begin{split} u^{\varepsilon}(x,y) &= u(x,y) + \frac{ak\gamma(x,y)}{ak\gamma(x,y)} + o(1) & \text{in } \omega, \\ u^{\varepsilon}(x,y) &= \varepsilon^{-1}a\sin(kx) + O(1) & \text{in the resonator,} \\ R_1^{\varepsilon} &= 1 + \frac{iau(A)/2}{ak\gamma(x,y)} + o(1), \qquad R_2^{\varepsilon} &= 0 + \frac{iau(A)/2}{ak\gamma(x,y)} + o(1). \end{split}$$

Here γ is the outgoing Green function such that $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \omega \end{vmatrix}$ and

$$ak = -\frac{u(A)}{\Gamma + \pi^{-1} \ln |\varepsilon| + C_{\Xi}}$$

Similarly for $\ell = \ell_N^{\text{res}} + \varepsilon \eta$ with $\eta \in \mathbb{R}$ fixed, by modifying only the last step with the compatibility relation, when $\varepsilon \to 0$, we obtain

$$u^{\varepsilon}(x,y) = u(x,y) + \frac{a(\eta)k\gamma(x,y)}{a(\eta)k\gamma(x,y)} + o(1) \quad \text{in } \omega,$$

$$u^{\varepsilon}(x,y) = \varepsilon^{-1}a(\eta)\sin(kx) + O(1) \quad \text{in the resonator,}$$

$$R_1^{\varepsilon} = 1 + \frac{ia(\eta)u(A)/2}{a(\eta)} + o(1), \qquad R_2^{\varepsilon} = 0 + \frac{ia(\eta)u(A)/2}{a(\eta)(\lambda)} + o(1)$$

Here γ is the outgoing Green function such that $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \omega \end{vmatrix}$ and

$$a(\eta)k = -\frac{u(A)}{\Gamma + \pi^{-1}\ln|\varepsilon| + C_{\Xi} + \eta}$$

Similarly for $\ell = \ell_N^{\text{res}} + \varepsilon \eta$ with $\eta \in \mathbb{R}$ fixed, by modifying only the last step with the compatibility relation, when $\varepsilon \to 0$, we obtain

$$\begin{aligned} u^{\varepsilon}(x,y) &= u(x,y) + \frac{a(\eta)k\gamma(x,y)}{a(\eta)k\gamma(x,y)} + o(1) & \text{in } \omega, \\ u^{\varepsilon}(x,y) &= \varepsilon^{-1}a(\eta)\sin(kx) + O(1) & \text{in the resonator,} \\ R_{1}^{\varepsilon} &= 1 + \frac{ia(\eta)u(A)/2}{a(\eta)(A)/2} + o(1), \qquad R_{2}^{\varepsilon} &= 0 + \frac{ia(\eta)u(A)/2}{a(\eta)(A)/2} + o(1). \end{aligned}$$

Here γ is the outgoing Green function such that $\begin{vmatrix} \Delta \gamma + k^2 \gamma = 0 \text{ in } \omega \\ \partial_n \gamma = \delta_A \text{ on } \partial \omega \end{vmatrix}$ and

$$a(\eta)k = -\frac{u(A)}{\Gamma + \pi^{-1}\ln|\varepsilon| + C_{\Xi} + \eta}$$

This time the thin resonator has an influence at order ε^0 and it depends on the choice of η !

▶ Below, for several $\eta \in \mathbb{R}$, we display the paths

According to η , the limit of the scattering coefficients along the path as $\varepsilon \to 0^+$ is different.

▶ Below, for several $\eta \in \mathbb{R}$, we display the paths

 \succ

According to η , the limit of the scattering coefficients along the path as $\varepsilon \to 0^+$ is different.

For a fixed small ε_0 , the scattering coefficients have a rapid variation for ℓ varying in a neighbourhood of the resonance length.

▶ Below, for several $\eta \in \mathbb{R}$, we display the paths

According to η , the limit of the scattering coefficients along the path as $\varepsilon \to 0^+$ is different.

For a fixed small ε_0 , the scattering coefficients have a rapid variation for ℓ varying in a neighbourhood of the resonance length.

 \rightarrow This is exactly what we observed in the numerics.

Below, for several $\eta \in \mathbb{R}$, we display the paths

 $-\{(\varepsilon, \ell_N^{\mathrm{res}} + \varepsilon(\eta - \pi^{-1}|\ln \varepsilon|)), \varepsilon > 0\} \subset \mathbb{R}^2.$

Varying the length of the ligament around the resonant length, we can get a rapid and large variation of the scattering coefficients.

 \rightarrow How to use that to design the mode converter ?

For a fixed small ε_0 , the scattering coefficients have a rapid variation for ℓ varying in a neighbourhood of the resonance length. \rightarrow This is exactly what we observed in the numerics.

Asymptotic analysis – Neumann problem

▶ Using the expressions of u(A), $\Im m \Gamma$ and that $C_{\Xi} \in \mathbb{R}$, we get in particular for

$$\ell = \ell_N^{\rm res} - \varepsilon (\pi^{-1} |\ln \varepsilon| + C_{\Xi} + \Re e \Gamma) \,,$$

when ε tends to zero,

$$R_1^{\varepsilon} = \frac{2\beta_1 \cos(\pi y_A)^2 / \beta_2 - 1}{2\beta_1 \cos(\pi y_A)^2 / \beta_2 + 1} + \dots, \quad R_2^{\varepsilon} = \frac{-2\cos(\pi y_A) \sqrt{2\beta_1 / \beta_2}}{2\beta_1 \cos(\pi y_A)^2 / \beta_2 + 1} + \dots$$

Asymptotic analysis – Neumann problem

▶ Using the expressions of u(A), $\Im m \Gamma$ and that $C_{\Xi} \in \mathbb{R}$, we get in particular for

$$\ell = \ell_N^{\rm res} - \varepsilon (\pi^{-1} |\ln \varepsilon| + C_{\Xi} + \Re e \Gamma) \,,$$

when ε tends to zero,

$$R_1^{\varepsilon} = \frac{2\beta_1 \cos(\pi y_A)^2 / \beta_2 - 1}{2\beta_1 \cos(\pi y_A)^2 / \beta_2 + 1} + \dots, \quad R_2^{\varepsilon} = \frac{-2\cos(\pi y_A) \sqrt{2\beta_1 / \beta_2}}{2\beta_1 \cos(\pi y_A)^2 / \beta_2 + 1} + \dots$$

By choosing y_A such that $\cos(\pi y_A) = -\sqrt{\beta_2/(2\beta_1)}$ (doable), we get

$$R_1^{\varepsilon} = 0 + \dots, \qquad R_2^{\varepsilon} = 1 + \dots$$

(initial goal).

and so by symmetry and unitarity of R_N^{ε} ,

$$R_N^{\varepsilon} = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) + \dots$$

Asymptotic analysis – Dirichlet problem

• The analysis is completely similar for the Dirichlet problem

$$(\mathscr{P}_D^{\varepsilon}) \begin{vmatrix} \Delta u_D^{\varepsilon} + k^2 u_D^{\varepsilon} = 0 \text{ in } \omega^{\varepsilon} \\ \partial_{\nu} u_D^{\varepsilon} = 0 \text{ on } \partial \omega^{\varepsilon} \setminus \Sigma^{\varepsilon} \\ u_D^{\varepsilon} = 0 \text{ on } \Sigma^{\varepsilon} \end{vmatrix}$$

except that the corresponding 1D problem is

$$(\mathscr{P}_D^{\mathrm{1D}}) \left| \begin{array}{l} \partial_x^2 v + k^2 v = 0 & \text{ in } (0; \ell) \\ v(0) = \underline{v(\ell)} = 0. \end{array} \right.$$

• The associated **resonance lengths** are $\ell_D^{\text{res}} := \pi m/k$, $m \in \mathbb{N}^*$.

Asymptotic analysis – Dirichlet problem

• The analysis is completely similar for the Dirichlet problem

$$\left(\mathscr{P}_{D}^{\varepsilon}\right) \begin{vmatrix} \Delta u_{D}^{\varepsilon} + k^{2}u_{D}^{\varepsilon} = 0 \text{ in } \omega^{\varepsilon} \\ \partial_{\nu}u_{D}^{\varepsilon} = 0 \text{ on } \partial\omega^{\varepsilon} \setminus \Sigma^{\varepsilon} \\ u_{D}^{\varepsilon} = 0 \text{ on } \Sigma^{\varepsilon} \end{vmatrix}$$

except that the corresponding 1D problem is

$$(\mathscr{P}_D^{\mathrm{1D}}) \left| \begin{array}{l} \partial_x^2 v + k^2 v = 0 & \text{ in } (0; \ell) \\ v(0) = \underline{v(\ell)} = 0. \end{array} \right.$$

The associated **resonance lengths** are $\ell_D^{\text{res}} := \pi m/k$, $m \in \mathbb{N}^*$.

For
$$\ell = \ell_D^{\text{res}} - \varepsilon(\pi^{-1} | \ln \varepsilon | + C_{\Xi} + \Re e \Gamma)$$
, y_A s.t. $\cos(\pi y_A) = \sqrt{\beta_2/(2\beta_1)}$,
we get when ε tends to zero

$$R_D^{\varepsilon} = \left(\begin{array}{cc} 0 & -1 \\ -1 & 0 \end{array}\right) + \dots$$

(initial goal).

2 Asymptotic analysis in presence of thin resonators

Mode converter

• We come back to the geometry (note that curving the ligaments does not change the main term in the asymp.)

• Finally we choose the ligament parameters such that

$$\cos(\pi y_{A_{\pm}}) = \mp \sqrt{\beta_2/(2\beta_1)}, \qquad \begin{vmatrix} \ell_+ = \ell_N^{\text{res}} - \varepsilon(\pi^{-1}|\ln\varepsilon| + C_{\Xi} + \Re e\,\Gamma) \\ \ell_- = \ell_D^{\text{res}} - \varepsilon(\pi^{-1}|\ln\varepsilon| + C_{\Xi} + \Re e\,\Gamma). \end{vmatrix}$$

- L_{+}^{ε} is resonant for the Neumann pb. but not for the Dirichlet one; - L_{-}^{ε} is resonant for the Dirichlet pb. but not for the Neumann one.

Mode converter

• We come back to the geometry (note that curving the ligaments does not change the main term in the asymp.)

• Finally we choose the ligament parameters such that

$$\cos(\pi y_{A_{\pm}}) = \mp \sqrt{\beta_2/(2\beta_1)}, \qquad \begin{vmatrix} \ell_+ = \ell_N^{\text{res}} - \varepsilon(\pi^{-1}|\ln\varepsilon| + C_{\Xi} + \Re e\,\Gamma) \\ \ell_- = \ell_D^{\text{res}} - \varepsilon(\pi^{-1}|\ln\varepsilon| + C_{\Xi} + \Re e\,\Gamma). \end{vmatrix}$$

- L_{+}^{ε} is resonant for the Neumann pb. but not for the Dirichlet one; - L_{-}^{ε} is resonant for the Dirichlet pb. but not for the Neumann one.

For the Neumann pb., L^{ε}_{+} acts at order ε^{0} while L^{ε}_{-} acts at higher order. For the Dirichlet pb., L^{ε}_{-} acts at order ε^{0} while L^{ε}_{+} acts at higher order.

⇒ The action of the two ligaments decouple at order
$$\varepsilon^0$$
 (crucial point).

Mode converter

• We come back to the geometry (note that curving the ligaments does not change the main term in the asymp.)

• Finally we choose the ligament parameters such that

$$\cos(\pi y_{A_{\pm}}) = \mp \sqrt{\beta_2/(2\beta_1)}, \qquad \begin{vmatrix} \ell_+ = \ell_N^{\text{res}} - \varepsilon(\pi^{-1}|\ln\varepsilon| + C_{\Xi} + \Re e \Gamma) \\ \ell_- = \ell_D^{\text{res}} - \varepsilon(\pi^{-1}|\ln\varepsilon| + C_{\Xi} + \Re e \Gamma). \end{vmatrix}$$

- L_{+}^{ε} is resonant for the Neumann pb. but not for the Dirichlet one; - L_{-}^{ε} is resonant for the Dirichlet pb. but not for the Neumann one.

For the Neumann pb., L^{ε}_{+} acts at order ε^{0} while L^{ε}_{-} acts at higher order. For the Dirichlet pb., L^{ε}_{-} acts at order ε^{0} while L^{ε}_{+} acts at higher order.

 \Rightarrow The action of the two ligaments decouple at order ε^0 (crucial point).

Then as $\varepsilon \to 0$ we have both

$$R_N^{\varepsilon} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + o(1) \qquad \text{and} \qquad R_D^{\varepsilon} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} + o(1).$$

Mode converter - numerical results

▶ Thus tuning precisely the positions and lengths of the ligaments, we can ensure absence of reflection and mode conversion:

 $t\mapsto \Re e\,(u_1^\varepsilon e^{-\,i\,\omega\,t})$

 $t \mapsto \Re e\left(u_2^{\varepsilon} e^{-i\omega t}\right)$

Numerics made with Freefem++.

•
$$y_{A_{\pm}}$$
 are such that $\cos(\pi y_{A_{\pm}}) = \mp \sqrt{\beta_2/(2\beta_1)}$
The junction points of the ligaments are symmetric wrt the axis $\{1/2\} \times \mathbb{R}$.

2 What we do is an approximation:

$$R^{\varepsilon} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \dots \qquad T^{\varepsilon} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \dots$$

Better results for smaller ε . But then the tuning becomes more delicate.

 \rightarrow Compromise precision/robustness.

•
$$y_{A_{\pm}}$$
 are such that $\cos(\pi y_{A_{\pm}}) = \mp \sqrt{\beta_2/(2\beta_1)}$
The junction points of the ligaments are symmetric wrt the axis $\{1/2\} \times \mathbb{R}$.

2 What we do is an approximation:

$$R^{\varepsilon} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \dots \qquad T^{\varepsilon} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \dots$$

Better results for smaller ε . But then the tuning becomes more delicate.

 \rightarrow Compromise precision/robustness.

• $y_{A_{\pm}}$ are such that $\cos(\pi y_{A_{\pm}}) = \mp \sqrt{\beta_2/(2\beta_1)}$ The junction points of the ligaments are symmetric wrt the axis $\{1/2\} \times \mathbb{R}$.

2 What we do is an approximation:

$$R^{\varepsilon} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \dots \qquad T^{\varepsilon} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \dots$$

Better results for smaller ε . But then the tuning becomes more delicate.

 \rightarrow Compromise precision/robustness.

• $y_{A_{\pm}}$ are such that $\cos(\pi y_{A_{\pm}}) = \mp \sqrt{\beta_2/(2\beta_1)}$ The junction points of the ligaments are symmetric wrt the axis $\{1/2\} \times \mathbb{R}$.

2 What we do is an approximation:

$$R^{\varepsilon} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \dots \qquad T^{\varepsilon} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \dots$$

Better results for smaller ε . But then the tuning becomes more delicate.

 \rightarrow Compromise precision/robustness.

3 We can also work with ligaments on top of the waveguide:

• $y_{A_{\pm}}$ are such that $\cos(\pi y_{A_{\pm}}) = \mp \sqrt{\beta_2/(2\beta_1)}$ The junction points of the ligaments are symmetric wrt the axis $\{1/2\} \times \mathbb{R}$.

2 What we do is an approximation:

$$R^{\varepsilon} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} + \dots \qquad T^{\varepsilon} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + \dots$$

Better results for smaller ε . But then the tuning becomes more delicate.

 \rightarrow Compromise precision/robustness.

3 We can also work with ligaments on top of the waveguide:

What we did

- We explained how to design mode converters using thin resonators. Two main ingredients:
- Around resonant lengths, effects of order ε^0 with perturb. of width ε .
- The 1D limit problems in the resonator provide a rather explicit dependence wrt to the geometry.

What we did

- We explained how to design mode converters using thin resonators. Two main ingredients:
- Around resonant lengths, effects of order ε^0 with perturb. of width ε .
- The 1D limit problems in the resonator provide a rather explicit dependence wrt to the geometry.

Possible extensions and open questions

- 1) We could work similarly in 3D.
- 2) Using close ideas, we can do passive cloaking in waveguides \rightarrow see the talk of J. Heleine on Thursday, room red 1, 3pm.
- 3) With Dirichlet BCs, other ideas must be found.

Thank you for your attention!

L. Chesnel, J. Heleine and S.A. Nazarov. Design of a mode converter using thin resonant slits. Comm. Math. Sci., vol. 20, 2:425-445, 2022.