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General setting
I We are interested in methods based on the propagation of waves to
determine the shape, the physical properties of objects, in an exact or
qualitative manner, from given measurements.

I General principle of the methods:
i) send waves in the medium;
ii) measure the scattered field;
iii) deduce information on the structure.

• Many techniques: Xray, ultrasound imaging, seismic tomography, ...
• Many applications: biomedical imaging, non destructive testing of
materials, geophysics, ...
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Model problem
I Scattering in time-harmonic regime of an incident plane wave by a
bounded penetrable inclusion D (coefficients ρ) in R2.

ui := eikθinc·x (incident dir. θinc ∈ S1)

ρ = 1 D
ρ 6= 1

Find u such that
−∆u = k2ρ u in R2,

u = ui + us in R2,

lim
r→+∞

√
r
(
∂us

∂r − ikus

)
= 0.

(1)

Definition: ui = incident field (data)
u = total field (uniquely defined by (1))
us = scattered field (uniquely defined by (1)).
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Far field pattern
I Numerical approximation of the solution to the previous problem:

<e ui <e u <e us

I The scattered field of an incident plane wave of direction θinc behaves in
each direction like a cylindrical wave at infinity:

us(x,θinc) = eikr
√

r

(
u∞s (θsca,θinc) + O(1/r)

)
.

Definition: The map u∞s (·, ·) : S1×S1 → C is called the far field pattern.

The far field pattern is the quantity one can measure at infinity (the other
terms are too small).
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Goal of the talk
I The goal of imaging techniques is to find features of the inclusion from
the knowledge of u∞s (·, ·) on a subset of S1 × S1.

– In literature, most of the techniques require a continuum of data.

– In practice, one has a finite number of emitters and receivers.

In this talk, we are interested in invisibility questions in the latter setting.

I At least two reasons to study invisibility questions:
1) We can wish to hide objects (cloaking like in Andrew Norris’s talk).
2) It allows to understand limits of imaging techniques.
I To simplify the presentation, only one incident direction θinc and N
scattering directions θ1, . . . ,θN (given).

−→
θinc

−→
θ2

−→
θ3

−→
θ1

−→
θ4

In this talk, we explain how to construct inclusions such that

u∞s (θ1) = · · · = u∞s (θN ) = 0.

I These inclusions cannot be detected from far field measurements.
I We assume that k and the support of the inclusion D are given.

Find a real valued function ρ 6≡ 1, with ρ− 1 supported in D, such
that the solution to the problem

Find u = us + eikθinc·x such that
−∆u = k2ρ u in R2,

lim
r→+∞

√
r
(
∂us

∂r − ikus

)
= 0

verifies u∞s (θ1) = · · · = u∞s (θN ) = 0.
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Outline of the talk

1 General scheme

2 The forbidden case

3 Numerical experiments
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Origin of the method

I We will work as in the proof of the implicit functions theorem.

• This idea was used in Nazarov 11 to construct waveguides for which there
are embedded eigenvalues in the continuous spectrum.

• It has been adapted in Bonnet-Ben Dhia & Nazarov 13 to build invisible
perturbations of waveguides (see also Bonnet-Ben Dhia, Nazarov & Taskinen
14 for an application to a water-wave problem).

• In Chesnel, Hyvönen & Staboulis 15 it has been used to construct
invisible conductivity perturbation for the point electrode model in inverse
impedance tomography.

I Connections with the ongoing work of Arens & Sylvester?
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Sketch of the method
I Define σ = ρ− 1 and gather the measurements in the vector

F(σ) = (F1(σ), . . . ,F2N (σ))> ∈ R2N .

(N complex measurements ⇒ 2N real measurements)

I We look for small perturbations of the reference medium: σ = εµ where
ε > 0 is a small parameter and where µ has be to determined.
Assume that dF(0) : L∞(D)→ R2N is onto.

∃µ0, µ1, . . . , µ2N ∈ L∞(D) s.t. dF(0)(µ0) = 0
[dF(0)(µ1), . . . , dF(0)(µ2N )] = Id2N .

I Take µ = µ0 +
2N∑

n=1
τnµn where the τn are real parameters to set:

0 = F(εµ) ⇔

0 = ε
2N∑

n=1
τndF(0)(µn) + ε2F̃ε(µ)

where ~τ = (τ1, . . . , τ2N )>

and Gε(~τ) = −εF̃ε(µ).

If Gε is a contraction, the fixed-point equation has a unique solution ~τ sol.

Set σsol := εµsol. We have F(σsol) = 0 (invisible inclusion).
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Calculus of dF(0) 1/2
I For our problem, we have (σ = ρ− 1)

F(σ) = (<e u∞s (θ1), . . . ,<e u∞s (θN ),=m u∞s (θ1), . . . ,=m u∞s (θN )).

To compute dF(0)(µ), we take ρε = 1 + εµ with µ supported in D.

I We denote uε, uε
s the functions satisfying

Find uε = uε
s + eikθinc·x ,with uε

s outgoing, such that
−∆uε = k2ρε uε in R2.

•

uε∞
s (θn) =

• We can prove that uε
s = O(ε).

I We obtain the expansion (Born approx.), for small ε

uε∞
s (θn) = 0 + ε c k2

∫
D
µ eik(θinc−θn)·x dx + O(ε2).

dF(0)(µ) =
(∫

D
µ cos(k(θinc − θ1)·x) dx, . . . ,

∫
D
µ cos(k(θinc − θN )·x) dx,∫

D
µ sin(k(θinc − θ1)·x) dx, . . . ,

∫
D
µ sin(k(θinc − θN )·x) dx

)
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Calculus of dF(0) 2/2

dF(0)(µ) =
(∫

D
µ cos(k(θinc − θ1)·x) dx, . . . ,

∫
D
µ cos(k(θinc − θN )·x) dx,∫

D
µ sin(k(θinc − θ1)·x) dx, . . . ,

∫
D
µ sin(k(θinc − θN )·x) dx

)

Is dF(0) : L∞(D)→ R2N onto

I Clearly, we need to avoid the configuration θinc − θn = 0.

θinc θn = θinc

Emitter Receiver
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Construction of the shape functions
1 θn 6= θinc for n = 1, . . . ,N

⇔ M := {cos(k(θinc − θn) · x), sin(k(θinc − θn) · x)}N
n=1 ∈ C ∞(D)2N is a family

of linearly independent functions

⇔ ∃µ1,1, . . . , µ1,N , µ2,1, . . . , µ2,N ∈ span(M ) (Gram matrix) such that∫
D
µ1,m cos(k(θinc − θn) · x) dx = δmn ,

∫
D
µ1,m sin(k(θinc − θn) · x) dx = 0∫

D
µ2,m cos(k(θinc − θn) · x) dx = 0,

∫
D
µ2,m sin(k(θinc − θn) · x) dx = δmn

⇔ dF(0) : L∞(D)→ R2N is onto.

2 We need to construct some µ0 ∈ ker dF(0), i.e. some µ0 satisfying

∫
D
µ0 cos(k(θinc − θn) · x) dx = 0,

∫
D
µ0 sin(k(θinc − θn) · x) dx = 0.µ0 = µ#

0 −
N∑

m=1

(∫
D
µ1,m µ#

0 dx
)
µ1,m −

N∑
m=1

(∫
D
µ2,m µ#

0 dx
)
µ2,m

where µ#
0 /∈ span{µ1,1, . . . , µ1,N , µ2,1, . . . , µ2,N}.
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Main result

Proposition: Assume that θn 6= θinc for n = 1, . . . ,N . For ε small
enough, define ρ sol = 1 + εµ sol with

µ sol = µ0 +
N∑

m=1
τ sol

1,m µ1,m +
N∑

m=1
τ sol

2,m µ2,m.

Then the solution of the scattering problem

Find uε = uε
s + eikθinc·x such that

−∆u = k2ρ sol u in R2,

lim
r→+∞

√
r
(
∂us

∂r − ikus

)
= 0

verifies u∞s (θ1) = · · · = u∞s (θN ) = 0.

Comments:
→ We need ε to be small enough to prove that Gε is a contraction.
→ We have µ sol 6≡ 0 (non trivial inclusion). To see it, compute dF(0)(µ sol).

→ Existence of invisible inclusions may appear not so surprising since there are 2N
measurements and ρ ∈ L∞(D). Let us see the case θn = θinc ...
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1 General scheme

2 The forbidden case

3 Numerical experiments

14 / 23



The case θinc = θn

I In the previous approach, we needed to assume θn 6= θinc , n = 1, . . . ,N .
What if θn = θinc?

θinc θn = θinc

Emitter Receiver

I There holds

u∞s (θn) = c k2
∫
D

(ρ− 1) (ui + us) e−ikθn ·x dx.

I This allows to prove the formula (optical theorem of A. Norris’s talk)

=m (c−1 u∞s (θinc)) = k
∫
S1
|u∞s (θ)|2 dθ.

Imposing invisibility in the direction θinc requires to impose invisi-
bility in all directions θ ∈ S1!

By Rellich’s lemma, this implies us ≡ 0 in R2 \ D ⇒ we are back to the
continuous ITEP (with a strong assumption on the incident field).

• No solution if D has corners and under certain assumptions on ρ.

- Corners always scatter, E. Blåsten, L. Päivärinta, J. Sylvester, 2014

- Corners and edges always scatter, J. Elschner, G. Hu, 2015

• And if D is smooth? ⇒ The problem seems open.

15 / 23



The case θinc = θn

I In the previous approach, we needed to assume θn 6= θinc , n = 1, . . . ,N .
What if θn = θinc?

θinc θn = θinc

Emitter Receiver

I There holds

u∞s (θn) = c k2
∫
D

(ρ− 1) (ui + us) e−ikθn ·x dx.

I This allows to prove the formula (optical theorem of A. Norris’s talk)

=m (c−1 u∞s (θinc)) = k
∫
S1
|u∞s (θ)|2 dθ.

Imposing invisibility in the direction θinc requires to impose invisi-
bility in all directions θ ∈ S1!

By Rellich’s lemma, this implies us ≡ 0 in R2 \ D ⇒ we are back to the
continuous ITEP (with a strong assumption on the incident field).

• No solution if D has corners and under certain assumptions on ρ.

- Corners always scatter, E. Blåsten, L. Päivärinta, J. Sylvester, 2014

- Corners and edges always scatter, J. Elschner, G. Hu, 2015

• And if D is smooth? ⇒ The problem seems open.

15 / 23



The case θinc = θn

I In the previous approach, we needed to assume θn 6= θinc , n = 1, . . . ,N .
What if θn = θinc?

θinc θn = θinc

Emitter Receiver

I There holds

u∞s (θn) = c k2
∫
D

(ρ− 1) (ui + us) e−ikθn ·x dx.

I This allows to prove the formula (optical theorem of A. Norris’s talk)

=m (c−1 u∞s (θinc)) = k
∫
S1
|u∞s (θ)|2 dθ.

Imposing invisibility in the direction θinc requires to impose invisi-
bility in all directions θ ∈ S1!

By Rellich’s lemma, this implies us ≡ 0 in R2 \ D ⇒ we are back to the
continuous ITEP (with a strong assumption on the incident field).

• No solution if D has corners and under certain assumptions on ρ.

- Corners always scatter, E. Blåsten, L. Päivärinta, J. Sylvester, 2014

- Corners and edges always scatter, J. Elschner, G. Hu, 2015

• And if D is smooth? ⇒ The problem seems open.

15 / 23



The case θinc = θn

I In the previous approach, we needed to assume θn 6= θinc , n = 1, . . . ,N .
What if θn = θinc?

θinc θn = θinc

Emitter Receiver

I There holds

u∞s (θinc) = c k2
∫
D

(ρ− 1) (ui + us) ui dx.

I This allows to prove the formula (optical theorem of A. Norris’s talk)

=m (c−1 u∞s (θinc)) = k
∫
S1
|u∞s (θ)|2 dθ.

Imposing invisibility in the direction θinc requires to impose invisi-
bility in all directions θ ∈ S1!

By Rellich’s lemma, this implies us ≡ 0 in R2 \ D ⇒ we are back to the
continuous ITEP (with a strong assumption on the incident field).

• No solution if D has corners and under certain assumptions on ρ.

- Corners always scatter, E. Blåsten, L. Päivärinta, J. Sylvester, 2014

- Corners and edges always scatter, J. Elschner, G. Hu, 2015

• And if D is smooth? ⇒ The problem seems open.

15 / 23



The case θinc = θn

I In the previous approach, we needed to assume θn 6= θinc , n = 1, . . . ,N .
What if θn = θinc?

θinc θn = θinc

Emitter Receiver

I There holds

u∞s (θinc) = c k2
∫
D

(ρ− 1) (ui + us) ui dx.

I This allows to prove the formula (optical theorem of A. Norris’s talk)

=m (c−1 u∞s (θinc)) = k
∫
S1
|u∞s (θ)|2 dθ.

Imposing invisibility in the direction θinc requires to impose invisi-
bility in all directions θ ∈ S1!

By Rellich’s lemma, this implies us ≡ 0 in R2 \ D ⇒ we are back to the
continuous ITEP (with a strong assumption on the incident field).

• No solution if D has corners and under certain assumptions on ρ.

- Corners always scatter, E. Blåsten, L. Päivärinta, J. Sylvester, 2014

- Corners and edges always scatter, J. Elschner, G. Hu, 2015

• And if D is smooth? ⇒ The problem seems open.

15 / 23



The case θinc = θn

I In the previous approach, we needed to assume θn 6= θinc , n = 1, . . . ,N .
What if θn = θinc?

θinc θn = θinc

Emitter Receiver

I There holds

u∞s (θinc) = c k2
∫
D

(ρ− 1) (ui + us) ui dx.

I This allows to prove the formula (optical theorem of A. Norris’s talk)

=m (c−1 u∞s (θinc)) = k
∫
S1
|u∞s (θ)|2 dθ.

Imposing invisibility in the direction θinc requires to impose invisi-
bility in all directions θ ∈ S1!

By Rellich’s lemma, this implies us ≡ 0 in R2 \ D ⇒ we are back to the
continuous ITEP (with a strong assumption on the incident field).

• No solution if D has corners and under certain assumptions on ρ.

- Corners always scatter, E. Blåsten, L. Päivärinta, J. Sylvester, 2014

- Corners and edges always scatter, J. Elschner, G. Hu, 2015

• And if D is smooth? ⇒ The problem seems open.

15 / 23



The case θinc = θn

I In the previous approach, we needed to assume θn 6= θinc , n = 1, . . . ,N .
What if θn = θinc?

θinc θn = θinc

Emitter Receiver

I There holds

u∞s (θinc) = c k2
∫
D

(ρ− 1) (ui + us) ui dx.

I This allows to prove the formula (optical theorem of A. Norris’s talk)

=m (c−1 u∞s (θinc)) = k
∫
S1
|u∞s (θ)|2 dθ.

Imposing invisibility in the direction θinc requires to impose invisi-
bility in all directions θ ∈ S1!

By Rellich’s lemma, this implies us ≡ 0 in R2 \ D ⇒ we are back to the
continuous ITEP (with a strong assumption on the incident field).

• No solution if D has corners and under certain assumptions on ρ.

- Corners always scatter, E. Blåsten, L. Päivärinta, J. Sylvester, 2014

- Corners and edges always scatter, J. Elschner, G. Hu, 2015

• And if D is smooth? ⇒ The problem seems open.

15 / 23



The case θinc = θn

I In the previous approach, we needed to assume θn 6= θinc , n = 1, . . . ,N .
What if θn = θinc?

θinc θn = θinc

Emitter Receiver

I There holds

u∞s (θinc) = c k2
∫
D

(ρ− 1) (ui + us) ui dx.

I This allows to prove the formula (optical theorem of A. Norris’s talk)

=m (c−1 u∞s (θinc)) = k
∫
S1
|u∞s (θ)|2 dθ.

Imposing invisibility in the direction θinc requires to impose invisi-
bility in all directions θ ∈ S1!

By Rellich’s lemma, this implies us ≡ 0 in R2 \ D ⇒ we are back to the
continuous ITEP (with a strong assumption on the incident field).

• No solution if D has corners and under certain assumptions on ρ.

- Corners always scatter, E. Blåsten, L. Päivärinta, J. Sylvester, 2014

- Corners and edges always scatter, J. Elschner, G. Hu, 2015

• And if D is smooth? ⇒ The problem seems open.

15 / 23



1 General scheme

2 The forbidden case

3 Numerical experiments

16 / 23



Data and algorithm

I We can solve the fixed point problem using an iterative procedure: we
set ~τ 0 = (0, . . . , 0)> then define

~τ n+1 = Gε(~τ n).

I At each step, we solve a scattering problem. We use a P2 finite element
method set on the ball B8. On ∂B8, a truncated Dirichlet-to-Neumann map
with 13 harmonics serves as a transparent boundary condition.

I For the numerical experiments, we take D = B1, M = 3 (3 directions of
observation) and

θinc = (cos(ψinc), sin(ψinc)), ψinc = 0◦

θ1 = (cos(ψ1), sin(ψ1)), ψ1 = 90◦

θ2 = (cos(ψ2), sin(ψ2)), ψ2 = 180◦

θ3 = (cos(ψ3), sin(ψ3)), ψ3 = 225◦
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Results: coefficient ρ at the end of the process
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Results: scattered field

Figure: |us| at the end of the fixed point procedure in logarithmic scale. As
desired, we see it is very small far from D in the directions corresponding to
the angles 90◦, 180◦ and 225◦. The domain is equal to B8.
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Results: far field pattern
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Far field pattern at iteration 0
Far field pattern at the end of the fixed point procedure

Figure: The dotted lines show the directions where we want u∞s to vanish.
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Conclusion

What we did

♠ We explained how to construct invisible inclusions in a setting with a
finite number of incident/scattering directions.

♠ We need to avoid the case θinc = θn.

→ The approach also works when there are several incident directions.

Future work

1) Can we reiterate the process to construct larger invisible perturbations
of the reference medium?

2) Can we construct invisible inclusions for other models (Maxwell, elas-
ticity,...)?

3) Can we hide flies (small Dirichlet obstacles)? Work in progress...
4) Similar questions in waveguides (finite number of propagative waves ⇔

finite number of directions). How to achieve transmission invisibility?
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Thank you for your attention!!!
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