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Talk Abstract
We study a scalar harmonic wave transmission prob-

lem between a classical dielectric and a metamate-
rial (a medium with a real valued negative permittiv-
ity/permeability). When the interface between the two
media has a corner, depending on the value of the con-
trast (ratio) of the physical constants, this non-coercive
problem can be ill-posed (not Fredholm) in H1 (see [1]).
This is due to the degeneration of the two dual singulari-
ties which then behave like r±iη = e±iη ln r with η ∈ R∗.
In this work, we derive a functional framework by adding
to a smaller space thanH1 one of these singularities. This
phenomenon is very similar to what happens for scatter-
ing problems in unbounded domains. In the same manner,
well-posedness of our problem is obtained by imposing a
radiation condition in the neighbourhood of the geomet-
rical singularity using a limiting absorption principle.

Setting of the problem
To simplify, let us consider the polygonal domain Ω ⊂

R2 of Figure 1. Ω = Ω1 ∪ Ω2 and Ω1 ∩ Ω2 = ∅. The
interface Σ between the two media is straight and Σ ∩
∂Ω = {O,O′}. The domain Ω is locally symmetric in
the neighbourhood of O′ so the only relevant geometrical
singularity is located at O.

Figure 1: Geometry of the problem.

Let us denote (r, θ) the polar coordinates associated with
O. For k = 1, 2, we note that the subset Ωk coincides
with an open cone in a neighbourhood V of O : Ωk∩V =

Kk ∩ V with

K1 := {(r cos θ, r sin θ) | r > 0, π/4 < θ < π}
K2 := {(r cos θ, r sin θ) | r > 0, 0 < θ < π/4} .

We shall focus on the problem

−div (σ∇u) = f in Ω; u = 0 on ∂Ω, (1)

set in some functional spaces to be defined, with σ = σ1

on Ω1 and σ = σ2 on Ω2, σ1, σ2 ∈ C. The key parameter
to study problem (1) is the contrast κσ := σ2/σ1. We
would proceed exactly in the same way for the problem
−div (σ∇u) − ω2 u = f in Ω; u = 0 on ∂Ω, with
ω 6= 0.

Using Lax-Milgram’s theorem, one can easily prove
that if κσ ∈ C\R−, for every f ∈ H−1(Ω), there exists
one and only one solution to problem (1) depending
continuously on the data f . In the sequel, we shall
concentrate on the case κσ ∈ R∗−.

Although (u, v) 7→ (σ∇u,∇v) is not coercive on
H1

0 (Ω) × H1
0 (Ω), using a suitable isomorphism T of

H1
0 (Ω) and studying (u, v) 7→ (σ∇u,∇(T v)) (see the

T -coercivity method presented in [1]), we establish the

Proposition 1. If κσ ∈ R∗−\[−1;−1/3] then the
operator A0(κσ) : u 7→ −div (σ∇u) is Fredholm of
index 0 from H1

0 (Ω) to H−1(Ω).

In particular, when κσ ∈ R∗−\[−1;−1/3], if u = 0
is the only solution to problem (1) with f = 0, problem
(1) is well-posed for all f ∈ H−1(Ω). On the other hand,
when κσ = −1 (i.e. when σ2 = −σ1), it is proved in [1]
that the operator A0(κσ) is not Fredholm from H1

0 (Ω) to
H−1(Ω) because its range is not closed. Henceforth, the
contrast κσ will be different from −1.

Now, consider u ∈ H1
0 (Ω) such that div (σ∇u) ∈

L2(Ω) ⊂ H−1(Ω). When κσ 6∈ [−1;−1/3],
u can be decomposed (see [2]) under the form
u = ureg + c rλϕ(θ), where ureg is a piecewise



H2-function and (r, θ) 7→ rλϕ(θ), with <e λ > 0, is
the singularity associated with O. Notice that with the
help of a partition of unity, one can restrict the study
of this problem of singularity in the neighbourhood
of O. With the change of variables z := ln r, the
sector {(r cos θ, r sin θ) | 0 < r < 1, 0 < θ < π}
becomes the half strip R∗−×]0;π[, the Helmholtz eq.
(1), the Helmholtz eq. (2) below and the singularity
rλϕ(θ) = eλ zϕ(θ), an evanescent mode in the neigh-
bourhood of −∞.

But when κσ ∈] − 1;−1/3[, the real part of the
singular exponent λ vanishes. More precisely,
λ = ±iη with η ∈ R∗ and the two dual singulari-
ties r±iηϕ(θ) = e±iη zϕ(θ) /∈ H1 turn into propagative
modes in the half strip : H1 is no longer an appropriate
framework.

A waveguide problem in the half strip
In this section, the domain considered is the

half strip S :=
{

(z, θ) ∈ R∗−×]0;π[
}

. We de-
note S1 :=

{
(z, θ) ∈ R∗−×]π/4;π[

}
and S2 :={

(z, θ) ∈ R∗−×]0;π/4[
}

. We study the problem

−(σ∂2
z + ∂θσ∂θ)u = e2zf in S; u = 0 on ∂S, (2)

which can be written−div (σ∇u) = e2zf in S; u = 0 on
∂S. The function σ is such that σ|S1 = σ1 and σ|S2 = σ2.

Modes of the waveguide
Owing to the geometry, we would like to decompose

solutions to (2) on the modes u±k (z, θ) = ϕk(θ)e
±λkz

(where <e λk ≥ 0) in the neighbourhood of −∞. To that
aim, let us introduce the transverse operator L(λ) :

D(L) → L2(]0;π[)
ϕ 7→ L(λ)ϕ = −(σ λ2 + dθ σ dθ)ϕ

(3)

withD(L) := {ϕ ∈ H1
0 (]0;π[) | (dθ σ dθ)ϕ ∈ L2(]0;π[)}.

We say that u±k (z, θ) = ϕk(θ)e
±λkz are modes of the

waveguide when there exists a non trivial ϕk ∈ D(L)
such that L(λk)ϕk = 0. λk is then called an eigenvalue
of L.

� Is λ = 0 an eigenvalue of L ? The ϕ ∈ D(L)
which satisfy L(0)ϕ = 0 write

ϕ(θ) = Aθ on [0;π/4] ; ϕ(θ) = B (θ − π) on [π/4;π].

Writing the transmission conditions, we prove that λ = 0
is an eigenvalue of L if and only if κσ = σ2/σ1 = −1/3.

� Now, if ϕ ∈ D(L) satisfies L(λ)ϕ = 0 with λ 6= 0,
then necessarily

ϕ(θ) = A sin λθ on [0;π/4]
ϕ(θ) = B sin λ (θ − π) on [π/4;π].

Taking into account the transmission conditions, such a λ
must satisfy

σ1 sin λπ/4 cos 3λπ/4 + σ2 cos λπ/4 sin 3λπ/4 = 0.

Thus, for κσ 6= −1, λ is an eigenvalue of L if and only if

±λ ∈ Λ(κσ) := 2N∗∪{ξ(κσ)+4N}∪{ξ(κσ)+4N} (4)

with ξ(κσ) := 2
π arccos ρ(κσ) and ρ(κσ) := σ1−σ2

2(σ1+σ2) .
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Figure 2: Real part of κσ 7→ ξ(κσ) for κσ ∈]− 8; 0[.
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Figure 3: Spectrum of L in the complex plane
- left, κσ = −1/4 - right, κσ = −1/2.

Consequently, we distinguish two situations :
• For κσ ∈]−∞;−1[∪]− 1/3; 0[, <e ξ(κσ) > 0. There-
fore, all the modes are exponentially increasing or de-
creasing.
• For κσ ∈] − 1;−1/3[, <e ξ(κσ) = 0 and there are two
propagative modes associated with ±λ1 = ±ξ(κσ) =
±iη(κσ) with η(κσ) ∈ R∗:

u±1 (z, θ) = ϕ1(θ)e±iη(κσ)z.

To deal with the second case, let us make the analogy
with a classical waveguide problem. For a source term
f with a compact support, the well-posedness of our



problem would be obtained by decomposing u in the
neighbourhood of −∞ on the outgoing modes : u =∑

k≥1 ck ϕk e
λk z . The solution u then splits into a prop-

agative component (first mode) and an evanescent part
(modes for k ≥ 2).
Unfortunately, in our situation, we can not handle such
a decomposition. Indeed, due to the sign-changing of σ,
we are not able to prove that the eigenvectors of the trans-
verse operator define a basis of L2(]0;π[).
However, using cut off functions, weighted functional
spaces and Fourier-Laplace transform in the infinite di-
rection, we establish a similar decomposition thanks to
two key results. More precisely, we prove there exists a
unique solution u to problem (2) with

u = c1 ϕ1 e
λ1 z + ue , (5)

where the contribution ue is such that e−βz ue ∈ H1(S)
for some β > 0 : this last condition expresses the evanes-
cent behaviour in the neighbourhood of −∞.

Isomorphism property
For β ∈ R, we introduce the space Wβ , completion of
C∞0 (S) with respect to the norm

‖v‖Wβ
:=
∥∥∥eβzv∥∥∥

H1(S)
,

so that W0 = H1
0 (S) and, if β > 0, W−β ⊂ H1

0 (S) ⊂
Wβ . We denote Wβ

∗ the dual space of Wβ . Let us con-
sider the bounded operator

Bβ(κσ) : Wβ →W−β
∗

such that, for all (u, v) ∈Wβ ×W−β ,

〈Bβ(κσ)u, v〉 = (σ∇u, ∇v) .

Adapting the theory presented for elliptic problems in
chapters 5-6 of [3], we prove the first key result :

Theorem 2. Suppose κσ 6= −1. The operator
Bβ(κσ) is Fredholm if and only if L has no eigenvalue
on the line `β := {λ ∈ C | <e λ = β}.

Let us fix κσ ∈] − 1;−1/3[ and 0 < β < 2. L has two
conjugate eigenvalues on `0 and no eigenvalue on `β
(see Figure 3, right). Therefore, B0(κσ) is not Fredholm
whereas Bβ(κσ) and B−β(κσ) are Fredholm. We have :

B−β(κσ) : W−β → Wβ
∗⋂ ⋂

Bβ(κσ) : Wβ → W−β
∗.

Since the adjoint of Bβ(κσ) is B−β(κσ), we have

cokerBβ(κσ) = kerB−β(κσ). (6)

Making an odd reflection, one can prove with Fourier
transform in the whole strip that B−β(κσ) is injective
(and so Bβ(κσ) is onto). Let us define s(z, θ) =
sin(ηz)ϕ1(θ) = (u+

1 (z, θ) − u−1 (z, θ))/2i ∈ Wβ\W−β .
Obviously, s ∈ kerBβ(κσ) soBβ(κσ) is not injective and
B−β(κσ) is not onto. Hence in the space of exponentially
decreasing functions, problem (1) is injective but not
onto, whereas in the space of exponentially increasing
functions, problem (1) is onto but not injective. Next, we
build from Bβ(κσ) and B−β(κσ) an isomorphism.

We follow the procedure of Nazarov-Plamenevsky
(§3, chapter 5 of [4]). Let ζ ∈ C∞0 (R−) denote a cut off
function such that ζ(z) = 1 for z < −2 and ζ(z) = 0
for z > −1. We define the two truncated propagative
modes s±(z, θ) := ζ(z)u±1 (z, θ) ∈ Wβ\W−β . In the
same spirit as (5), consider the space

W+ := span (s+)⊕W−β.

Theorem 3. Let κσ ∈] − 1;−1/3[ and 0 < β < 2. The
operator div (σ∇·) is an isomorphism from W+ to Wβ

∗.

Proof : • Uniqueness : Let u = c s+ + u−β ∈ W+

be such that div (σ∇u) = 0. Integrating by parts on
]− L; 0[×]0;π[, one finds

∀L > 0, =m
∫
z=−L

σ∂zuu dθ = 0

⇒ lim
L→∞

|c|2=mλ1

∫
z=−L

σ |ϕ1|2 dθ = 0.

Consequently, c = 0 and u = u−β ∈ W−β . Since
B−β(κσ) is injective, u = 0.
• Existence : Let f ∈ Wβ

∗. Since Bβ(κσ) is onto,
there exists uβ ∈ Wβ such that div (σ∇uβ) = f . With
the help of the residual theorem, we prove that uβ ad-
mits the decomposition uβ = c+ s+ + c− s− + u−β ,
with u−β ∈ W−β (our second key result). Now, define
u := uβ + 2ic− s. This element belongs to W+ and sat-
isfies div (σ∇u) = f (remember that div (σ∇s) = 0).
That ends the proof. �

Transposition in the initial bounded domain Ω

Let Vβ be the completion of C∞0 (Ω) with respect to the
norm

‖v‖Vβ := (‖rβ∇v‖2L2(Ω)2 + ‖rβ−1v‖2L2(Ω))
1/2.



For β ∈ R, let us consider the bounded operator

Aβ(κσ) : Vβ → V−β
∗

such that, for all (u, v) ∈ Vβ × V−β ,

〈Aβ(κσ)u, v〉 = (σ∇u, ∇v) .

Let us recall that, according to Proposition 1, the
operator A0(κσ) is Fredholm of index 0 from H1

0 (Ω) to
H−1(Ω) when κσ ∈ R∗−\[−1;−1/3]. Using Theorem 2,
one can prove that A0(κσ) is not Fredholm from H1

0 (Ω)
to H−1(Ω) when κσ ∈]− 1;−1/3].

Let χ ∈ C∞0 (R) denote a function equal to 1 in the
neighbourhood of 0 with sufficiently small support. Let
us redefine the two singularities, now expressed in the
coordinates (r, θ),

s±(r, θ) = χ(r)u±1 (ln r, θ) = χ(r) r±i η(κσ) ϕ1(θ),

the two spaces

V + := span (s+)⊕ V−β
V − := span (s−)⊕ V−β

and the two restrictions

A+
β (κσ) : V + → Vβ

∗

A−β (κσ) : V − → Vβ
∗ (7)

of the operator Aβ(κσ). Thanks to Theorem 3, we can
express the

Theorem 4. Let κσ ∈] − 1;−1/3[ and 0 < β < 2.
The operators A+

β (κσ) and A−β (κσ) defined
in (7) are Fredholm of index 0. Besides,
kerA+

β (κσ) = kerA−β (κσ) = kerA−β(κσ) and
cokerA+

β (κσ) = cokerA−β (κσ) = cokerAβ(κσ).

We want now to determine which functional frame-
work matches best with the physical reality.

Limiting absorption principle
Again, we fix κσ ∈] − 1;−1/3[ and 0 < β < 2. Let

us add some absorption to the medium which leads us to
consider the problem

−div (σγ ∇uγ) = f in Ω; uγ = 0 on ∂Ω, (8)

with σγ := σ (1 + i sign(σ) γ) and γ > 0. Since
κσγ ∈ C\R−, this problem is well-posed in H1

0 (Ω).
Consider f ∈ Vβ

∗ ⊂ H−1(Ω) such that 〈f, v〉 = 0 for

all v ∈ cokerAβ(κσ). According to Theorem 4, one
can define two non dissipative solutions u± such that
A±β (κσ)u± = f . The physical solution urad (either
equal to u+ or u−) is then the limit of the dissipative
solution uγ when γ tends to 0. Using respectively
the decompositions urad = crad srad + urad−β , with
rad ∈ {+,−}, and uγ = cγ sγ + uγ−β , we choose rad
such that sγ → srad when γ → 0. The proof of the
convergence of uγ toward urad in Vβ is in progress.

To solve numerically this non-standard problem,
that is, to approximate urad, one can use PMLs or
Dirichlet-To-Neumann in the strip.

Physical interpretation
In our configuration, the selected propagative singular-

ity is s−(r, θ) = χ(r) r−i η(κσ) ϕ1(θ). Going back to the
time-domain (for ω 6= 0), one can write that the wave “lo-
cated” at distance r0 from O at time t0 will be at distance
r(t) at time t with the relation

−iη(κσ) ln r(t)− iωt = −iη(κσ) ln r0 − iωt0
⇔ r(t) = r0 e

− ω
η(κσ)

(t−t0)
.

Thus, the wave requires an infinite time to reach the ori-
gin. When κσ → −1, we have η → +∞. Consequently,
the closer κσ is to −1, the faster the wave propagates.
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