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Introduction 1/2
▶ We consider the propagation of waves in a 2D acoustic waveguide (also
relevant in optics, microwaves, water-waves theory,...).

1
x

y

Ω

(P) ∆u + k2u = 0 in Ω,
∂nu = 0 on ∂Ω

▶ We fix k ∈ (π; 2π) so that two modes can propagate:

w±
1 (x, y) = e±iβ1xφ1(y), φ1(y) = β

−1/2
1 , β1 = k

w±
2 (x, y) = e±iβ2xφ2(y), φ2(y) = β

−1/2
2

√
2 cos(πy), β2 =

√
k2 − π2.

▶ The scattering of the incident waves w+
1 , w+

2 yields the solutions

u1(x, y) =
w+

1 (x, y) +
∑2

j=1 r1jw−
j (x, y) + . . . on the left∑2

j=1 t1jw+
j (x, y) + . . . on the right

u2(x, y) =
w+

2 (x, y) +
∑2

j=1 r2jw−
j (x, y) + . . . on the left∑2

j=1 t2jw+
j (x, y) + . . . on the right

. . . are expo.
decaying terms
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Introduction 2/2
▶ We define the reflection and transmission matrices

R =
(

r11 r12
r21 r22

)
∈ C2×2 T =

(
t11 t12
t21 t22

)
∈ C2×2.

▶ From conservation of energy, we have, for i = 1, 2,
2∑

j=1
|rij |2 + |tij |2 = 1.

Goal of the talk
We wish to construct a mode converter, that is a geometry such that:
1) energy is completely transmitted

R ≈
( 0 0

0 0
)

T ≈
( 0 1

1 0
)

.
2) mode 1/2 is converted into mode 2/1

Difficulty: the scattering coefficients have a non explicit and non
linear dependence wrt the geometry.

→ Due to local minima, we wish to avoid optimization methods
(Lunéville et al. 98, Lebbe et al. 19).

3 / 27



Introduction 2/2
▶ We define the reflection and transmission matrices

R =
(

r11 r12
r21 r22

)
∈ C2×2 T =

(
t11 t12
t21 t22

)
∈ C2×2.

▶ From conservation of energy, we have, for i = 1, 2,
2∑

j=1
|rij |2 + |tij |2 = 1.

Goal of the talk
We wish to construct a mode converter, that is a geometry such that:
1) energy is completely transmitted

R ≈
( 0 0

0 0
)

T ≈
( 0 1

1 0
)

.
2) mode 1/2 is converted into mode 2/1

Difficulty: the scattering coefficients have a non explicit and non
linear dependence wrt the geometry.

→ Due to local minima, we wish to avoid optimization methods
(Lunéville et al. 98, Lebbe et al. 19). 3 / 27



Outline of the talk

1 Choice of geometry

2 Asymptotic analysis in presence of thin resonators

3 Mode converter
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Geometry 1/3
▶ We decide to work in a geometry Ωε made of two half-waveguides
connected by two thin ligaments of width 0 < ε ≪ 1.

ε

Πl Πr

Lε
−

Lε
+

Ωε := Πl ∪ Lε
− ∪ Lε

+ ∪ Πr

▶ This may seem paradoxical because in general in this Ωε, energy is
mostly backscattered:

Rε ≈
( 1 0

0 1
)

T ε ≈
( 0 0

0 0
)

...
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Geometry 2/3

▶ We impose Ωε to be symmetric wrt (Oy). Set ωε := {(x, y) ∈ Ωε | x < 0}.

ωε

Lε
−

Lε
+

A−

A+

Σε

Σε

▶ In the half-waveguide ωε, consider the two problems with Artificial
Boundary Conditions (ABC)

(Pε
N )

∆uε
N + k2uε

N = 0 in ωε

∂νuε
N = 0 on ∂ωε \ Σε

∂νuε
N = 0 on Σε

(Pε
D)

∆uε
D + k2uε

D = 0 in ωε

∂νuε
D = 0 on ∂ωε \ Σε

uε
D = 0 on Σε

where Σε := ∂ωε \ ∂Ωε.
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Geometry 3/3

▶ For (Pε
i ), i = N, D, we have the solutions

uε
i1 = w+

1 (x, y) +
∑2

j=1 Rε
i1jw−

j (x, y) + . . .

uε
i2 = w+

2 (x, y) +
∑2

j=1 Rε
i2jw−

j (x, y) + . . .

▶ This defines two scattering matrices Rε
N , Rε

D ∈ C2×2 and there holds

Rε =
Rε

N + Rε
D

2 T ε =
Rε

N − Rε
D

2 .

▶ Therefore our goal is to design ωε such that

Rε
N ≈

( 0 1
1 0

)
Rε

D ≈
( 0 −1

−1 0
)

.
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1 Choice of geometry

2 Asymptotic analysis in presence of thin resonators

3 Mode converter
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Setting

Main ingredient of our approach: outer resonators of width ε ≪ 1.

▶ To set ideas, we work on the problem with Neumann ABC

ωε

Lε
−

Lε
+

A−

A+

Σε

Σε

(Pε
N )

∆uε + k2uε = 0 in ωε

∂νuε = 0 on ∂ωε \ Σε

∂νuε = 0 on Σε

and focus our attention on uε
N1.

▶ To simplify the presentation, we work with only one straight resonator

ωε = ω ∪ Lε with
ω := (−∞; 0) × (0; 1)
Lε := [0; ℓ) × (yA − ε/2; yA + ε/2)

and remove the index N1.
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First observations
▶ In the limit geometry ω, we have the solution

ω

u := w+
1 + w−

1

= w+
1 + 1 w−

1 + 0 w−
2 .

As mentioned above, in general the thin ligament has only a weak influence:

uε ≈ u ⇒ Rε
1 ≈ 1 and Rε

2 ≈ 0.

But not always ...

▶ Below, for a fixed ε, we vary the length ℓ of the ligament:

+× R1(ℓ)
+× R2(ℓ)
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Asymptotic analysis
To understand the phenomenon, we compute an asymptotic expansion
of uε, Rε

1, Rε
2 as ε → 0.

▶ To proceed we use techniques of matched asymptotic expansions
(see Beale 73, Gadyl’shin 93, Kozlov et al. 94, Nazarov 96, Maz’ya et al. 00,
Joly & Tordeux 06, Lin, Shipman & Zhang 20, 18, Holley & Schnitzer 19,...).

▶ We work with the outer expansions
uε(x, y) = u0(x, y) + . . . in ω,

uε(x, y) = ε−1v−1(x) + v0(x) + . . . in the resonator.

▶ Considering the restriction of (Pε
N ) to the thin resonator, when ε tends

to zero, we find that v−1 must solve the homogeneous 1D problem

(P1D
N )

∂2
xv + k2v = 0 in (0; ℓ)

v(0) = ∂xv(ℓ) = 0.

The features of (P1D
N ) play a key role in the physical phenomena

and in the asymptotic analysis.

▶ We denote by ℓres
N (resonance lengths) the values of ℓ, given by

ℓres
N := π(m + 1/2)/k, m ∈ N,

such that (P1D
N ) admits the non zero solution v(x) = sin(kx).
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Asymptotic analysis – Non resonant case

▶ Assume that ℓ ̸= ℓres
N . Then we find v−1 = 0 and when ε → 0, we get

uε(x, y) = u(x, y) + o(1) in ω,

uε(x, y) = u(A) v0(x) + o(1) in the resonator,

Rε
1 = 1 + o(1), Rε

2 = 0 + o(1).

Here v0(x) = cos(kx) + tan(kℓ) sin(kx).

The thin resonator has no influence at order ε0.

→ Not interesting for our purpose because we want Rε
1 = 0 + . . .

Rε
2 = 1 + . . .
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Asymptotic analysis – Resonant case
▶ Now assume that ℓ = ℓres

N . Then we find v−1(x) = a sin(kx) for some a
to determine.

▶ Inner expansion. Set ξ = ε−1(x − A) (stretched coordinates). Since

(∆x + k2)uε(ε−1(x − A)) = ε−2∆ξuε(ξ) + . . . ,

when ε → 0, we are led to study the problem

(⋆) −∆ξY = 0 in Ξ
∂νY = 0 on ∂Ξ.

OΞ− Ξ+

Ξ

▶ Problem (⋆) admits a solution Y 1 (up to a constant) with the expansion

Y 1(ξ) =


ξx + CΞ + O(e−πξx ) as ξx → +∞, ξ ∈ Ξ+

1
π

ln
1

|ξ|
+ O

( 1
|ξ|

)
as |ξ| → +∞, ξ ∈ Ξ−.

▶ In a neighbourhood of A, we look for uε of the form

uε(x) = CA Y 1(ξ) + cA + . . . (cA, CA constants to determine).

Since at A, the Taylor formula gives

uε(x) = ε−1v−1(x) + v0(x) + · · · = 0 + (akξx + v0(0)) + . . . ,

we take CA = ak.

14 / 27
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Asymptotic analysis – Resonant case
▶ In the ansatz uε = u0 + . . . in ω, we deduce that we must take

u0 = u + akγ

where γ is the outgoing Green function such that ∆γ + k2γ = 0 in ω
∂nγ = δA on ∂ω.

▶ Then in the inner field expansion uε(x) = ak Y 1(ξ) + cA + . . . , this sets

cA = u(A) + ak(Γ + π−1 ln |ε|).

▶ Matching the constant behaviour in the resonator, we obtain

v0(0) = u(A) + ak(Γ + π−1 ln |ε| + CΞ).

▶ This is a Fredholm problem with a non zero kernel. A solution exists iff
the compatibility condition is satisfied. This sets

ak = −
u(A)

Γ + π−1 ln |ε| + CΞ

and ends the calculus of the first terms.
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Asymptotic analysis – Resonant case
▶ Finally for ℓ = ℓres

N , when ε → 0, we obtain

uε(x, y) = u(x, y) + akγ(x, y) + o(1) in ω,

uε(x, y) = ε−1a sin(kx) + O(1) in the resonator,

Rε
1 = 1 + iau(A)/2 + o(1), Rε

2 = 0 + iau(A)/2 + o(1).

Here γ is the outgoing Green function such that ∆γ + k2γ = 0 in ω
∂nγ = δA on ∂ω

and

ak = −
u(A)

Γ + π−1 ln |ε| + CΞ
.

This time the thin resonator has an influence at order ε0
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Asymptotic analysis – Resonant case
▶ Similarly for ℓ = ℓres

N + εη with η ∈ R fixed, by modifying only the last
step with the compatibility relation, when ε → 0, we obtain

uε(x, y) = u(x, y) + a(η)kγ(x, y) + o(1) in ω,

uε(x, y) = ε−1a(η) sin(kx) + O(1) in the resonator,

Rε
1 = 1 + ia(η)u(A)/2 + o(1), Rε

2 = 0 + ia(η)u(A)/2 + o(1).

Here γ is the outgoing Green function such that ∆γ + k2γ = 0 in ω
∂nγ = δA on ∂ω

and

a(η)k = −
u(A)

Γ + π−1 ln |ε| + CΞ + η
.

This time the thin resonator has an influence at order ε0

and it depends on the choice of η!
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Asymptotic analysis – Resonant case
▶ Below, for several η ∈ R, we display the paths

{(ε, ℓres
N + ε(η − π−1| ln ε|)), ε > 0} ⊂ R2.

ε

ℓ

ℓres
N

ε0

ε

ℓ

A

According to η, the limit of the scattering coefficients along
the path as ε → 0+ is different.

▶ For a fixed small ε0, the scattering coefficients have a rapid variation for
ℓ varying in a neighbourhood of the resonance length.
→ This is exactly what we observed in the numerics.

Varying the length of the ligament around the resonant
length, we can get a rapid and large variation of the
scattering coefficients.
→ How to use that to design the mode converter ?
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Asymptotic analysis – Neumann problem
▶ Using the expressions of u(A), ℑm Γ and that CΞ ∈ R, we get in
particular for

ℓ = ℓres
N − ε(π−1| ln ε| + CΞ + ℜe Γ) ,

when ε tends to zero,

Rε
1 =

2β1 cos(πyA)2/β2 − 1
2β1 cos(πyA)2/β2 + 1 + . . . , Rε

2 =
− 2 cos(πyA)

√
2β1/β2

2β1 cos(πyA)2/β2 + 1 + . . .

▶ By choosing yA such that cos(πyA) = −
√

β2/(2β1) (doable), we get

Rε
1 = 0 + . . . , Rε

2 = 1 + . . .

and so by symmetry and unitarity of Rε
N ,

Rε
N =

( 0 1
1 0

)
+ . . . . (initial goal).
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Asymptotic analysis – Dirichlet problem
▶ The analysis is completely similar for the Dirichlet problem

(Pε
D)

∆uε
D + k2uε

D = 0 in ωε

∂νuε
D = 0 on ∂ωε \ Σε

uε
D = 0 on Σε

except that the corresponding 1D problem is

(P1D
D )

∂2
xv + k2v = 0 in (0; ℓ)

v(0) = v(ℓ) = 0.

▶ The associated resonance lengths are ℓres
D := πm/k, m ∈ N∗.

▶ For ℓ = ℓres
D − ε(π−1| ln ε| + CΞ + ℜe Γ) , yA s.t. cos(πyA) =

√
β2/(2β1),

we get when ε tends to zero

Rε
D =

( 0 −1
−1 0

)
+ . . . . (initial goal).
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1 Choice of geometry

2 Asymptotic analysis in presence of thin resonators

3 Mode converter
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Mode converter

▶ We come back to the geometry
(note that curving the ligaments does
not change the main term in the asymp.) ωε

Lε
−

Lε
+

A−

A+

Σε

Σε

▶ Finally we choose the ligament parameters such that

cos(πyA±) = ∓
√

β2/(2β1),
ℓ+ = ℓres

N − ε(π−1| ln ε| + CΞ + ℜe Γ)
ℓ− = ℓres

D − ε(π−1| ln ε| + CΞ + ℜe Γ).

- Lε
+ is resonant for the Neumann pb. but not for the Dirichlet one;

- Lε
− is resonant for the Dirichlet pb. but not for the Neumann one.

For the Neumann pb., Lε
+ acts at order ε0 while Lε

− acts at higher order.
For the Dirichlet pb., Lε

− acts at order ε0 while Lε
+ acts at higher order.

⇒ The action of the two ligaments decouple at order ε0 (crucial point).

▶ Then as ε → 0 we have both

Rε
N =

( 0 1
1 0

)
+ o(1) and Rε

D =
( 0 −1

−1 0
)

+ o(1).
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Mode converter - numerical results

▶ Thus tuning precisely the positions and lengths of the ligaments, we can
ensure absence of reflection and mode conversion:

t 7→ ℜe (uε
1e−iωt)

t 7→ ℜe (uε
2e−iωt)

Numerics made with Freefem++.

23 / 27



Remarks

1 yA± are such that cos(πyA±) = ∓
√

β2/(2β1)
The junction points of the ligaments are symmetric wrt the axis {1/2} × R.

2 What we do is an approximation:

Rε =
( 0 0

0 0
)

+ . . . T ε =
( 0 1

1 0
)

+ . . .

Better results for smaller ε. But then the tuning becomes more delicate.
→ Compromise precision/robustness.

ℜe uε
1

ℜe uε
2

3 We can also work with ligaments on top of the waveguide:

ℜe uε
1
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Conclusion

What we did

♠ We explained how to design mode converters using thin resonators.
Two main ingredients:

- Around resonant lengths, effects of order ε0 with perturb. of width ε.
- The 1D limit problems in the resonator provide a rather explicit

dependence wrt to the geometry.

Possible extensions and open questions

1) We could work similarly in 3D.

2) Using close ideas, we can do passive cloaking in waveguides
→ see the talk of J. Heleine on Thursday, room red 1, 3pm.

3) With Dirichlet BCs, other ideas must be found.
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Thank you for your attention!

L. Chesnel, J. Heleine and S.A. Nazarov. Design of a mode converter using thin
resonant slits. Comm. Math. Sci., vol. 20, 2:425-445, 2022.
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