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Introduction 1/2
▶ We consider the propagation of waves in a 2D thin periodic quantum
waveguide Πε.

▶ Start with some domain Ω ⊂ R2 which coincides with the strip
R × (−1/2; 1/2) outside of a bounded region (the resonator).

x
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▶ Shrink Ω by a small factor ε > 0 to create the unit cell
ωε := {z = (x, y) ∈ R2 | z/ε ∈ Ω and |x| < 1/2}

▶ Set ∂ωε
± := {±1/2} × (−ε/2; ε/2) and define

Πε := {z ∈ R2 | (x − m, y) ∈ ωε ∪ ∂ωε
+, m ∈ Z}.
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Introduction 2/2
▶ In Πε we consider the spectral problem for the Dirichlet Laplacian

(Pε)
−∆uε = λε uε in Πε

uε = 0 on ∂Πε.

▶ Denote by Aε the unbounded operator of L2(Πε) such that
D(Aε) := {v ∈ H1

0(Πε) | ∆v ∈ L2(Πε)} and Aεv = −∆v.

▶ Aε is positive and selfadjoint. Moreover, due to the periodicity of the
geometry, Aε has only continuous spectrum.

Goal of the talk

We wish to study the lower part of σ(Aε), the spectrum of Aε, as ε → 0.
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Outline of the talk

1 Preparatory work

2 Asymptotic analysis

3 Breathing of spectral bands
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Reduction to a problem in the unit cell 1/2
▶ The Floquet Bloch transform

uε(z) 7→ Uε(z, η) =
1

(2π)1/2

∑
j∈Z

eiηjuε(x + j, y), η ∈ R,

converts (Pε) into a spectral problem set in ωε with quasi-periodicity
boundary conditions at ∂ωε

±

(Pε(η))

−∆Uε(z, η) = Λε(η) Uε(z, η) z ∈ ωε

Uε(z, η) = 0 z ∈ ∂ωε ∩ ∂Πε

Uε(−1/2, y, η) = eiη Uε(+1/2, y, η) y ∈ (−ε/2; ε/2)
∂xUε(−1/2, y, η) = eiη ∂xUε(+1/2, y, η) y ∈ (−ε/2; ε/2).

▶ The map η 7→ η + 2π leaves invariant the quasiperiodicity conditions.
→ it suffices to study (Pε(η)) for η ∈ [0; 2π) .

▶ For η ∈ [0; 2π), the spectrum of (Pε(η)) is discrete, made of the
unbounded sequence of real eigenvalues

0 < Λε
1(η) ≤ Λε

2(η) ≤ · · · ≤ Λε
p(η) ≤ . . . .
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Reduction to a problem in the unit cell 2/2
▶ The functions

η 7→ Λε
p(η)

are continuous so that the
spectral bands

Υε
p := {Λε

p(η), η ∈ [0; 2π)}

are compact segments in [0; +∞).
η ∈ [0; 2π)

▶ Finally, we have σ(Aε) =
⋃

p∈N∗:={1,2,... }

Υε
p.

To study the behaviour of σ(Aε) as ε → 0, we have to consider
the asymptotics of Λε

p(η) as ε → 0.
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Asymptotic analysis - general picture

▶ To compute the asymptotics of the almost 1D problem (Pε(η)), we use
techniques of matched asymptotic expansions (see Post 05, Griser 08).

▶ Roughly speaking, at the limit ε → 0, we obtain a 1D geometry with a
junction point at O

1
εωε →

ε→0

O

−1/2 1/2

▶ Classically, we consider different expansions far from O and in a
neighbourhood of O that we match in some intermediate regions.
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Near field problem
▶ In the process, the features of the Dirichlet Laplacian in Ω, the near
field geometry obtained by zooming at O, play an important role.

1Ω

▶ Denote by AΩ the unbounded operator of L2(Ω) such that

D(AΩ) := {v ∈ H1
0(Ω) | ∆v ∈ L2(Ω)} and AΩv = −∆v.

Spectrum of AΩ:

O µ1 µN• λ† = π2

- The continuous spectrum occupies the ray [π2; +∞).
- Depending on Ω, AΩ may have or not discrete spectrum. Assume that AΩ

has exactly N• ∈ N eigenvalues 0 < µ1 < µ2 ≤ · · · ≤ µN• < π2.
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Near field problem at the threshold
▶ In the sequel, the properties of the problem

(P†) ∆W + π2 W = 0 in Ω
W = 0 on ∂Ω

play a key role.

▶ For (P†): waves w0(z) = φ(y), w1(z) = |x|φ(y) with φ(y) =
√

2 cos(πy).

Definition: Denote by X† the space of almost standing waves of (P†),
i.e. the space of bounded solutions of (P†) which do not decay at infinity.

Proposition: We have dim X† = dim(ker (S + Id)) where S ∈ C2×2 is
the so-called threshold scattering matrix.

→ Only three possibilities: X† = {0}, dim X† = 1 or dim X† = 2.

▶ S is a unitary matrix ⇒ its 2 eigenvalues lie on the unit circle. In
general they are different from −1.

For most Ω, we have X† = {0}.
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First main results

For p ∈ N∗, let Υε
p = [aε

p−; aε
p+], with aε

p− ≤ aε
p+, be the spectral band as

introduced before. To simplify, assume absence of trapped modes for (P†).

Theorem: There are constants cp− < cp+, Cp > 0, δp > 0 such that as
ε → 0 we have

For p = 1, . . . , N• :∣∣∣aε
p± −

(
ε−2µp + ε−2e−

√
π2−µp/εcp±

)∣∣∣ ≤ Cp e−(1+δp)
√

π2−µp/ε;

For p = N• + m, m ∈ N∗ :

i) if X† = {0},
∣∣∣aε

p± −
(

ε−2π2 + m2π2 + εcp±

)∣∣∣ ≤ Cp ε1+δp ;

ii) if dim X† = 1,
∣∣∣aε

p± −
(

ε−2π2 + cp±

)∣∣∣ ≤ Cp ε1+δp ;

iii) if dim X† = 2,
∣∣∣aε

p± −
(

ε−2π2 + (m − 1)2π2 + εcp±

)∣∣∣ ≤ Cp ε1+δp .

12 / 26



Comments

1 Due to the Dirichlet condition, all bands move to +∞ as O(ε−2).

2 The first N• spectral bands become extremely short, in O(e−c/ε).

3 Concerning the next ones, the behaviour depends on dim X†:

When dim X† ̸= 1, the Υε
p are of length O(ε). Moreover, between Υε

p and
Υε

p+1, there is a gap whose length tends to (2m + 1)π2.

Generically, the propagation of waves in Πε is hampered and
occurs only for very narrow intervals of frequencies.

When dim X† = 1, the situation is very different because asymptotically
the Υε

p are of length cp+ − cp−, with in general cp+ > cp−.

For particular Ω, waves can propagate in Πε for much larger
intervals of frequencies than above.
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Elements of proof – first N• spectral bands
For 1 ≤ p ≤ N•, let uε(·, η) be an eigenfunction associated with Λε

p(η).

▶ As ε → 0, consider the approximation
Λε

p(η) = ε−2µp + . . . , uε(z, η) = v(z/ε) + . . .

where µp ∈ (0; π2), v is an eigenpair of the discrete spectrum of AΩ.

Inserting (ε−2µp, v(·/ε)) in (Pε(η)) only leaves a small discrepancy
on the faces ∂ωε

± because v is exponentially decaying at infinity.

▶ This model is independent of η. We can refine it by constructing
corrector terms.
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Elements of proof – higher spectral bands
For p ≥ N•, let uε(·, η) be an eigenfunction associated with Λε

p(η).
→ To simplify, we remove the subscript p and the dependence on η.

▶ As ε → 0, consider the expansions
Λε = ε−2π2 + ν + . . . , uε(z) = γ±(x) φ(y/ε) + . . . for ± x > 0.

Inserting it in (Pε(η)), we obtain

(P1D)

∂2
xγ+ + νγ+ = 0 in (0; 1/2)

∂2
xγ− + νγ− = 0 in (−1/2; 0)
γ−(−1/2) = eiηγ+(+1/2)

∂xγ−(−1/2) = eiη∂xγ+(+1/2).


We must complete this system with conditions at O.

We find them by matching this far field expansion with some inner field
expansion of uε

uε(z) = W (z/ε) + . . . .

We obtain that W must satisfy (P†).
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expansion of uε

uε(z) = W (z/ε) + . . . .

We obtain that W must satisfy (P†).
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Elements of proof – higher spectral bands
Case X† = {0}.
We take W ≡ 0 and impose γ±(0) = 0, i.e. Dirichlet conditions at O in
(P1D). Solving (P1D), we get

Λε = ε−2π2 + (mπ)2 + . . .

uε(z) = ±e∓iη/2 sin(mπx) φ(y/ε) + . . . for ± x > 0.

Case dim X† = 1.
We take W ∈ X† and impose

cos θ ∂xγ+(0) = sin θ ∂xγ−(0)
sin θ γ+(0) = cos θ γ−(0),

i.e. generalized Kirchoff transmission conditions at O. Here (cos θ, sin θ)⊤

is an eigenvector of S for the eig. −1. Solving (P1D), we get

Λε = ε−2π2 + ν(η) + . . .

where ν(η) satisfies sin(2θ) cos η = cos
√

ν(η)
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Elements of proof – higher spectral bands
Case dim X† = 2.
We impose ∂xγ±(0) = 0, i.e. Neumann conditions at O in (P1D). Solving
(P1D), we get

Λε = ε−2π2 + (mπ)2 + . . .

uε(z) = ±e∓iη/2 cos(mπx) φ(y/ε) + . . . for ± x > 0.
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Additional comments
▶ Can we find examples of Ω such that dim X† = 1? Yes!

→ The reference strip R × (−1/2; 1/2). Indeed in this case v(x, y) = cos(πy)
belongs to X†. We directly compute σ(Aε) = [π2/ε2; +∞).

→ In geometries as below which are symmetric wrt the vertical axis, we can
show that as H → +∞, one eigenvalue of S passes through −1 .

H

1Ω

▶ Can we find Ω such that dim X† = 2? Open question!

▶ For the Neumann Laplacian , the analysis is very similar. The near field
problem at the threshold simply writes

∆W = 0 in Ω
∂nW = 0 on ∂Ω ⇒ for all Ω, dim X† = 1 with θ = π/4

→ Kirchoff trans. condi. at O for the 1D model
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1 Preparatory work

2 Asymptotic analysis

3 Breathing of spectral bands
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Setting

▶ We wish to describe the change of σ(Aε) when perturbing the inner field
geometry around a particular Ω = Ω⋆ where dim X† = 1.

Ω⋆ Ωρ,ε

1 + ερh(x)

Locally ∂Ωρ,ε coincides with the graph of x 7→ 1 + ερh(x),
where h ∈ C ∞

0 (R) is a given profile function and ρ a given parameter.

▶ We denote Υρ,ε
p := {Λρ,ε

p (η), η ∈ [0; 2π)} the spectral bands of the
Dirichlet Laplacian in Πρ,ε, the periodic domain constructed from Ωρ,ε.

We emphasize that we make a periodic perturbation of Πε.
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Second main results

Fix ρ ∈ R. For m ∈ N∗ and p = N• + m, let Υρ,ε
p = [aρ,ε

m−; aρ,ε
m+], with

aρ,ε
m− ≤ aρ,ε

m+, be the spectral band as defined above.

Theorem: There are some constants cρ
m− < cρ

m+, Cm > 0, δm > 0 such
that as ε → 0 we have∣∣∣aρ,ε

m± −
(

ε−2π2 + cρ
m±

)∣∣∣ ≤ Cm ε1+δm .

Moreover, we have

lim
ρ→−∞

cρ
m± = m2π2, cρ

1± ∼
ρ→+∞

−
T 2

4 ρ2, lim
ρ→+∞

cρ
(m+1)± = m2π2

with
cρ

m+ − cρ
m− =

ρ→±∞
O(1/ρ), cρ

1+ − cρ
1− =

ρ→+∞
O(e−δρ).

Here T > 0 is a constant which depends on the profile function h.
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Spectral bands of the model
▶ Spectral bands of the model with respect to ρ (after a shift by −π2/ε2).

- For ρ running from −∞ to +∞, i.e. when inflating the near field geom. around
Ω⋆, the spectral bands expand and shrink ⇒ breathing phenomenon of σ(Aε).

- In the process, a band dives below π2/ε2, stops breathing and becomes ex-
tremely short as ρ → +∞.

21 / 26



Spectral bands of the model
▶ Spectral bands of the model with respect to ρ (after a shift by −π2/ε2).

- For ρ running from −∞ to +∞, i.e. when inflating the near field geom. around
Ω⋆, the spectral bands expand and shrink ⇒ breathing phenomenon of σ(Aε).

- In the process, a band dives below π2/ε2, stops breathing and becomes ex-
tremely short as ρ → +∞.

21 / 26



New 1D model with ρ dependence
▶ We obtain the expansions

Λε = ε−2π2 + ν + . . . , uε(z) = γ±(x) φ(y/ε) + . . . for ± x > 0.

where γ± satisfy

(P1D)

∂2
xγ+ + νγ+ = 0 in (0; 1/2)

∂2
xγ− + νγ− = 0 in (−1/2; 0)
γ−(−1/2) = eiηγ+(+1/2)

∂xγ−(−1/2) = eiη∂xγ+(+1/2).

together with the new transmission conditions

sin θ γ+(0) − cos θ γ−(0) = 0

cos θ ∂xγ+(0) − sin θ ∂xγ−(0) = −
Tρ

2 (cos θ γ+(0) + sin θ γ−(0)) .

▶ In particular when ρ → ±∞, as expected we get γ±(0) = 0 (Dirichlet).
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Numerics on the exact problem

▶ We start from the inner field geometry

H

1.6

1Ω

▶ We use Freefem++ to compute the spectrum of (Pε(η)) in the
corresponding unit cell.
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Numerics on the exact problem
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Conclusion

What we did

♠ We studied the asymptotics of the spectrum of the Dirichlet
Laplacian in thin periodic waveguides.

- All bands go to +∞ as O(ε−2);
- The first bands are extremely short;
- The length of the next bands depends on the features of the inner

field geometry, in particular of dim X†.

♠ We showed a breathing phenomenon of the spectrum when inflating
the inner field geometry around a situation where dim X† = 1.

Possible extensions and open questions

1) We could work similarly in other periodic waveguides.

2) Can one find examples of Ω such that dim X† = 2?
3) Can one work with other models, i.e. ∆∆u − k4u = 0+Dirichlet BC?
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Thank you!
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