Design of a mode converter using thin resonant ligaments

Lucas Chesnel ${ }^{1}$

Coll. with J. Heleine ${ }^{2}$, S.A. Nazarov ${ }^{3}$.
${ }^{1}$ Idefix team, Inria/Institut Polytechnique de Paris/EDF, France ${ }^{2}$ Poems team, Inria/Ensta Paris, France ${ }^{3}$ FMM, St. Petersburg State University, Russia

Palaiseau, 27/07/2022

Introduction

- We consider the propagation of waves in a 2D acoustic waveguide (also relevant in optics, microwaves, water-waves theory,...).

$(\mathscr{P}) \left\lvert\, \begin{array}{rll}\Delta u+k^{2} u & =0 & \text { in } \Omega, \\ \partial_{n} u & =0 & \text { on } \partial \Omega\end{array}\right.$
- We fix $k \in(\pi ; 2 \pi)$ so that two modes can propagate:

$$
\begin{array}{ll}
w_{1}^{ \pm}(x, y)=e^{ \pm i \beta_{1} x} \varphi_{1}(y), & \varphi_{1}(y)=\beta_{1}^{-1 / 2}, \quad \beta_{1}=k \\
w_{2}^{ \pm}(x, y)=e^{ \pm i \beta_{2} x} \varphi_{2}(y), & \varphi_{2}(y)=\beta_{2}^{-1 / 2} \sqrt{2} \cos (\pi y),
\end{array} \beta_{2}=\sqrt{k^{2}-\pi^{2}} .
$$

- We consider the propagation of waves in a 2D acoustic waveguide (also relevant in optics, microwaves, water-waves theory,...).

$$
(\mathscr{P}) \left\lvert\, \begin{array}{rll}
\Delta u+k^{2} u & =0 & \text { in } \Omega, \\
\partial_{n} u & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

- We fix $k \in(\pi ; 2 \pi)$ so that two modes can propagate:

$$
\begin{array}{ll}
w_{1}^{ \pm}(x, y)=e^{ \pm i \beta_{1} x} \varphi_{1}(y), & \varphi_{1}(y)=\beta_{1}^{-1 / 2}, \quad \beta_{1}=k \\
w_{2}^{ \pm}(x, y)=e^{ \pm i \beta_{2} x} \varphi_{2}(y), & \varphi_{2}(y)=\beta_{2}^{-1 / 2} \sqrt{2} \cos (\pi y), \quad \beta_{2}=\sqrt{k^{2}-\pi^{2}}
\end{array}
$$

- The scattering of the incident waves w_{1}^{+}, w_{2}^{+}yields the solutions

$$
\begin{array}{r|rl}
u_{1}(x, y)=\left\lvert\, \begin{aligned}
& w_{1}^{+}(x, y)+\sum_{j=1}^{2} r_{1 j} w_{j}^{-}(x, y)+\ldots \text { on the left } \\
& \sum_{j=1}^{2} t_{1 j} w_{j}^{+}(x, y)+\ldots \text { on the right } \\
& u_{2}(x, y)=\left\lvert\, \begin{aligned}
w_{2}^{+}(x, y)+\sum_{j=1}^{2} r_{2 j} w_{j}^{-}(x, y)+\ldots & \text { on the left } \\
\sum_{j=1}^{2} t_{2 j} w_{j}^{+}(x, y)+\ldots & \text { on the right }
\end{aligned}\right.
\end{aligned} . \begin{array}{r}
\text { on }
\end{array}\right.
\end{array}
$$

- We consider the propagation of waves in a 2D acoustic waveguide (also relevant in optics, microwaves, water-waves theory,...).

$$
(\mathscr{P}) \left\lvert\, \begin{array}{rll}
\Delta u+k^{2} u & =0 & \text { in } \Omega, \\
\partial_{n} u & =0 & \text { on } \partial \Omega
\end{array}\right.
$$

- We fix $k \in(\pi ; 2 \pi)$ so that two modes can propagate:

$$
\begin{array}{ll}
w_{1}^{ \pm}(x, y)=e^{ \pm i \beta_{1} x} \varphi_{1}(y), & \varphi_{1}(y)=\beta_{1}^{-1 / 2}, \quad \beta_{1}=k \\
w_{2}^{ \pm}(x, y)=e^{ \pm i \beta_{2} x} \varphi_{2}(y), & \varphi_{2}(y)=\beta_{2}^{-1 / 2} \sqrt{2} \cos (\pi y), \quad \beta_{2}=\sqrt{k^{2}-\pi^{2}}
\end{array}
$$

- The scattering of the incident waves w_{1}^{+}, w_{2}^{+}yields the solutions

$$
\begin{aligned}
& u_{1}(x, y)=\left\lvert\, \begin{aligned}
& w_{1}^{+}(x, y)+\sum_{j=1}^{2} r_{1 j} w_{j}^{-}(x, y)+\ldots \text { on the left } \\
& \sum_{j=1}^{2} t_{1 j} w_{j}^{+}(x, y)+\ldots \text { on the riocht } \\
& u_{2}(x, y)=\left\lvert\, \begin{aligned}
w_{2}^{+}(x, y)+\sum_{j=1}^{2} r_{2 j} w_{j}^{-}(x, y)+\ldots & \text { on th decaying terms }
\end{aligned}\right. \\
& \sum_{j=1}^{2} t_{2 j} w_{j}^{+}(x, y)+\ldots \text { on the right }
\end{aligned}\right.
\end{aligned}
$$

Introduction

- We define the reflection and transmission matrices

$$
R=\left(\begin{array}{ll}
r_{11} & r_{12} \\
r_{21} & r_{22}
\end{array}\right) \in \mathbb{C}^{2 \times 2} \quad T=\left(\begin{array}{ll}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{array}\right) \in \mathbb{C}^{2 \times 2} .
$$

- From conservation of energy, we have, for $i=1,2$,

$$
\sum_{j=1}^{2}\left|r_{i j}\right|^{2}+\left|t_{i j}\right|^{2}=1
$$

Goal of the talk

We wish to construct a mode converter, that is a geometry such that:

1) energy is completely transmitted
2) mode $1 / 2$ is converted into mode $2 / 1$

$$
R \approx\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \quad T \approx\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

- We define the reflection and transmission matrices

$$
R=\left(\begin{array}{ll}
r_{11} & r_{12} \\
r_{21} & r_{22}
\end{array}\right) \in \mathbb{C}^{2 \times 2} \quad T=\left(\begin{array}{ll}
t_{11} & t_{12} \\
t_{21} & t_{22}
\end{array}\right) \in \mathbb{C}^{2 \times 2}
$$

- From conservation of energy, we have, for $i=1,2$,

$$
\sum_{j=1}^{2}\left|r_{i j}\right|^{2}+\left|t_{i j}\right|^{2}=1
$$

Goal of the talk

We wish to construct a mode converter, that is a geometry such that:

1) energy is completely transmitted
2) mode $1 / 2$ is converted into mode $2 / 1$

$$
R \approx\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \quad T \approx\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Difficulty: the scattering coefficients have a non explicit and non linear dependence wrt the geometry.
\rightarrow Due to local minima, we wish to avoid optimization methods (Lunéville et al. 98, Lebbe et al. 19).

Outline of the talk

(1) Choice of geometry
(2) Asymptotic analysis in presence of thin resonators
(3) Mode converter

(1) Choice of geometry

(2) Asymptotic analysis in presence of thin resonators

(3) Mode converter

Geometry

- We decide to work in a geometry Ω^{ε} made of two half-waveguides connected by two thin ligaments of width $0<\varepsilon \ll 1$.

- This may seem paradoxical because in general in this Ω^{ε}, energy is mostly backscattered:

$$
R^{\varepsilon} \approx\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad T^{\varepsilon} \approx\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \ldots
$$

Geometry

- We decide to work in a geometry Ω^{ε} made of two half-waveguides connected by two thin ligaments of width $0<\varepsilon \ll 1$.

- This may seem paradoxical because in general in this Ω^{ε}, energy is mostly backscattered:

$$
R^{\varepsilon} \approx\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad T^{\varepsilon} \approx\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \ldots
$$

Geometry

- We impose Ω^{ε} to be symmetric wrt $(O y)$. Set $\omega^{\varepsilon}:=\left\{(x, y) \in \Omega^{\varepsilon} \mid x<0\right\}$.

- In the half-waveguide ω^{ε}, consider the two problems with Artificial Boundary Conditions (ABC)
$\left(\mathscr{P}_{N}^{\varepsilon}\right)\left|\begin{array}{cc}\Delta u_{N}^{\varepsilon}+k^{2} u_{N}^{\varepsilon}=0 \text { in } \omega^{\varepsilon} & \\ \partial_{\nu} u_{N}^{\varepsilon}=0 \text { on } \partial \omega^{\varepsilon} \backslash \Sigma^{\varepsilon} & \left(\mathscr{P}_{D}^{\varepsilon}\right) \\ \partial_{\nu} u_{N}^{\varepsilon}=0 \text { on } \Sigma^{\varepsilon}\end{array}\right| \begin{array}{cc}\Delta u_{D}^{\varepsilon}+k^{2} u_{D}^{\varepsilon}=0 \text { in } \omega^{\varepsilon} \\ \partial_{\nu} u_{D}^{\varepsilon}=0 \text { on } \partial \omega^{\varepsilon} \backslash \Sigma^{\varepsilon} \\ u_{D}^{\varepsilon}=0 \text { on } \Sigma^{\varepsilon}\end{array}$
where $\Sigma^{\varepsilon}:=\partial \omega^{\varepsilon} \backslash \partial \Omega^{\varepsilon}$.

Geometry

- For $\left(\mathscr{P}_{i}^{\varepsilon}\right), i=N, D$, we have the solutions

$$
\left\lvert\, \begin{aligned}
& u_{i 1}^{\varepsilon}=w_{1}^{+}(x, y)+\sum_{j=1}^{2} R_{i 1 j}^{\varepsilon} w_{j}^{-}(x, y)+\ldots \\
& u_{i 2}^{\varepsilon}=w_{2}^{+}(x, y)+\sum_{j=1}^{2} R_{i 2 j}^{\varepsilon} w_{j}^{-}(x, y)+\ldots
\end{aligned}\right.
$$

- This defines two scattering matrices $R_{N}^{\varepsilon}, R_{D}^{\varepsilon} \in \mathbb{C}^{2 \times 2}$ and there holds

$$
R^{\varepsilon}=\frac{R_{N}^{\varepsilon}+R_{D}^{\varepsilon}}{2} \quad T^{\varepsilon}=\frac{R_{N}^{\varepsilon}-R_{D}^{\varepsilon}}{2}
$$

Geometry

- For $\left(\mathscr{P}_{i}^{\varepsilon}\right), i=N, D$, we have the solutions

$$
\begin{aligned}
& u_{i 1}^{\varepsilon}=w_{1}^{+}(x, y)+\sum_{j=1}^{2} R_{i 1 j}^{\varepsilon} w_{j}^{-}(x, y)+\ldots \\
& u_{i 2}^{\varepsilon}=w_{2}^{+}(x, y)+\sum_{j=1}^{2} R_{i 2 j}^{\varepsilon} w_{j}^{-}(x, y)+\ldots
\end{aligned}
$$

- This defines two scattering matrices $R_{N}^{\varepsilon}, R_{D}^{\varepsilon} \in \mathbb{C}^{2 \times 2}$ and there holds

$$
R^{\varepsilon}=\frac{R_{N}^{\varepsilon}+R_{D}^{\varepsilon}}{2} \quad T^{\varepsilon}=\frac{R_{N}^{\varepsilon}-R_{D}^{\varepsilon}}{2}
$$

- Therefore our goal is to design ω^{ε} such that

$$
R_{N}^{\varepsilon} \approx\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad R_{D}^{\varepsilon} \approx\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right) .
$$

(1) Choice of geometry

(2) Asymptotic analysis in presence of thin resonators

(3) Mode converter

Setting

常
Main ingredient of our approach: outer resonators of width $\varepsilon \ll 1$.

- To set ideas, we work on the problem with Neumann ABC

$$
\left(\mathscr{P}_{N}^{\varepsilon}\right) \left\lvert\, \begin{aligned}
\Delta u^{\varepsilon}+k^{2} u^{\varepsilon} & =0 \text { in } \omega^{\varepsilon} \\
\partial_{\nu} u^{\varepsilon} & =0 \text { on } \partial \omega^{\varepsilon} \backslash \Sigma^{\varepsilon} \\
\partial_{\nu} u^{\varepsilon} & =0 \text { on } \Sigma^{\varepsilon}
\end{aligned}\right.
$$

and focus our attention on $u_{N 1}^{\varepsilon}$.

Setting

总
Main ingredient of our approach: outer resonators of width $\varepsilon \ll 1$.

- To set ideas, we work on the problem with Neumann ABC

$$
\left(\mathscr{P}_{N}^{\varepsilon}\right) \left\lvert\, \begin{aligned}
\Delta u^{\varepsilon}+k^{2} u^{\varepsilon} & =0 \text { in } \omega^{\varepsilon} \\
\partial_{\nu} u^{\varepsilon} & =0 \text { on } \partial \omega^{\varepsilon} \backslash \Sigma^{\varepsilon} \\
\partial_{\nu} u^{\varepsilon} & =0 \text { on } \Sigma^{\varepsilon}
\end{aligned}\right.
$$

and focus our attention on $u_{N 1}^{\varepsilon}$.

- To simplify the presentation, we work with only one straight resonator

$$
\omega^{\varepsilon}=\omega \cup L^{\varepsilon} \quad \text { with } \quad \left\lvert\, \begin{aligned}
& \omega:=(-\infty ; 0) \times(0 ; 1) \\
& L^{\varepsilon}:=[0 ; \ell) \times\left(y_{A}-\varepsilon / 2 ; y_{A}+\varepsilon / 2\right)
\end{aligned}\right.
$$

Setting

常
Main ingredient of our approach: outer resonators of width $\varepsilon \ll 1$.

- To set ideas, we work on the problem with Neumann ABC

and focus our attention on $u_{N 1}^{\varepsilon}$.
- To simplify the presentation, we work with only one straight resonator

$$
\omega^{\varepsilon}=\omega \cup L^{\varepsilon} \quad \text { with } \quad \left\lvert\, \begin{aligned}
& \omega:=(-\infty ; 0) \times(0 ; 1) \\
& L^{\varepsilon}:=[0 ; \ell) \times\left(y_{A}-\varepsilon / 2 ; y_{A}+\varepsilon / 2\right)
\end{aligned}\right.
$$

Setting

总
Main ingredient of our approach: outer resonators of width $\varepsilon \ll 1$.

- To set ideas, we work on the problem with Neumann ABC

and focus our attention on $u_{N 1}^{\varepsilon}$.
- To simplify the presentation, we work with only one straight resonator

$$
\omega^{\varepsilon}=\omega \cup L^{\varepsilon} \quad \text { with } \quad \left\lvert\, \begin{aligned}
& \omega:=(-\infty ; 0) \times(0 ; 1) \\
& L^{\varepsilon}:=[0 ; \ell) \times\left(y_{A}-\varepsilon / 2 ; y_{A}+\varepsilon / 2\right)
\end{aligned}\right.
$$

and remove the index ${ }_{N 1}$.

Setting

潧
Main ingredient of our approach: outer resonators of width $\varepsilon \ll 1$.

- To set ideas, we work on the problem with Neumann ABC

and focus our attention on u^{ε}.
- To simplify the presentation, we work with only one straight resonator

$$
\omega^{\varepsilon}=\omega \cup L^{\varepsilon} \quad \text { with } \quad \left\lvert\, \begin{aligned}
& \omega:=(-\infty ; 0) \times(0 ; 1) \\
& L^{\varepsilon}:=[0 ; \ell) \times\left(y_{A}-\varepsilon / 2 ; y_{A}+\varepsilon / 2\right)
\end{aligned}\right.
$$

and remove the index ${ }_{N 1}$.

First observations

- In the limit geometry ω, we have the solution

$$
\begin{aligned}
u & :=w_{1}^{+}+w_{1}^{-} \\
& =w_{1}^{+}+1 w_{1}^{-}+0 w_{2}^{-}
\end{aligned}
$$

As mentioned above, in general the thin ligament has only a weak influence:

$$
u^{\varepsilon} \approx u \quad \Rightarrow \quad R_{1}^{\varepsilon} \approx 1 \quad \text { and } \quad R_{2}^{\varepsilon} \approx 0
$$

But not always ...

- Below, for a fixed ε, we vary the length ℓ of the ligament:

Asymptotic analysis

To understand the phenomenon, we compute an asymptotic expansion of $u^{\varepsilon}, R_{1}^{\varepsilon}, R_{2}^{\varepsilon}$ as $\varepsilon \rightarrow 0$.

- To proceed we use techniques of matched asymptotic expansions (see Beale 73, Gadyl'shin 93, Kozlov et al. 94, Nazarov 96, Maz'ya et al. 00, Joly \& Tordeux 06, Lin, Shipman \& Zhang 20, 18, Holley \& Schnitzer 19, ...).

Asymptotic analysis

- We work with the outer expansions

$$
\begin{array}{ll}
u^{\varepsilon}(x, y)=u^{0}(x, y)+\ldots & \text { in } \omega, \\
u^{\varepsilon}(x, y)=\varepsilon^{-1} v^{-1}(x)+v^{0}(x)+\ldots & \\
\text { in the resonator. }
\end{array}
$$

- Considering the restriction of $\left(\mathscr{P}_{N}^{\varepsilon}\right)$ to the thin resonator, when ε tends to zero, we find that v^{-1} must solve the homogeneous 1D problem

$$
\left(\mathscr{P}_{N}^{1 \mathrm{D}}\right) \left\lvert\, \begin{aligned}
& \partial_{x}^{2} v+k^{2} v=0 \quad \text { in }(0 ; \ell) \\
& v(0)=\partial_{x} v(\ell)=0
\end{aligned}\right.
$$

Asymptotic analysis

- We work with the outer expansions

$$
\begin{aligned}
u^{\varepsilon}(x, y) & =u^{0}(x, y)+\ldots & & \text { in } \omega \\
u^{\varepsilon}(x, y) & =\varepsilon^{-1} v^{-1}(x)+v^{0}(x)+\ldots & & \text { in the resonator. }
\end{aligned}
$$

- Considering the restriction of $\left(\mathscr{P}_{N}^{\varepsilon}\right)$ to the thin resonator, when ε tends to zero, we find that v^{-1} must solve the homogeneous 1D problem

$$
\left(\mathscr{P}_{N}^{1 \mathrm{D}}\right) \left\lvert\, \begin{aligned}
& \partial_{x}^{2} v+k^{2} v=0 \quad \text { in }(0 ; \ell) \\
& v(0)=\partial_{x} v(\ell)=0
\end{aligned}\right.
$$

The features of $\left(\mathscr{P}_{N}^{1 \mathrm{D}}\right)$ play a key role in the physical phenomena and in the asymptotic analysis.

Asymptotic analysis

- We work with the outer expansions

$$
\begin{aligned}
u^{\varepsilon}(x, y) & =u^{0}(x, y)+\ldots & & \text { in } \omega \\
u^{\varepsilon}(x, y) & =\varepsilon^{-1} v^{-1}(x)+v^{0}(x)+\ldots & & \text { in the resonator. }
\end{aligned}
$$

- Considering the restriction of $\left(\mathscr{P}_{N}^{\varepsilon}\right)$ to the thin resonator, when ε tends to zero, we find that v^{-1} must solve the homogeneous 1D problem

$$
\left(\mathscr{P}_{N}^{1 \mathrm{D}}\right) \left\lvert\, \begin{aligned}
& \partial_{x}^{2} v+k^{2} v=0 \quad \text { in }(0 ; \ell) \\
& v(0)=\partial_{x} v(\ell)=0 .
\end{aligned}\right.
$$

The features of $\left(\mathscr{P}_{N}^{1 \mathrm{D}}\right)$ play a key role in the physical phenomena and in the asymptotic analysis.

- We denote by $\ell_{N}^{\text {res }}$ (resonance lengths) the values of ℓ, given by

$$
\ell_{N}^{\text {res }}:=\pi(m+1 / 2) / k, \quad m \in \mathbb{N},
$$

such that $\left(\mathscr{P}_{N}^{1 \mathrm{D}}\right)$ admits the non zero solution $v(x)=\sin (k x)$.

Asymptotic analysis - Non resonant case

- Assume that $\ell \neq \ell_{N}^{\text {res }}$. Then we find $v^{-1}=0$ and when $\varepsilon \rightarrow 0$, we get

$$
\begin{array}{ll}
u^{\varepsilon}(x, y)=u(x, y)+o(1) & \text { in } \omega \\
u^{\varepsilon}(x, y)=u(A) v_{0}(x)+o(1) & \text { in the resonator, } \\
R_{1}^{\varepsilon}=1+o(1), & R_{2}^{\varepsilon}=0+o(1)
\end{array}
$$

Here $v_{0}(x)=\cos (k x)+\tan (k \ell) \sin (k x)$.

Asymptotic analysis - Non resonant case

- Assume that $\ell \neq \ell_{N}^{\text {res }}$. Then we find $v^{-1}=0$ and when $\varepsilon \rightarrow 0$, we get

$$
\begin{array}{ll}
u^{\varepsilon}(x, y)=u(x, y)+o(1) & \text { in } \Omega \\
u^{\varepsilon}(x, y)=u(A) v_{0}(x)+o(1) & \text { in the resonator, } \\
R_{1}^{\varepsilon}=1+o(1), & R_{2}^{\varepsilon}=0+o(1)
\end{array}
$$

Here $v_{0}(x)=\cos (k x)+\tan (k \ell) \sin (k x)$.

$$
\text { The thin resonator has no influence at order } \varepsilon^{0} \text {. }
$$

\rightarrow Not interesting for our purpose because we want $\left\lvert\, \begin{aligned} & R_{1}^{\varepsilon}=0+\ldots \\ & R_{2}^{\varepsilon}=1+\ldots\end{aligned}\right.$

Asymptotic analysis - Resonant case

- Now assume that $\ell=\ell_{N}^{\text {res }}$. Then we find $v^{-1}(x)=a \sin (k x)$ for some a to determine.

Asymptotic analysis - Resonant case

- Now assume that $\ell=\ell_{N}^{\text {res }}$. Then we find $v^{-1}(x)=a \sin (k x)$ for some a to determine.
- Inner expansion. Set $\xi=\varepsilon^{-1}(\mathrm{x}-A)$ (stretched coordinates). Since

$$
\left(\Delta_{\mathrm{x}}+k^{2}\right) u^{\varepsilon}\left(\varepsilon^{-1}(\mathrm{x}-A)\right)=\varepsilon^{-2} \Delta_{\xi} u^{\varepsilon}(\xi)+\ldots,
$$

when $\varepsilon \rightarrow 0$, we are led to study the problem

$$
(\star) \left\lvert\, \begin{aligned}
-\Delta_{\xi} Y=0 & \text { in } \Xi \\
\partial_{\nu} Y=0 & \text { on } \partial \Xi .
\end{aligned}\right.
$$

Asymptotic analysis - Resonant case

- Now assume that $\ell=\ell_{N}^{\text {res }}$. Then we find $v^{-1}(x)=a \sin (k x)$ for some a to determine.
- Inner expansion. Set $\xi=\varepsilon^{-1}(\mathrm{x}-A)$ (stretched coordinates). Since

$$
\left(\Delta_{\mathrm{x}}+k^{2}\right) u^{\varepsilon}\left(\varepsilon^{-1}(\mathrm{x}-A)\right)=\varepsilon^{-2} \Delta_{\xi} u^{\varepsilon}(\xi)+\ldots,
$$

when $\varepsilon \rightarrow 0$, we are led to study the problem

$$
(\star) \left\lvert\, \begin{aligned}
-\Delta_{\xi} Y=0 & \text { in } \Xi \\
\partial_{\nu} Y=0 & \text { on } \partial \Xi .
\end{aligned}\right.
$$

- Problem (\star) admits a solution Y^{1} (up to a constant) with the expansion

$$
Y^{1}(\xi)=\left\{\begin{array}{lll}
\xi_{x}+C \Xi+O\left(e^{-\pi \xi_{x}}\right) & \text { as } \xi_{x} \rightarrow+\infty, & \xi \in \Xi^{+} \\
\frac{1}{\pi} \ln \frac{1}{|\xi|}+O\left(\frac{1}{|\xi|}\right) & \text { as }|\xi| \rightarrow+\infty, & \xi \in \Xi^{-} .
\end{array}\right.
$$

Asymptotic analysis - Resonant case

- Now assume that $\ell=\ell_{N}^{\text {res }}$. Then we find $v^{-1}(x)=a \sin (k x)$ for some a to determine.
- Inner expansion. Set $\xi=\varepsilon^{-1}(\mathrm{x}-A)$ (stretched coordinates). Since

$$
\left(\Delta_{\mathrm{x}}+k^{2}\right) u^{\varepsilon}\left(\varepsilon^{-1}(\mathrm{x}-A)\right)=\varepsilon^{-2} \Delta_{\xi} u^{\varepsilon}(\xi)+\ldots,
$$

when $\varepsilon \rightarrow 0$, we are led to study the problem

$$
(\star) \left\lvert\, \begin{array}{rll}
-\Delta_{\xi} Y=0 & \text { in } \Xi \\
\partial_{\nu} Y=0 & \text { on } \partial \Xi .
\end{array}\right.
$$

- Problem (\star) admits a solution Y^{1} (up to a constant) with the expansion

$$
Y^{1}(\xi)=\left\{\begin{array}{lll}
\xi_{x}+C \Xi+O\left(e^{-\pi \xi_{x}}\right) & \text { as } \xi_{x} \rightarrow+\infty, & \xi \in \Xi^{+} \\
\frac{1}{\pi} \ln \frac{1}{|\xi|}+O\left(\frac{1}{|\xi|}\right) & \text { as }|\xi| \rightarrow+\infty, & \xi \in \Xi^{-} .
\end{array}\right.
$$

- In a neighbourhood of A, we look for u^{ε} of the form

$$
u^{\varepsilon}(\mathrm{x})=C^{A} Y^{1}(\xi)+c^{A}+\ldots \quad\left(c^{A}, C^{A} \text { constants to determine }\right) .
$$

Asymptotic analysis - Resonant case

- Now assume that $\ell=\ell_{N}^{\text {res }}$. Then we find $v^{-1}(x)=a \sin (k x)$ for some a to determine.
- Inner expansion. Set $\xi=\varepsilon^{-1}(\mathrm{x}-A)$ (stretched coordinates). Since

Since at A, the Taylor formula gives

$$
u^{\varepsilon}(\mathrm{x})=\varepsilon^{-1} v^{-1}(x)+v^{0}(x)+\cdots=0+\left(a k \xi_{x}+v^{0}(0)\right)+\ldots,
$$

we take $C^{A}=a k$.

- Problem (\star) admits a solution Y^{1} (up to a constant) with the expansion

$$
Y^{1}(\xi)=\left\{\begin{array}{lll}
\xi_{x}+C \Xi+O\left(e^{-\pi \xi_{x}}\right) & \text { as } \xi_{x} \rightarrow+\infty, & \xi \in \Xi^{+} \\
\frac{1}{\pi} \ln \frac{1}{|\xi|}+O\left(\frac{1}{|\xi|}\right) & \text { as }|\xi| \rightarrow+\infty, & \xi \in \Xi^{-} .
\end{array}\right.
$$

- In a neighbourhood of A, we look for u^{ε} of the form

$$
u^{\varepsilon}(\mathrm{x})=C^{A} Y^{1}(\xi)+c^{A}+\ldots \quad\left(c^{A}, C^{A} \text { constants to determine }\right) .
$$

Asymptotic analysis - Resonant case

- Now assume that $\ell=\ell_{N}^{\text {res }}$. Then we find $v^{-1}(x)=a \sin (k x)$ for some a to determine.
- Inner expansion. Set $\xi=\varepsilon^{-1}(\mathrm{x}-A)$ (stretched coordinates). Since

Since at A, the Taylor formula gives

$$
u^{\varepsilon}(\mathrm{x})=\varepsilon^{-1} v^{-1}(x)+v^{0}(x)+\cdots=0+\left(a k \xi_{x}+v^{0}(0)\right)+\ldots,
$$

we take $C^{A}=a k$.

- Problem (\star) admits a solution Y^{1} (up to a constant) with the expansion

$$
Y^{1}(\xi)=\left\{\begin{array}{lll}
\xi_{x}+C \Xi+O\left(e^{-\pi \xi_{x}}\right) & \text { as } \xi_{x} \rightarrow+\infty, & \xi \in \Xi^{+} \\
\frac{1}{\pi} \ln \frac{1}{|\xi|}+O\left(\frac{1}{|\xi|}\right) & \text { as }|\xi| \rightarrow+\infty, & \xi \in \Xi^{-} .
\end{array}\right.
$$

- In a neighbourhood of A, we look for u^{ε} of the form

$$
u^{\varepsilon}(\mathrm{x})=a k Y^{1}(\xi)+c^{A}+\ldots \quad\left(c^{A}, C^{A} \text { constants to determine }\right)
$$

Asymptotic analysis - Resonant case

- In the ansatz $u^{\varepsilon}=u^{0}+\ldots$ in ω, we deduce that we must take

$$
u^{0}=u+a k \gamma
$$

where γ is the outgoing Green function such that $\left\lvert\, \begin{aligned} & \Delta \gamma+k^{2} \gamma=0 \text { in } \omega \\ & \partial_{n} \gamma=\delta_{A} \text { on } \partial \omega .\end{aligned}\right.$

Asymptotic analysis - Resonant case

- In the ansatz $u^{\varepsilon}=u^{0}+\ldots$ in ω, we deduce that we must take

$$
u^{0}=u+a k \gamma
$$

where γ is the outgoing Green function such that $\left\lvert\, \begin{aligned} & \Delta \gamma+k^{2} \gamma=0 \text { in } \omega \\ & \partial_{n} \gamma=\delta_{A} \text { on } \partial \omega .\end{aligned}\right.$

- Then in the inner field expansion $u^{\varepsilon}(\mathrm{x})=a k Y^{1}(\xi)+c^{A}+\ldots$, this sets

$$
c^{A}=u(A)+a k\left(\Gamma+\pi^{-1} \ln |\varepsilon|\right) .
$$

Asymptotic analysis - Resonant case

- In the ansatz $u^{\varepsilon}=u^{0}+\ldots$ in ω, we deduce that we must take

$$
u^{0}=u+a k \gamma
$$

where γ is the outgoing Green function such that $\left\lvert\, \begin{aligned} & \Delta \gamma+k^{2} \gamma=0 \text { in } \omega \\ & \partial_{n} \gamma=\delta_{A} \text { on } \partial \omega .\end{aligned}\right.$

- Then in the inner field expansion $u^{\varepsilon}(\mathrm{x})=a k Y^{1}(\xi)+c^{A}+\ldots$, this sets

$$
c^{A}=u(A)+a k\left(\Gamma+\pi^{-1} \ln |\varepsilon|\right) .
$$

- Matching the constant behaviour in the resonator, we obtain

$$
v^{0}(0)=u(A)+a k\left(\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}\right) .
$$

Asymptotic analysis - Resonant case

- In the ansatz $u^{\varepsilon}=u^{0}+\ldots$ in ω, we deduce that we must take

$$
u^{0}=u+a k \gamma
$$

where γ is the outgoing Green function such that $\left\lvert\, \begin{aligned} & \Delta \gamma+k^{2} \gamma=0 \text { in } \omega \\ & \partial_{n} \gamma=\delta_{A} \text { on } \partial \omega .\end{aligned}\right.$

- Then in the inner field expansion $u^{\varepsilon}(\mathrm{x})=a k Y^{1}(\xi)+c^{A}+\ldots$, this sets

$$
c^{A}=u(A)+a k\left(\Gamma+\pi^{-1} \ln |\varepsilon|\right)
$$

- Thus for v^{0}, we get the problem

$$
\left\lvert\, \begin{aligned}
& \partial_{x}^{2} v^{0}+k^{2} v^{0}=0 \quad \text { in }(0 ; \ell) \\
& v^{0}(0)=u(A)+a k\left(\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}\right), \quad \partial_{x} v^{0}(\ell)=0 .
\end{aligned}\right.
$$

Asymptotic analysis - Resonant case

- In the ansatz $u^{\varepsilon}=u^{0}+\ldots$ in ω, we deduce that we must take

$$
u^{0}=u+a k \gamma
$$

where γ is the outgoing Green function such that $\left\lvert\, \begin{aligned} & \Delta \gamma+k^{2} \gamma=0 \text { in } \omega \\ & \partial_{n} \gamma=\delta_{A} \text { on } \partial \omega .\end{aligned}\right.$

- Then in the inner field expansion $u^{\varepsilon}(\mathrm{x})=a k Y^{1}(\xi)+c^{A}+\ldots$, this sets

$$
c^{A}=u(A)+a k\left(\Gamma+\pi^{-1} \ln |\varepsilon|\right) .
$$

- Thus for v^{0}, we get the problem

$$
\left\lvert\, \begin{aligned}
& \partial_{x}^{2} v^{0}+k^{2} v^{0}=0 \quad \text { in }(0 ; \ell) \\
& v^{0}(0)=u(A)+a k\left(\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}\right), \quad \partial_{x} v^{0}(\ell)=0 .
\end{aligned}\right.
$$

- This is a Fredholm problem with a non zero kernel. A solution exists iff the compatibility condition is satisfied. This sets

$$
a k=-\frac{u(A)}{\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}}
$$

and ends the calculus of the first terms.

Asymptotic analysis - Resonant case

- Finally for $\ell=\ell_{N}^{\text {res }}$, when $\varepsilon \rightarrow 0$, we obtain

$$
\begin{aligned}
& u^{\varepsilon}(x, y)=u(x, y)+a k \gamma(x, y)+o(1) \quad \text { in } \omega \\
& u^{\varepsilon}(x, y)=\varepsilon^{-1} a \sin (k x)+O(1) \quad \text { in the resonator, } \\
& R_{1}^{\varepsilon}=1+\operatorname{iau}(A) / 2+o(1), \quad R_{2}^{\varepsilon}=0+i a u(A) / 2+o(1)
\end{aligned}
$$

Here γ is the outgoing Green function such that $\left\lvert\, \begin{aligned} & \Delta \gamma+k^{2} \gamma=0 \text { in } \omega \\ & \partial_{n} \gamma=\delta_{A} \text { on } \partial \omega\end{aligned}\right.$ and

$$
a k=-\frac{u(A)}{\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}} .
$$

Asymptotic analysis - Resonant case

- Finally for $\ell=\ell_{N}^{\text {res }}$, when $\varepsilon \rightarrow 0$, we obtain

$$
\begin{aligned}
& u^{\varepsilon}(x, y)=u(x, y)+a k \gamma(x, y)+o(1) \quad \text { in } \omega \\
& u^{\varepsilon}(x, y)=\varepsilon^{-1} a \sin (k x)+O(1) \quad \text { in the resonator, } \\
& R_{1}^{\varepsilon}=1+i a u(A) / 2+o(1), \quad R_{2}^{\varepsilon}=0+i a u(A) / 2+o(1)
\end{aligned}
$$

$$
a k=-\frac{u(A)}{\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}} .
$$

This time the thin resonator has an influence at order ε^{0}

Asymptotic analysis - Resonant case

- Similarly for $\ell=\ell_{N}^{\text {res }}+\varepsilon \eta$ with $\eta \in \mathbb{R}$ fixed, by modifying only the last step with the compatibility relation, when $\varepsilon \rightarrow 0$, we obtain

$$
\begin{aligned}
& u^{\varepsilon}(x, y)=u(x, y)+a(\eta) k \gamma(x, y)+o(1) \quad \text { in } \omega \\
& u^{\varepsilon}(x, y)=\varepsilon^{-1} a(\eta) \sin (k x)+O(1) \quad \text { in the resonator, } \\
& R_{1}^{\varepsilon}=1+i a(\eta) u(A) / 2+o(1), \quad R_{2}^{\varepsilon}=0+i a(\eta) u(A) / 2+o(1)
\end{aligned}
$$

$$
a(\eta) k=-\frac{u(A)}{\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}+\eta}
$$

Asymptotic analysis - Resonant case

- Similarly for $\ell=\ell_{N}^{\text {res }}+\varepsilon \eta$ with $\eta \in \mathbb{R}$ fixed, by modifying only the last step with the compatibility relation, when $\varepsilon \rightarrow 0$, we obtain

$$
\begin{aligned}
& u^{\varepsilon}(x, y)=u(x, y)+a(\eta) k \gamma(x, y)+o(1) \quad \text { in } \omega \\
& u^{\varepsilon}(x, y)=\varepsilon^{-1} a(\eta) \sin (k x)+O(1) \quad \text { in the resonator, } \\
& R_{1}^{\varepsilon}=1+i a(\eta) u(A) / 2+o(1), \quad R_{2}^{\varepsilon}=0+i a(\eta) u(A) / 2+o(1)
\end{aligned}
$$

Here γ is the outgoing Green function such that $\left\lvert\, \begin{aligned} & \Delta \gamma+k^{2} \gamma=0 \text { in } \omega \\ & \partial_{n} \gamma=\delta_{A} \text { on } \partial \omega\end{aligned}\right.$ and

$$
a(\eta) k=-\frac{u(A)}{\Gamma+\pi^{-1} \ln |\varepsilon|+C_{\Xi}+\eta}
$$

This time the thin resonator has an influence at order ε^{0} and it depends on the choice of η !

Asymptotic analysis - Resonant case

- Below, for several $\eta \in \mathbb{R}$, we display the paths

$$
\left\{\left(\varepsilon, \ell_{N}^{\text {res }}+\varepsilon\left(\eta-\pi^{-1}|\ln \varepsilon|\right)\right), \varepsilon>0\right\} \subset \mathbb{R}^{2} .
$$

According to η, the limit of the scattering coefficients along the path as $\varepsilon \rightarrow 0^{+}$is different.

Asymptotic analysis - Resonant case

- Below, for several $\eta \in \mathbb{R}$, we display the paths

According to η, the limit of the scattering coefficients along the path as $\varepsilon \rightarrow 0^{+}$is different.

- For a fixed small ε_{0}, the scattering coefficients have a rapid variation for ℓ varying in a neighbourhood of the resonance length.

Asymptotic analysis - Resonant case

- Below, for several $\eta \in \mathbb{R}$, we display the paths

According to η, the limit of the scattering coefficients along the path as $\varepsilon \rightarrow 0^{+}$is different.

- For a fixed small ε_{0}, the scattering coefficients have a rapid variation for ℓ varying in a neighbourhood of the resonance length.
\rightarrow This is exactly what we observed in the numerics.

Asymptotic analysis - Resonant case

Varying the length of the ligament around the resonant length, we can get a rapid and large variation of the scattering coefficients.
\rightarrow How to use that to design the mode converter ?

Asymptotic analysis - Neumann problem

- Using the expressions of $u(A), \Im m \Gamma$ and that $C_{\Xi} \in \mathbb{R}$, we get in particular for

$$
\ell=\ell_{N}^{\mathrm{res}}-\varepsilon\left(\pi^{-1}|\ln \varepsilon|+C_{\Xi}+\Re e \Gamma\right),
$$

when ε tends to zero,

$$
R_{1}^{\varepsilon}=\frac{2 \beta_{1} \cos \left(\pi y_{A}\right)^{2} / \beta_{2}-1}{2 \beta_{1} \cos \left(\pi y_{A}\right)^{2} / \beta_{2}+1}+\ldots, \quad R_{2}^{\varepsilon}=\frac{-2 \cos \left(\pi y_{A}\right) \sqrt{2 \beta_{1} / \beta_{2}}}{2 \beta_{1} \cos \left(\pi y_{A}\right)^{2} / \beta_{2}+1}+\ldots
$$

Asymptotic analysis - Neumann problem

- Using the expressions of $u(A), \Im m \Gamma$ and that $C_{\Xi} \in \mathbb{R}$, we get in particular for

$$
\ell=\ell_{N}^{\mathrm{res}}-\varepsilon\left(\pi^{-1}|\ln \varepsilon|+C_{\Xi}+\Re e \Gamma\right),
$$

when ε tends to zero,

$$
R_{1}^{\varepsilon}=\frac{2 \beta_{1} \cos \left(\pi y_{A}\right)^{2} / \beta_{2}-1}{2 \beta_{1} \cos \left(\pi y_{A}\right)^{2} / \beta_{2}+1}+\ldots, \quad R_{2}^{\varepsilon}=\frac{-2 \cos \left(\pi y_{A}\right) \sqrt{2 \beta_{1} / \beta_{2}}}{2 \beta_{1} \cos \left(\pi y_{A}\right)^{2} / \beta_{2}+1}+\ldots
$$

- By choosing $\boldsymbol{y}_{\boldsymbol{A}}$ such that $\cos \left(\pi y_{A}\right)=-\sqrt{\beta_{2} /\left(2 \beta_{1}\right)}$ (doable), we get

$$
R_{1}^{\varepsilon}=0+\ldots, \quad R_{2}^{\varepsilon}=1+\ldots
$$

and so by symmetry and unitarity of R_{N}^{ε},

$$
R_{N}^{\varepsilon}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)+\ldots . \quad \text { (initial goal) } .
$$

Asymptotic analysis - Dirichlet problem

- The analysis is completely similar for the Dirichlet problem

$$
\left(\mathscr{P}_{D}^{\varepsilon}\right) \left\lvert\, \begin{aligned}
& \Delta u_{D}^{\varepsilon}+k^{2} u_{D}^{\varepsilon}=0 \text { in } \omega^{\varepsilon} \\
& \partial_{\nu} u_{D}^{\varepsilon}=0 \text { on } \partial \omega^{\varepsilon} \backslash \Sigma^{\varepsilon} \\
& u_{D}^{\varepsilon}=0 \text { on } \Sigma^{\varepsilon}
\end{aligned}\right.
$$

except that the corresponding 1D problem is

$$
\left(\mathscr{P}_{D}^{1 \mathrm{D}}\right) \left\lvert\, \begin{aligned}
& \partial_{x}^{2} v+k^{2} v=0 \quad \text { in }(0 ; \ell) \\
& v(0)=v(\ell)=0 .
\end{aligned}\right.
$$

- The associated resonance lengths are $\ell_{D}^{\text {res }}:=\pi m / k, \quad m \in \mathbb{N}^{*}$.

Asymptotic analysis - Dirichlet problem

- The analysis is completely similar for the Dirichlet problem

$$
\left(\mathscr{P}_{D}^{\varepsilon}\right) \left\lvert\, \begin{aligned}
& \Delta u_{D}^{\varepsilon}+k^{2} u_{D}^{\varepsilon}=0 \text { in } \omega^{\varepsilon} \\
& \partial_{\nu} u_{D}^{\varepsilon}=0 \text { on } \partial \omega^{\varepsilon} \backslash \Sigma^{\varepsilon} \\
& u_{D}^{\varepsilon}=0 \text { on } \Sigma^{\varepsilon}
\end{aligned}\right.
$$

except that the corresponding 1D problem is

$$
\begin{array}{l|l}
\left(\mathscr{P}_{D}^{1 \mathrm{D}}\right) & \begin{array}{l}
\partial_{x}^{2} v+k^{2} v=0 \quad \text { in }(0 ; \ell) \\
v(0)=v(\ell)=0 .
\end{array}
\end{array}
$$

- The associated resonance lengths are $\ell_{D}^{\text {res }}:=\pi m / k, \quad m \in \mathbb{N}^{*}$.
- For $\ell=\ell_{D}^{\text {res }}-\varepsilon\left(\pi^{-1}|\ln \varepsilon|+C_{\Xi}+\Re e \Gamma\right), y_{A}$ s.t. $\cos \left(\pi y_{A}\right)=\sqrt{\beta_{2} /\left(2 \beta_{1}\right)}$, we get when ε tends to zero

$$
R_{D}^{\varepsilon}=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)+\ldots . \quad \text { (initial goal) }
$$

(1) Choice of geometry

(2) Asymptotic analysis in presence of thin resonators

(3) Mode converter

Mode converter

- We come back to the geometry (note that curving the ligaments does not change the main term in the asymp.)

- Finally we choose the ligament parameters such that

$$
\cos \left(\pi y_{A_{ \pm}}\right)=\mp \sqrt{\beta_{2} /\left(2 \beta_{1}\right)}, \quad \left\lvert\, \begin{aligned}
& \ell_{+}=\ell_{N}^{\text {res }}-\varepsilon\left(\pi^{-1}|\ln \varepsilon|+C_{\Xi}+\Re e \Gamma\right) \\
& \ell_{-}=\ell_{D}^{\text {res }}-\varepsilon\left(\pi^{-1}|\ln \varepsilon|+C_{\Xi}+\Re e \Gamma\right) .
\end{aligned}\right.
$$

- L_{+}^{ε} is resonant for the Neumann pb. but not for the Dirichlet one;
- L_{-}^{ε} is resonant for the Dirichlet pb. but not for the Neumann one.

Mode converter

- We come back to the geometry (note that curving the ligaments does not change the main term in the asymp.)

- Finally we choose the ligament parameters such that

$$
\cos \left(\pi y_{A_{ \pm}}\right)=\mp \sqrt{\beta_{2} /\left(2 \beta_{1}\right)}, \quad \left\lvert\, \begin{aligned}
& \ell_{+}=\ell_{N}^{\text {res }}-\varepsilon\left(\pi^{-1}|\ln \varepsilon|+C_{\Xi}+\Re e \Gamma\right) \\
& \ell_{-}=\ell_{D}^{\text {res }}-\varepsilon\left(\pi^{-1}|\ln \varepsilon|+C_{\Xi}+\Re e \Gamma\right) .
\end{aligned}\right.
$$

"

- L_{+}^{ε} is resonant for the Neumann pb. but not for the Dirichlet one;
- L_{-}^{ε} is resonant for the Dirichlet pb. but not for the Neumann one.

For the Neumann pb., L_{+}^{ε} acts at order ε^{0} while L_{-}^{ε} acts at higher order. For the Dirichlet pb., L_{-}^{ε} acts at order ε^{0} while L_{+}^{ε} acts at higher order.
\Rightarrow The action of the two ligaments decouple at order ε^{0} (crucial point).

Mode converter

- We come back to the geometry (note that curving the ligaments does not change the main term in the asymp.)

- Finally we choose the ligament parameters such that

$$
\cos \left(\pi y_{A_{ \pm}}\right)=\mp \sqrt{\beta_{2} /\left(2 \beta_{1}\right)}, \quad \left\lvert\, \begin{aligned}
& \ell_{+}=\ell_{N}^{\text {res }}-\varepsilon\left(\pi^{-1}|\ln \varepsilon|+C_{\Xi}+\Re e \Gamma\right) \\
& \ell_{-}=\ell_{D}^{\text {res }}-\varepsilon\left(\pi^{-1}|\ln \varepsilon|+C_{\Xi}+\Re e \Gamma\right) .
\end{aligned}\right.
$$

"

- L_{+}^{ε} is resonant for the Neumann pb. but not for the Dirichlet one;
- L_{-}^{ε} is resonant for the Dirichlet pb. but not for the Neumann one.

For the Neumann pb., L_{+}^{ε} acts at order ε^{0} while L_{-}^{ε} acts at higher order. For the Dirichlet pb., L_{-}^{ε} acts at order ε^{0} while L_{+}^{ε} acts at higher order.
\Rightarrow The action of the two ligaments decouple at order ε^{0} (crucial point).

- Then as $\varepsilon \rightarrow 0$ we have both

$$
R_{N}^{\varepsilon}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+o(1) \quad \text { and } \quad R_{D}^{\varepsilon}=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right)+o(1)
$$

Mode converter - numerical results

- Thus tuning precisely the positions and lengths of the ligaments, we can ensure absence of reflection and mode conversion:

Numerics made with Freefem++.

Remarks

(1) $y_{A_{ \pm}}$are such that $\cos \left(\pi y_{A_{ \pm}}\right)=\mp \sqrt{\beta_{2} /\left(2 \beta_{1}\right)}$

The junction points of the ligaments are symmetric wrt the axis $\{1 / 2\} \times \mathbb{R}$.
(2) What we do is an approximation:

$$
R^{\varepsilon}=\left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right)+\ldots \quad T^{\varepsilon}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)+\ldots
$$

Better results for smaller ε. But then the tuning becomes more delicate.
\rightarrow Compromise precision/robustness.

Remarks

(1) $y_{A_{ \pm}}$are such that $\cos \left(\pi y_{A_{ \pm}}\right)=\mp \sqrt{\beta_{2} /\left(2 \beta_{1}\right)}$

The junction points of the ligaments are symmetric wrt the axis $\{1 / 2\} \times \mathbb{R}$.
(2) What we do is an approximation:

$$
R^{\varepsilon}=\left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right)+\ldots \quad T^{\varepsilon}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)+\ldots
$$

Better results for smaller ε. But then the tuning becomes more delicate.
\rightarrow Compromise precision/robustness.

Remarks

(1) $y_{A_{ \pm}}$are such that $\cos \left(\pi y_{A_{ \pm}}\right)=\mp \sqrt{\beta_{2} /\left(2 \beta_{1}\right)}$

The junction points of the ligaments are symmetric wrt the axis $\{1 / 2\} \times \mathbb{R}$.
(2) What we do is an approximation:

$$
R^{\varepsilon}=\left(\begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}\right)+\ldots \quad T^{\varepsilon}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)+\ldots
$$

Better results for smaller ε. But then the tuning becomes more delicate.
\rightarrow Compromise precision/robustness.

Remarks

(1) $y_{A_{ \pm}}$are such that $\cos \left(\pi y_{A_{ \pm}}\right)=\mp \sqrt{\beta_{2} /\left(2 \beta_{1}\right)}$

The junction points of the ligaments are symmetric wrt the axis $\{1 / 2\} \times \mathbb{R}$.
(2) What we do is an approximation:

$$
R^{\varepsilon}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)+\ldots \quad T^{\varepsilon}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)+\ldots
$$

Better results for smaller ε. But then the tuning becomes more delicate.
\rightarrow Compromise precision/robustness.
(3) We can also work with ligaments on top of the waveguide:

Remarks

(1) $y_{A_{ \pm}}$are such that $\cos \left(\pi y_{A_{ \pm}}\right)=\mp \sqrt{\beta_{2} /\left(2 \beta_{1}\right)}$

The junction points of the ligaments are symmetric wrt the axis $\{1 / 2\} \times \mathbb{R}$.
(2) What we do is an approximation:

$$
R^{\varepsilon}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)+\ldots \quad T^{\varepsilon}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)+\ldots
$$

Better results for smaller ε. But then the tuning becomes more delicate.
\rightarrow Compromise precision/robustness.
(3) We can also work with ligaments on top of the waveguide:
(1) Choice of geometry
(2) Asymptotic analysis in presence of thin resonators
(3) Mode converter

Conclusion

What we did

© We explained how to design mode converters using thin resonators. Two main ingredients:

- Around resonant lengths, effects of order ε^{0} with perturb. of width ε.
- The 1D limit problems in the resonator provide a rather explicit dependence wrt to the geometry.

Conclusion

What we did

© We explained how to design mode converters using thin resonators. Two main ingredients:

- Around resonant lengths, effects of order ε^{0} with perturb. of width ε.
- The 1D limit problems in the resonator provide a rather explicit dependence wrt to the geometry.

Possible extensions and open questions

1) We could work similarly in 3D.
2) Using close ideas, we can do passive cloaking in waveguides \rightarrow see the talk of J. Heleine on Thursday, room red 1, 3pm.
3) With Dirichlet BCs, other ideas must be found.

Thank you for your attention!

L. Chesnel, J. Heleine and S.A. Nazarov. Design of a mode converter using thin resonant slits. Comm. Math. Sci., vol. 20, 2:425-445, 2022.

