WAVES 2024

On the breathing of spectral bands in periodic quantum waveguides with inflating resonators

Lucas Chesnel¹

Collaboration with S.A. Nazarov².

¹Idefix team, Inria/Institut Polytechnique de Paris/EDF, France ²FMM, St. Petersburg State University, Russia

Berlin, 04/07/2024

• We consider the propagation of waves in a 2D thin periodic quantum waveguide Π^{ε} .

Start with some domain $\Omega \subset \mathbb{R}^2$ which coincides with the strip $\mathbb{R} \times (-1/2; 1/2)$ outside of a bounded region (the resonator).

• We consider the propagation of waves in a 2D thin periodic quantum waveguide Π^{ε} .

Start with some domain $\Omega \subset \mathbb{R}^2$ which coincides with the strip $\mathbb{R} \times (-1/2; 1/2)$ outside of a bounded region (the resonator).

Shrink Ω by a small factor $\varepsilon > 0$ to create the unit cell $\omega^{\varepsilon} := \{ z = (x, y) \in \mathbb{R}^2 | z/\varepsilon \in \Omega \text{ and } |x| < 1/2 \}$

▶ We consider the propagation of waves in a 2D thin periodic quantum waveguide Π^{ε} .

Start with some domain $\Omega \subset \mathbb{R}^2$ which coincides with the strip $\mathbb{R} \times (-1/2; 1/2)$ outside of a bounded region (the resonator).

Shrink Ω by a small factor $\varepsilon > 0$ to create the unit cell

$$\omega^{\varepsilon}:=\{z=(x,y)\in \mathbb{R}^2\,|\,z/\varepsilon\in \Omega \text{ and } |x|<1/2\}$$

• Set $\partial \omega_{\pm}^{\varepsilon} := \{\pm 1/2\} \times (-\varepsilon/2; \varepsilon/2)$ and define

 $\Pi^{\varepsilon} := \{ z \in \mathbb{R}^2 \, | \, (x - m, y) \in \omega^{\varepsilon} \cup \partial \omega_+^{\varepsilon}, \, m \in \mathbb{Z} \}.$

• In Π^{ε} we consider the spectral problem for the Dirichlet Laplacian

$$(\mathscr{P}^{\varepsilon}) \left| \begin{array}{rrr} -\Delta u^{\varepsilon} &=& \lambda^{\varepsilon} \, u^{\varepsilon} & \text{ in } \Pi^{\varepsilon} \\ u^{\varepsilon} &=& 0 & \text{ on } \partial \Pi^{\varepsilon}. \end{array} \right.$$

• Denote by A^{ε} the unbounded operator of $L^{2}(\Pi^{\varepsilon})$ such that $\mathcal{D}(A^{\varepsilon}) := \{ v \in H^{1}_{0}(\Pi^{\varepsilon}) | \Delta v \in L^{2}(\Pi^{\varepsilon}) \}$ and $A^{\varepsilon}v = -\Delta v.$

• A^{ε} is positive and selfadjoint. Moreover, due to the periodicity of the geometry, A^{ε} has only continuous spectrum.

• In Π^{ε} we consider the spectral problem for the Dirichlet Laplacian

$$(\mathscr{P}^{\varepsilon}) \left| \begin{array}{rrr} -\Delta u^{\varepsilon} &=& \lambda^{\varepsilon} \, u^{\varepsilon} & \text{ in } \Pi^{\varepsilon} \\ u^{\varepsilon} &=& 0 & \text{ on } \partial \Pi^{\varepsilon}. \end{array} \right.$$

• Denote by A^{ε} the unbounded operator of $L^{2}(\Pi^{\varepsilon})$ such that $\mathcal{D}(A^{\varepsilon}) := \{ v \in H^{1}_{0}(\Pi^{\varepsilon}) \mid \Delta v \in L^{2}(\Pi^{\varepsilon}) \}$ and $A^{\varepsilon}v = -\Delta v.$

• A^{ε} is positive and selfadjoint. Moreover, due to the periodicity of the geometry, A^{ε} has only continuous spectrum.

Goal of the talk

We wish to study the lower part of $\sigma(A^{\varepsilon})$, the spectrum of A^{ε} , as $\varepsilon \to 0$.

Outline of the talk

1 Preparatory work

Reduction to a problem in the unit cell 1/2

▶ The Floquet Bloch transform

$$u^{\varepsilon}(z) \mapsto U^{\varepsilon}(z,\eta) = \frac{1}{(2\pi)^{1/2}} \sum_{j \in \mathbb{Z}} e^{i\eta j} u^{\varepsilon}(x+j,y), \quad \eta \in \mathbb{R},$$

converts $(\mathscr{P}^{\varepsilon})$ into a spectral problem set in ω^{ε} with quasi-periodicity boundary conditions at $\partial \omega_{\pm}^{\varepsilon}$

$$(\mathscr{P}^{\varepsilon}(\eta)) \begin{vmatrix} -\Delta U^{\varepsilon}(z,\eta) &= \Lambda^{\varepsilon}(\eta) U^{\varepsilon}(z,\eta) & z \in \omega^{\varepsilon} \\ U^{\varepsilon}(z,\eta) &= 0 & z \in \partial \omega^{\varepsilon} \cap \partial \Pi^{\varepsilon} \\ U^{\varepsilon}(-1/2,y,\eta) &= \frac{e^{i\eta}}{U^{\varepsilon}} U^{\varepsilon}(+1/2,y,\eta) & y \in (-\varepsilon/2;\varepsilon/2) \\ \partial_{x} U^{\varepsilon}(-1/2,y,\eta) &= \frac{e^{i\eta}}{U^{\varepsilon}} \partial_{x} U^{\varepsilon}(+1/2,y,\eta) & y \in (-\varepsilon/2;\varepsilon/2). \end{vmatrix}$$

Reduction to a problem in the unit cell 1/

The Floquet Bloch transform

$$u^{\varepsilon}(z) \mapsto U^{\varepsilon}(z,\eta) = \frac{1}{(2\pi)^{1/2}} \sum_{j \in \mathbb{Z}} e^{i\eta j} u^{\varepsilon}(x+j,y), \quad \eta \in \mathbb{R},$$

converts $(\mathscr{P}^{\varepsilon})$ into a spectral problem set in ω^{ε} with quasi-periodicity boundary conditions at $\partial \omega_{\pm}^{\varepsilon}$

$$(\mathscr{P}^{\varepsilon}(\eta)) \begin{array}{rcl} & -\Delta U^{\varepsilon}(z,\eta) & = & \Lambda^{\varepsilon}(\eta) \, U^{\varepsilon}(z,\eta) & z \in \omega^{\varepsilon} \\ & U^{\varepsilon}(z,\eta) & = & 0 & z \in \partial \omega^{\varepsilon} \cap \partial \Pi^{\varepsilon} \\ \hline & U^{\varepsilon}(-1/2,y,\eta) & = & \frac{e^{i\eta}}{e^{i\eta}} U^{\varepsilon}(+1/2,y,\eta) & y \in (-\varepsilon/2;\varepsilon/2) \\ & \partial_x U^{\varepsilon}(-1/2,y,\eta) & = & \frac{e^{i\eta}}{e^{i\eta}} \partial_x U^{\varepsilon}(+1/2,y,\eta) & y \in (-\varepsilon/2;\varepsilon/2). \end{array}$$

Reduction to a problem in the unit cell 1/

The Floquet Bloch transform

$$u^{\varepsilon}(z) \mapsto U^{\varepsilon}(z,\eta) = \frac{1}{(2\pi)^{1/2}} \sum_{j \in \mathbb{Z}} e^{i\eta j} u^{\varepsilon}(x+j,y), \quad \eta \in \mathbb{R},$$

converts $(\mathscr{P}^{\varepsilon})$ into a spectral problem set in ω^{ε} with quasi-periodicity boundary conditions at $\partial \omega_{\pm}^{\varepsilon}$

$$(\mathscr{P}^{\varepsilon}(\eta)) \begin{array}{rcl} & -\Delta U^{\varepsilon}(z,\eta) & = & \Lambda^{\varepsilon}(\eta) \, U^{\varepsilon}(z,\eta) & z \in \omega^{\varepsilon} \\ & U^{\varepsilon}(z,\eta) & = & 0 & z \in \partial \omega^{\varepsilon} \cap \partial \Pi^{\varepsilon} \\ \hline & U^{\varepsilon}(-1/2,y,\eta) & = & \frac{e^{i\eta}}{U^{\varepsilon}} U^{\varepsilon}(+1/2,y,\eta) & y \in (-\varepsilon/2;\varepsilon/2) \\ & \partial_{x} U^{\varepsilon}(-1/2,y,\eta) & = & \frac{e^{i\eta}}{U^{\varepsilon}} \partial_{x} U^{\varepsilon}(+1/2,y,\eta) & y \in (-\varepsilon/2;\varepsilon/2). \end{array}$$

The map $\eta \mapsto \eta + 2\pi$ leaves invariant the quasiperiodicity conditions. \rightarrow it suffices to study $(\mathscr{P}^{\varepsilon}(\eta))$ for $\eta \in [0; 2\pi)$.

Reduction to a problem in the unit cell $1_{/}$

The Floquet Bloch transform

$$u^{\varepsilon}(z) \mapsto U^{\varepsilon}(z,\eta) = \frac{1}{(2\pi)^{1/2}} \sum_{j \in \mathbb{Z}} e^{i\eta j} u^{\varepsilon}(x+j,y), \quad \eta \in \mathbb{R},$$

converts $(\mathscr{P}^{\varepsilon})$ into a spectral problem set in ω^{ε} with quasi-periodicity boundary conditions at $\partial \omega_{\pm}^{\varepsilon}$

$$(\mathscr{P}^{\varepsilon}(\eta)) \begin{array}{rcl} & -\Delta U^{\varepsilon}(z,\eta) & = & \Lambda^{\varepsilon}(\eta) \, U^{\varepsilon}(z,\eta) & z \in \omega^{\varepsilon} \\ & U^{\varepsilon}(z,\eta) & = & 0 & z \in \partial \omega^{\varepsilon} \cap \partial \Pi^{\varepsilon} \\ & U^{\varepsilon}(-1/2,y,\eta) & = & \frac{e^{i\eta}}{U^{\varepsilon}} U^{\varepsilon}(+1/2,y,\eta) & y \in (-\varepsilon/2;\varepsilon/2) \\ & \partial_{x} U^{\varepsilon}(-1/2,y,\eta) & = & \frac{e^{i\eta}}{U^{\varepsilon}} \partial_{x} U^{\varepsilon}(+1/2,y,\eta) & y \in (-\varepsilon/2;\varepsilon/2). \end{array}$$

• The map $\eta \mapsto \eta + 2\pi$ leaves invariant the quasiperiodicity conditions. \rightarrow it suffices to study $(\mathscr{P}^{\varepsilon}(\eta))$ for $\eta \in [0; 2\pi)$.

▶ For $\eta \in [0; 2\pi)$, the spectrum of $(\mathscr{P}^{\varepsilon}(\eta))$ is discrete, made of the unbounded sequence of real eigenvalues

$$0 < \Lambda_1^{\varepsilon}(\eta) \le \Lambda_2^{\varepsilon}(\eta) \le \dots \le \Lambda_p^{\varepsilon}(\eta) \le \dots$$

Reduction to a problem in the unit cell

▶ The functions

$$\eta \mapsto \Lambda_p^{\varepsilon}(\eta)$$

are continuous so that the spectral bands

$$\Upsilon_p^\varepsilon := \{\Lambda_p^\varepsilon(\eta), \, \eta \in [0; 2\pi)\}$$

are compact segments in $[0; +\infty)$.

Finally, we have
$$\sigma(A^{\varepsilon}) = \bigcup_{p \in \mathbb{N}^* := \{1, 2, \dots\}} \Upsilon_p^{\varepsilon}.$$

Reduction to a problem in the unit cell

▶ The functions

$$\eta \mapsto \Lambda_p^{\varepsilon}(\eta)$$

are continuous so that the spectral bands

$$\Upsilon_p^{\varepsilon} := \{\Lambda_p^{\varepsilon}(\eta), \, \eta \in [0; 2\pi)\}$$

are compact segments in $[0; +\infty)$.

• Finally, we have
$$\sigma(A^{\varepsilon}) = \bigcup_{p \in \mathbb{N}^* := \{1, 2, \dots\}} \Upsilon_p^{\varepsilon}.$$

To study the behaviour of $\sigma(A^{\varepsilon})$ as $\varepsilon \to 0$, we have to consider the asymptotics of $\Lambda_p^{\varepsilon}(\eta)$ as $\varepsilon \to 0$.

Asymptotic analysis - general picture

► To compute the asymptotics of the almost 1D problem ($\mathscr{P}^{\varepsilon}(\eta)$), we use techniques of matched asymptotic expansions (see Post 05, Griser 08).

▶ Roughly speaking, at the limit $\varepsilon \to 0$, we obtain a 1D geometry with a junction point at *O*

Asymptotic analysis - general picture

► To compute the asymptotics of the almost 1D problem ($\mathscr{P}^{\varepsilon}(\eta)$), we use techniques of matched asymptotic expansions (see Post 05, Griser 08).

▶ Roughly speaking, at the limit $\varepsilon \to 0$, we obtain a 1D geometry with a junction point at *O*

 \triangleright Classically, we consider different expansions far from O and in a neighbourhood of O that we match in some intermediate regions.

Near field problem

• In the process, the features of the Dirichlet Laplacian in Ω , the near field geometry obtained by zooming at O, play an important role.

• Denote by A^{Ω} the unbounded operator of $L^{2}(\Omega)$ such that

 $\mathcal{D}(A^{\Omega}) := \{ v \in \mathrm{H}^1_0(\Omega) \, | \, \Delta v \in \mathrm{L}^2(\Omega) \} \quad \text{ and } \quad A^{\Omega}v = -\Delta v.$

Near field problem

• In the process, the features of the Dirichlet Laplacian in Ω , the near field geometry obtained by zooming at O, play an important role.

• Denote by A^{Ω} the unbounded operator of $L^{2}(\Omega)$ such that

$$\mathcal{D}(A^{\Omega}) := \{ v \in \mathrm{H}^1_0(\Omega) \, | \, \Delta v \in \mathrm{L}^2(\Omega) \} \quad \text{ and } \quad A^{\Omega}v = -\Delta v$$

▶ In the sequel, the properties of the problem

$$(\mathscr{P}_{\dagger}) \begin{vmatrix} \Delta W + \pi^2 W &= 0 & \text{in } \Omega \\ W &= 0 & \text{on } \partial \Omega \end{vmatrix}$$

play a key role.

▶ In the sequel, the properties of the problem

$$(\mathscr{P}_{\dagger}) \begin{vmatrix} \Delta W + \pi^2 W &= 0 & \text{in } \Omega \\ W &= 0 & \text{on } \partial \Omega \end{vmatrix}$$

play a key role.

For (\mathscr{P}_{\dagger}) : waves $w_0(z) = \varphi(y), w_1(z) = |x|\varphi(y)$ with $\varphi(y) = \sqrt{2}\cos(\pi y)$.

• In the sequel, the properties of the problem

$$(\mathscr{P}_{\dagger}) \begin{vmatrix} \Delta W + \pi^2 W &= 0 & \text{in } \Omega \\ W &= 0 & \text{on } \partial \Omega \end{vmatrix}$$

play a key role.

For
$$(\mathscr{P}_{\dagger})$$
: waves $w_0(z) = \varphi(y), w_1(z) = |x|\varphi(y)$ with $\varphi(y) = \sqrt{2}\cos(\pi y)$.

DEFINITION: Denote by X_{\dagger} the space of almost standing waves of (\mathscr{P}_{\dagger}) , i.e. the space of bounded solutions of (\mathscr{P}_{\dagger}) which do not decay at infinity.

• In the sequel, the properties of the problem

$$(\mathscr{P}_{\dagger}) \begin{vmatrix} \Delta W + \pi^2 W &= 0 & \text{in } \Omega \\ W &= 0 & \text{on } \partial \Omega \end{vmatrix}$$

play a key role.

For
$$(\mathscr{P}_{\dagger})$$
: waves $w_0(z) = \varphi(y), w_1(z) = |x|\varphi(y)$ with $\varphi(y) = \sqrt{2}\cos(\pi y)$.

DEFINITION: Denote by X_{\dagger} the space of almost standing waves of (\mathscr{P}_{\dagger}) , i.e. the space of bounded solutions of (\mathscr{P}_{\dagger}) which do not decay at infinity.

PROPOSITION: We have dim $X_{\dagger} = \dim(\ker(\mathbb{S} + Id))$ where $\mathbb{S} \in \mathbb{C}^{2 \times 2}$ is the so-called threshold scattering matrix.

 \rightarrow Only three possibilities: $X_{\dagger} = \{0\}, \quad \dim X_{\dagger} = 1 \quad \text{or} \quad \dim X_{\dagger} = 2.$

• In the sequel, the properties of the problem

$$(\mathscr{P}_{\dagger}) \begin{vmatrix} \Delta W + \pi^2 W &= 0 & \text{in } \Omega \\ W &= 0 & \text{on } \partial \Omega \end{vmatrix}$$

play a key role.

For (\mathscr{P}_{\dagger}) : waves $w_0(z) = \varphi(y), w_1(z) = |x|\varphi(y)$ with $\varphi(y) = \sqrt{2}\cos(\pi y)$.

DEFINITION: Denote by X_{\dagger} the space of almost standing waves of (\mathscr{P}_{\dagger}) , i.e. the space of bounded solutions of (\mathscr{P}_{\dagger}) which do not decay at infinity.

PROPOSITION: We have dim $X_{\dagger} = \dim(\ker(\mathbb{S} + Id))$ where $\mathbb{S} \in \mathbb{C}^{2 \times 2}$ is the so-called threshold scattering matrix.

 $\rightarrow \text{Only three possibilities: } X_{\dagger} = \{0\}, \qquad \dim X_{\dagger} = 1 \quad \text{ or } \quad \dim X_{\dagger} = 2.$

▶ S is a unitary matrix \Rightarrow its 2 eigenvalues lie on the unit circle. In general they are different from -1.

First main results

For $p \in \mathbb{N}^*$, let $\Upsilon_p^{\varepsilon} = [a_{p-}^{\varepsilon}; a_{p+}^{\varepsilon}]$, with $a_{p-}^{\varepsilon} \leq a_{p+}^{\varepsilon}$, be the spectral band as introduced before. To simplify, assume absence of trapped modes for (\mathscr{P}_{\dagger}) .

THEOREM: There are constants $c_{p-} < c_{p+}, C_p > 0, \delta_p > 0$ such that as $\varepsilon \to 0$ we have For $p = 1, \ldots, N_{\bullet}$: $\left|a_{p\pm}^{\varepsilon} - \left(\varepsilon^{-2}\mu_p + \varepsilon^{-2}e^{-\sqrt{\pi^2 - \mu_p}/\varepsilon}c_{p\pm}\right)\right| \le C_p \, e^{-(1+\delta_p)\sqrt{\pi^2 - \mu_p}/\varepsilon};$ For $p = N_{\bullet} + m, m \in \mathbb{N}^*$: $\left|a_{p\pm}^{\varepsilon} - \left(\varepsilon^{-2}\pi^{2} + m^{2}\pi^{2} + \varepsilon c_{p\pm}\right)\right| \leq C_{p} \varepsilon^{1+\delta_{p}};$ *i*) if $X_{\dagger} = \{0\},\$ $\left|a_{p\pm}^{\varepsilon} - \left(\varepsilon^{-2}\pi^2 + c_{p\pm}\right)\right| \le C_p \,\varepsilon^{1+\delta_p};$ ii) if dim $X_{\dagger} = 1$, $\left|a_{p\pm}^{\varepsilon} - \left(\varepsilon^{-2}\pi^2 + (m-1)^2\pi^2 + \varepsilon c_{p\pm}\right)\right| \le C_p \,\varepsilon^{1+\delta_p}.$ iii) if dim $X_{\dagger} = 2$,

1 Due to the Dirichlet condition, all bands move to $+\infty$ as $O(\varepsilon^{-2})$.

1 Due to the Dirichlet condition, all bands move to $+\infty$ as $O(\varepsilon^{-2})$.

2 The first N_{\bullet} spectral bands become extremely short, in $O(e^{-c/\varepsilon})$.

- **1** Due to the Dirichlet condition, all bands move to $+\infty$ as $O(\varepsilon^{-2})$.
- **2** The first N_{\bullet} spectral bands become extremely short, in $O(e^{-c/\varepsilon})$.

3 Concerning the next ones, the behaviour depends on $\dim X_{\dagger}$:

When $\dim \mathbf{X}_{\dagger} \neq \mathbf{1}$, the Υ_p^{ε} are of length $O(\varepsilon)$. Moreover, between Υ_p^{ε} and $\Upsilon_{p+1}^{\varepsilon}$, there is a gap whose length tends to $(2m+1)\pi^2$.

Generically, the propagation of waves in Π^{ε} is hampered and occurs only for very narrow intervals of frequencies.

- **1** Due to the Dirichlet condition, all bands move to $+\infty$ as $O(\varepsilon^{-2})$.
- **2** The first N_{\bullet} spectral bands become extremely short, in $O(e^{-c/\varepsilon})$.

3 Concerning the next ones, the behaviour depends on $\dim X_{\dagger}$:

When $\dim \mathbf{X}_{\dagger} \neq \mathbf{1}$, the Υ_p^{ε} are of length $O(\varepsilon)$. Moreover, between Υ_p^{ε} and $\Upsilon_{p+1}^{\varepsilon}$, there is a gap whose length tends to $(2m+1)\pi^2$.

Generically, the propagation of waves in Π^{ε} is hampered and occurs only for very narrow intervals of frequencies.

When $\dim \mathbf{X}_{\dagger} = \mathbf{1}$, the situation is very different because asymptotically the Υ_p^{ε} are of length $c_{p+} - c_{p-}$, with in general $c_{p+} > c_{p-}$.

For particular Ω , waves can propagate in Π^{ε} for much larger intervals of frequencies than above.

Elements of proof – first N_{\bullet} spectral bands

For $1 \leq p \leq N_{\bullet}$, let $u^{\varepsilon}(\cdot, \eta)$ be an eigenfunction associated with $\Lambda_{p}^{\varepsilon}(\eta)$.

• As $\varepsilon \to 0$, consider the approximation

$$\Lambda_p^{\varepsilon}(\eta) = \varepsilon^{-2} \mu_p + \dots, \qquad u^{\varepsilon}(z, \eta) = v(z/\varepsilon) + \dots$$

where $\mu_p \in (0; \pi^2)$, v is an eigenpair of the discrete spectrum of A^{Ω} .

Elements of proof – first N_{\bullet} spectral bands

For $1 \leq p \leq N_{\bullet}$, let $u^{\varepsilon}(\cdot, \eta)$ be an eigenfunction associated with $\Lambda_{p}^{\varepsilon}(\eta)$.

• As $\varepsilon \to 0$, consider the approximation

$$\Lambda_p^{\varepsilon}(\eta) = \varepsilon^{-2} \mu_p + \dots, \qquad u^{\varepsilon}(z, \eta) = v(z/\varepsilon) + \dots$$

where $\mu_p \in (0; \pi^2)$, v is an eigenpair of the discrete spectrum of A^{Ω} .

Inserting $(\varepsilon^{-2}\mu_p, v(\cdot/\varepsilon))$ in $(\mathscr{P}^{\varepsilon}(\eta))$ only leaves a small discrepancy on the faces $\partial \omega_{\pm}^{\varepsilon}$ because v is exponentially decaying at infinity.

Elements of proof – first N_{\bullet} spectral bands

For $1 \leq p \leq N_{\bullet}$, let $u^{\varepsilon}(\cdot, \eta)$ be an eigenfunction associated with $\Lambda_{p}^{\varepsilon}(\eta)$.

• As $\varepsilon \to 0$, consider the approximation

$$\Lambda_p^{\varepsilon}(\eta) = \varepsilon^{-2} \mu_p + \dots, \qquad u^{\varepsilon}(z, \eta) = v(z/\varepsilon) + \dots$$

where $\mu_p \in (0; \pi^2)$, v is an eigenpair of the discrete spectrum of A^{Ω} .

Inserting $(\varepsilon^{-2}\mu_p, v(\cdot/\varepsilon))$ in $(\mathscr{P}^{\varepsilon}(\eta))$ only leaves a small discrepancy on the faces $\partial \omega_{\pm}^{\varepsilon}$ because v is exponentially decaying at infinity.

• This model is independent of η . We can refine it by constructing corrector terms.

For $p \geq N_{\bullet}$, let $u^{\varepsilon}(\cdot, \eta)$ be an eigenfunction associated with $\Lambda_{p}^{\varepsilon}(\eta)$.

 \rightarrow To simplify, we remove the subscript $_p$ and the dependence on $\eta.$

• As $\varepsilon \to 0$, consider the expansions

 $\Lambda^{\varepsilon} = \varepsilon^{-2} \pi^2 + \nu + \dots, \qquad u^{\varepsilon}(z) = \gamma^{\pm}(x) \varphi(y/\varepsilon) + \dots \text{ for } \pm x > 0.$

For $p \geq N_{\bullet}$, let $u^{\varepsilon}(\cdot, \eta)$ be an eigenfunction associated with $\Lambda_{p}^{\varepsilon}(\eta)$.

 \rightarrow To simplify, we remove the subscript $_p$ and the dependence on $\eta.$

• As $\varepsilon \to 0$, consider the expansions $\Lambda^{\varepsilon} = \varepsilon^{-2}\pi^2 + \nu + \dots, \qquad u^{\varepsilon}(z) = \gamma^{\pm}(x) \varphi(y/\varepsilon) + \dots \text{ for } \pm x > 0.$

Inserting it in $(\mathscr{P}^{\varepsilon}(\eta))$, we obtain

$$(\mathscr{P}_{1D}) \begin{vmatrix} \partial_x^2 \gamma^+ + \nu \gamma^+ &= 0 & \text{in } (0; 1/2) \\ \partial_x^2 \gamma^- + \nu \gamma^- &= 0 & \text{in } (-1/2; 0) \\ \gamma^- (-1/2) &= e^{i\eta} \gamma^+ (+1/2) \\ \partial_x \gamma^- (-1/2) &= e^{i\eta} \partial_x \gamma^+ (+1/2). \end{vmatrix}$$

For $p \geq N_{\bullet}$, let $u^{\varepsilon}(\cdot, \eta)$ be an eigenfunction associated with $\Lambda_p^{\varepsilon}(\eta)$.

 \rightarrow To simplify, we remove the subscript $_p$ and the dependence on $\eta.$

• As
$$\varepsilon \to 0$$
, consider the expansions
 $\Lambda^{\varepsilon} = \varepsilon^{-2}\pi^2 + \nu + \dots, \qquad u^{\varepsilon}(z) = \gamma^{\pm}(x) \varphi(y/\varepsilon) + \dots \text{ for } \pm x > 0.$

Inserting it in $(\mathscr{P}^{\varepsilon}(\eta))$, we obtain

$$(\mathscr{P}_{1D}) \begin{vmatrix} \partial_x^2 \gamma^+ + \nu \gamma^+ &= 0 & \text{in } (0; 1/2) \\ \partial_x^2 \gamma^- + \nu \gamma^- &= 0 & \text{in } (-1/2; 0) \\ \gamma^- (-1/2) &= e^{i\eta} \gamma^+ (+1/2) \\ \partial_x \gamma^- (-1/2) &= e^{i\eta} \partial_x \gamma^+ (+1/2). \end{vmatrix}$$

We must complete this system with conditions at O.

We find them by matching this far field expansion with some inner field expansion of u^{ε}

$$u^{\varepsilon}(z) = W(z/\varepsilon) + \dots$$

For $p \geq N_{\bullet}$, let $u^{\varepsilon}(\cdot, \eta)$ be an eigenfunction associated with $\Lambda_{p}^{\varepsilon}(\eta)$.

 \rightarrow To simplify, we remove the subscript $_p$ and the dependence on $\eta.$

• As
$$\varepsilon \to 0$$
, consider the expansions
 $\Lambda^{\varepsilon} = \varepsilon^{-2}\pi^2 + \nu + \dots, \qquad u^{\varepsilon}(z) = \gamma^{\pm}(x) \varphi(y/\varepsilon) + \dots \text{ for } \pm x > 0.$

Inserting it in $(\mathscr{P}^{\varepsilon}(\eta))$, we obtain

$$(\mathscr{P}_{1\mathrm{D}}) \begin{vmatrix} \partial_x^2 \gamma^+ + \nu \gamma^+ &= 0 & \text{in } (0; 1/2) \\ \partial_x^2 \gamma^- + \nu \gamma^- &= 0 & \text{in } (-1/2; 0) \\ \gamma^- (-1/2) &= e^{i\eta} \gamma^+ (+1/2) \\ \partial_x \gamma^- (-1/2) &= e^{i\eta} \partial_x \gamma^+ (+1/2). \end{vmatrix}$$

• We must complete this system with conditions at O.

We find them by matching this far field expansion with some inner field expansion of u^{ε}

$$u^{\varepsilon}(z) = W(z/\varepsilon) + \dots$$

We obtain that W must satisfy (\mathscr{P}_{\dagger}) .

Case $X_{\dagger} = \{0\}$. We take $W \equiv 0$ and impose $\gamma^{\pm}(0) = 0$, i.e. Dirichlet conditions at O in (\mathscr{P}_{1D}) . Solving (\mathscr{P}_{1D}) , we get

$$\Lambda^{\varepsilon} = \varepsilon^{-2} \pi^2 + (m\pi)^2 + \dots$$
$$u^{\varepsilon}(z) = \pm e^{\pm i\eta/2} \sin(m\pi x) \varphi(y/\varepsilon) + \dots \text{ for } \pm x > 0.$$

Case $\mathbf{X}_{\dagger} = \{\mathbf{0}\}$. We take $W \equiv \mathbf{0}$ and impose $\gamma^{\pm}(\mathbf{0}) = 0$, i.e. Dirichlet conditions at O in $(\mathscr{P}_{1\mathrm{D}})$. Solving $(\mathscr{P}_{1\mathrm{D}})$, we get

$$\Lambda^{\varepsilon} = \varepsilon^{-2} \pi^2 + (m\pi)^2 + \dots$$
$$u^{\varepsilon}(z) = \pm e^{\pm i\eta/2} \sin(m\pi x) \varphi(y/\varepsilon) + \dots \text{ for } \pm x > 0.$$

Case $\dim X_{\dagger} = 1$.

We take $W \in \mathbf{X}_{\dagger}$ and impose

$$\cos\theta \,\partial_x \gamma^+(0) = \sin\theta \,\partial_x \gamma^-(0)$$

$$\sin\theta \,\gamma^+(0) = \cos\theta \,\gamma^-(0),$$

i.e. generalized Kirchoff transmission conditions at O. Here $(\cos \theta, \sin \theta)^{\top}$ is an eigenvector of S for the eig. -1. Solving (\mathscr{P}_{1D}) , we get

$$\Lambda^{\varepsilon} = \varepsilon^{-2}\pi^2 + \nu(\eta) + \dots$$

where $\nu(\eta)$ satisfies $\sin(2\theta)\cos\eta = \cos\sqrt{\nu(\eta)}$

Case $\dim X_{\dagger} = 2$.

We impose $\partial_x \gamma^{\pm}(0) = 0$, i.e. Neumann conditions at O in (\mathscr{P}_{1D}) . Solving (\mathscr{P}_{1D}) , we get

$$\Lambda^{\varepsilon} = \varepsilon^{-2} \pi^2 + (m\pi)^2 + \dots$$
$$u^{\varepsilon}(z) = \pm e^{\pm i\eta/2} \cos(m\pi x) \varphi(y/\varepsilon) + \dots \text{ for } \pm x > 0$$

• Can we find examples of Ω such that $\dim X_{\dagger} = 1$? Yes!

→ The reference strip $\mathbb{R} \times (-1/2; 1/2)$. Indeed in this case $v(x, y) = \cos(\pi y)$ belongs to X_†. We directly compute $\sigma(A^{\varepsilon}) = [\pi^2/\varepsilon^2; +\infty)$.

• Can we find examples of Ω such that $\dim X_{\dagger} = 1$? Yes!

→ The reference strip $\mathbb{R} \times (-1/2; 1/2)$. Indeed in this case $v(x, y) = \cos(\pi y)$ belongs to X[†]. We directly compute $\sigma(A^{\varepsilon}) = [\pi^2/\varepsilon^2; +\infty)$.

 \rightarrow In geometries as below which are symmetric wrt the vertical axis, we can show that as $H \rightarrow +\infty$, one eigenvalue of S passes through -1.

• Can we find examples of Ω such that $\dim X_{\dagger} = 1$? Yes!

→ The reference strip $\mathbb{R} \times (-1/2; 1/2)$. Indeed in this case $v(x, y) = \cos(\pi y)$ belongs to X[†]. We directly compute $\sigma(A^{\varepsilon}) = [\pi^2/\varepsilon^2; +\infty)$.

 \rightarrow In geometries as below which are symmetric wrt the vertical axis, we can show that as $H \rightarrow +\infty$, one eigenvalue of S passes through -1.

• Can we find Ω such that $\dim X_{\dagger} = 2$? **Open question**!

• Can we find examples of Ω such that $\dim X_{\dagger} = 1$? Yes!

→ The reference strip $\mathbb{R} \times (-1/2; 1/2)$. Indeed in this case $v(x, y) = \cos(\pi y)$ belongs to X[†]. We directly compute $\sigma(A^{\varepsilon}) = [\pi^2/\varepsilon^2; +\infty)$.

 \rightarrow In geometries as below which are symmetric wrt the vertical axis, we can show that as $H \rightarrow +\infty$, one eigenvalue of S passes through -1.

• Can we find Ω such that $\dim X_{\dagger} = 2$? **Open question**!

▶ For the Neumann Laplacian, the analysis is very similar. The near field problem at the threshold simply writes

$$\begin{array}{rcl} \Delta W &=& 0 & \text{in } \Omega \\ \partial_n W &=& 0 & \text{on } \partial \Omega \end{array} \Rightarrow & \begin{array}{rcl} \text{for all } \Omega, & \dim \mathbf{X}_{\dagger} = 1 & \text{with } \theta = \pi/4 \\ \rightarrow & \text{Kirchoff trans. condi. at } O & \text{for the 1D model} \end{array}$$

Setting

• We wish to describe the change of $\sigma(A^{\varepsilon})$ when perturbing the inner field geometry around a particular $\Omega = \Omega_{\star}$ where dim $X_{\dagger} = 1$.

Locally $\partial \Omega^{\rho,\varepsilon}$ coincides with the graph of $x \mapsto 1 + \varepsilon \rho h(x)$, where $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ is a given profile function and ρ a given parameter.

Setting

• We wish to describe the change of $\sigma(A^{\varepsilon})$ when perturbing the inner field geometry around a particular $\Omega = \Omega_{\star}$ where dim $X_{\dagger} = 1$.

Locally $\partial \Omega^{\rho,\varepsilon}$ coincides with the graph of $x \mapsto 1 + \varepsilon \rho h(x)$, where $h \in \mathscr{C}_0^{\infty}(\mathbb{R})$ is a given profile function and ρ a given parameter.

• We denote $\Upsilon_p^{\rho,\varepsilon} := \{\Lambda_p^{\rho,\varepsilon}(\eta), \eta \in [0; 2\pi)\}$ the spectral bands of the Dirichlet Laplacian in $\Pi^{\rho,\varepsilon}$, the periodic domain constructed from $\Omega^{\rho,\varepsilon}$.

We emphasize that we make a periodic perturbation of Π^{ε} .

Second main results

Fix $\rho \in \mathbb{R}$. For $m \in \mathbb{N}^*$ and $p = N_{\bullet} + m$, let $\Upsilon_p^{\rho,\varepsilon} = [a_{m-}^{\rho,\varepsilon}; a_{m+}^{\rho,\varepsilon}]$, with $a_{m-}^{\rho,\varepsilon} \leq a_{m+}^{\rho,\varepsilon}$, be the spectral band as defined above.

THEOREM: There are some constants $c_{m-}^{\rho} < c_{m+}^{\rho}$, $C_m > 0$, $\delta_m > 0$ such that as $\varepsilon \to 0$ we have

$$a_{m\pm}^{\rho,\varepsilon} - \left(\varepsilon^{-2}\pi^2 + c_{m\pm}^{\rho}\right) \le C_m \varepsilon^{1+\delta_m}.$$

Moreover, we have

$$\lim_{\rho \to -\infty} c^{\rho}_{m\pm} = m^2 \pi^2, \qquad c^{\rho}_{1\pm} \underset{\rho \to +\infty}{\sim} -\frac{T^2}{4} \rho^2, \qquad \lim_{\rho \to +\infty} c^{\rho}_{(m+1)\pm} = m^2 \pi^2$$

with

$$c_{m+}^{\rho} - c_{m-}^{\rho} \stackrel{=}{_{\rho \to \pm \infty}} O(1/\rho), \qquad c_{1+}^{\rho} - c_{1-}^{\rho} \stackrel{=}{_{\rho \to +\infty}} O(e^{-\delta\rho}).$$

Here T > 0 is a constant which depends on the profile function h.

Spectral bands of the model

• Spectral bands of the model with respect to ρ (after a shift by $-\pi^2/\varepsilon^2$).

Spectral bands of the model

• Spectral bands of the model with respect to ρ (after a shift by $-\pi^2/\varepsilon^2$).

- For ρ running from $-\infty$ to $+\infty$, i.e. when inflating the near field geom. around Ω_{\star} , the spectral bands expand and shrink \Rightarrow breathing phenomenon of $\sigma(A^{\varepsilon})$.

- In the process, a **band** dives below π^2/ε^2 , stops breathing and becomes extremely short as $\rho \to +\infty$.

New 1D model with ρ dependence

▶ We obtain the expansions

$$\Lambda^{\varepsilon} = \varepsilon^{-2}\pi^{2} + \nu + \dots, \qquad u^{\varepsilon}(z) = \frac{\gamma^{\pm}(x)\varphi(y/\varepsilon)}{\gamma^{\pm}(x)\varphi(y/\varepsilon)} + \dots \text{ for } \pm x > 0.$$

where γ^{\pm} satisfy

$$(\mathscr{P}_{1D}) \begin{vmatrix} \partial_x^2 \gamma^+ + \nu \gamma^+ &= 0 & \text{in } (0; 1/2) \\ \partial_x^2 \gamma^- + \nu \gamma^- &= 0 & \text{in } (-1/2; 0) \\ \gamma^- (-1/2) &= e^{i\eta} \gamma^+ (+1/2) \\ \partial_x \gamma^- (-1/2) &= e^{i\eta} \partial_x \gamma^+ (+1/2). \end{vmatrix}$$

together with the new transmission conditions

$$\begin{vmatrix} \sin\theta \gamma^+(0) - \cos\theta \gamma^-(0) &= 0\\ \cos\theta \partial_x \gamma^+(0) - \sin\theta \partial_x \gamma^-(0) &= -\frac{T\rho}{2} (\cos\theta \gamma^+(0) + \sin\theta \gamma^-(0)). \end{aligned}$$

New 1D model with ρ dependence

• We obtain the expansions

 $\Lambda^{\varepsilon} = \varepsilon^{-2}\pi^{2} + \nu + \dots, \qquad u^{\varepsilon}(z) = \frac{\gamma^{\pm}(x)\varphi(y/\varepsilon)}{\gamma^{\pm}(x)\varphi(y/\varepsilon)} + \dots \text{ for } \pm x > 0.$

where γ^{\pm} satisfy

$$(\mathscr{P}_{1D}) \begin{vmatrix} \partial_x^2 \gamma^+ + \nu \gamma^+ &= 0 & \text{in } (0; 1/2) \\ \partial_x^2 \gamma^- + \nu \gamma^- &= 0 & \text{in } (-1/2; 0) \\ \gamma^- (-1/2) &= e^{i\eta} \gamma^+ (+1/2) \\ \partial_x \gamma^- (-1/2) &= e^{i\eta} \partial_x \gamma^+ (+1/2). \end{vmatrix}$$

together with the new transmission conditions

$$\sin\theta \gamma^{+}(0) - \cos\theta \gamma^{-}(0) = 0$$

$$\cos\theta \partial_x \gamma^{+}(0) - \sin\theta \partial_x \gamma^{-}(0) = -\frac{T\rho}{2} (\cos\theta \gamma^{+}(0) + \sin\theta \gamma^{-}(0)).$$

In particular when $\rho \to \pm \infty$, as expected we get $\gamma^{\pm}(0) = 0$ (Dirichlet).

Numerics on the exact problem

• We start from the inner field geometry

▶ We use Freefem++ to compute the spectrum of $(\mathscr{P}^{\varepsilon}(\eta))$ in the corresponding unit cell.

Numerics on the exact problem

2 Asymptotic analysis

3 Breathing of spectral bands

Conclusion

What we did

- We studied the asymptotics of the spectrum of the Dirichlet Laplacian in thin periodic waveguides.
- All bands go to $+\infty$ as $O(\varepsilon^{-2})$;
- The first bands are **extremely short**;
- The length of the next bands depends on the features of the inner field geometry, in particular of $\dim X_{\dagger}$.
- We showed a breathing phenomenon of the spectrum when inflating the inner field geometry around a situation where $\dim X_{\dagger} = 1$.

Conclusion

What we did

- We studied the asymptotics of the spectrum of the Dirichlet Laplacian in thin periodic waveguides.
 - All bands go to $+\infty$ as $O(\varepsilon^{-2})$;
 - The first bands are **extremely short**;
 - The length of the next bands depends on the features of the inner field geometry, in particular of $\dim X_{\dagger}$.
- We showed a breathing phenomenon of the spectrum when inflating the inner field geometry around a situation where $\dim X_{\dagger} = 1$.

Possible extensions and open questions

- 1) We could work similarly in other periodic waveguides.
- 2) Can one find examples of Ω such that $\dim X_{\dagger} = 2$?
- 3) Can one work with other models, i.e. $\Delta \Delta u k^4 u = 0 + \text{Dirichlet BC}?$

Thank you!

- P. Cacciapuoti, P. Exner, Nontrivial edge coupling from a Dirichlet network squeezing: the case of a bent waveguide, J. Phys. A, Math. Theor., vol. 40, 26:511-523, 2007.
 - L. Chesnel, S.A. Nazarov, On the breathing of spectral bands in periodic quantum waveguides with inflating resonators, JMPA, to appear, 2022.
- D. Grieser, Spectra of graph neighborhoods and scattering, Proc. Lond. Math. Soc., vol. 97, 3:718-752, 2008.
 - S.A. Nazarov, Transmission conditions in one-dimensional model of a rectangular lattice of thin quantum waveguides, J. Math. Sci., vol. 219, 6:994-1015, 2016.
 - O. Post, Branched quantum waveguides with Dirichlet boundary conditions: the decoupling case, J. Phys. A Math. Theor., vol. 38, 22:4917, 2005.