Exercice I. Equations de Darcy.

On s'intéresse dans ce qui suit au problème dit de Darcy dans un domaine Ω ouvert, borné, connexe et régulier de \mathbb{R}^2 . On note \mathbf{n} le vecteur unitaire normal extérieur à Ω sur $\partial\Omega$. Pour \mathbf{f} donnée dans $L^2(\Omega)^2$, on cherche une pression p et une vitesse \mathbf{u} solution du système d'équations

$$(D) \begin{cases} \mathbf{u} + \nabla p = \mathbf{f} & \text{dans } \Omega \\ \text{div } \mathbf{u} = 0 & \text{dans } \Omega \\ \mathbf{u} \cdot \mathbf{n} = 0 & \text{sur } \partial \Omega \end{cases}$$

Ces équations modélisent des écoulements dans des milieux poreux.

Première formulation

1/ Montrer que ce problème admet la formulation variationnelle suivante : trouver un couple (\mathbf{u}, p) dans $L^2(\Omega)^2 \times (H^1(\Omega) \cap L^2_0(\Omega))$ tel que pour tout $\mathbf{v} \in L^2(\Omega)^2$,

$$\int_{\Omega} \mathbf{u}(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) d\mathbf{x} + b(\mathbf{v}, p) = \int_{\Omega} \mathbf{f}(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) d\mathbf{x}, \tag{1}$$

et pour tout $q \in H^1(\Omega) \cap L_0^2(\Omega)$,

$$b(\mathbf{u}, q) = 0, (2)$$

où $L_0^2(\Omega)$ est l'espace des fonctions de $L^2(\Omega)$ à moyenne nulle, tandis que la forme b est définie pour tout $\mathbf{v} \in L^2(\Omega)^2$ et tout $q \in H^1(\Omega)$ par

$$b(\mathbf{v}, q) = \int_{\Omega} \mathbf{v}(\mathbf{x}) \cdot \nabla q(\mathbf{x}) d\mathbf{x}.$$

On introduit aussi la forme a définie par

$$a(\mathbf{u}, \mathbf{v}) = \int_{\Omega} \mathbf{u}(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) d\mathbf{x}.$$

pour tous **u** et **v** dans $L^2(\Omega)^2$.

- 2/ Vérifier que les formes introduites sont continues dans les espaces adéquats. Montrer de plus que la forme a est coercive sur $L^2(\Omega)^2$.
- 3/ On introduit le sous espace

$$V = \left\{ \mathbf{v} \in L^2(\Omega)^2, \forall q \in H^1(\Omega) \cap L_0^2(\Omega), b(\mathbf{v}, q) = 0 \right\}$$

Montrer que c'est un sous espace de Hilbert de $L^2(\Omega)^2$. Ecrire le problème dans cet espace et montrer qu'il est bien posé.

4/ Montrer qu'il existe une pression unique p dans $H^1(\Omega) \cap L^2_0(\Omega)$ qui, avec \mathbf{u} , est la solution des équations de Darcy (en supposant que cette solution est régulière). Montrer que cette solution dépend continûment de la donnée \mathbf{f} .

Seconde formulation

On introduit l'espace

$$H(\operatorname{div},\Omega) = \{ \mathbf{v} \in L^2(\Omega)^2 ; \operatorname{div} \mathbf{v} \in L^2(\Omega) \}$$

que l'on munit de la norme

$$\|\mathbf{v}\|_{H(\operatorname{div},\Omega)} = (\|\mathbf{v}\|_{L^2}^2 + \|\operatorname{div}\mathbf{v}\|_{L^2}^2)^{1/2}.$$

- 5/ Montrer que c'est un espace de Hilbert.
- 6/ Déduire de la formule de Stokes que les fonctions de $H(\operatorname{div},\Omega)$ ont une trace normale dans $H^{-1/2}(\partial\Omega)$ (le dual de l'espace $H^{1/2}(\partial\Omega)$ des traces de fonctions de $H^1(\Omega)$). A cet effet, on supposera que les fonctions $\mathcal{C}_0^{\infty}(\overline{\Omega})^2$ sont denses dans $H(\operatorname{div},\Omega)$.
- 7/ On pose

$$X = \{ \mathbf{v} \in H(\text{div}, \Omega), \mathbf{v}.\mathbf{n} = 0 \text{ sur } \partial \Omega \}.$$

Montrer que le problème de Darcy possède également la formulation variationnelle suivante: trouver un couple (\mathbf{u}, p) dans $X \times L_0^2(\Omega)$ tel que pour tout $\mathbf{v} \in X$,

$$\int_{\Omega} \mathbf{u}(\mathbf{x}).\mathbf{v}(\mathbf{x})d\mathbf{x} + b^*(\mathbf{v}, p) = \int_{\Omega} \mathbf{f}(\mathbf{x}).\mathbf{v}(\mathbf{x})d\mathbf{x},$$

et pour tout $q \in L_0^2(\Omega)$,

$$b^*(\mathbf{u}, q) = 0.$$

où b^* est définie par

$$b^*(\mathbf{v}, q) = -\int_{\Omega} (\operatorname{div} \mathbf{v})(\mathbf{x}) q(\mathbf{x}) d\mathbf{x},$$

pour tout $\mathbf{v} \in H(\text{div}, \Omega)$ et tout $q \in L^2(\Omega)$.

- 8/ Introduire un espace V^* pour montrer l'existence de \mathbf{u} dans ce cadre
- 9/ En déduire de nouveau que le problème (D) possède une solution et une seule, dont on précisera la stabilité en fonction des données.
- 10/ En prenant la divergence de la première équation dans (1) montrer que la pression vérifie un problème de Laplace dont on précisera les conditions aux limites.

Exercice II. Régularité du Laplacien

Soit $f\in L^2(\mathbb{R}^N)$. On considère le problème suivant consistant à déterminer $u\in H^1(\mathbb{R}^N)$ tel que

$$-\Delta u + u = f \operatorname{dans} \mathbb{R}^N$$
,

- 1/ Ecrire une formulation variationnelle de ce problème dans $H^1(\mathbb{R}^N)$. Démontrer l'existence et l'unicité de la solution dans $H^1(\mathbb{R}^N)$.
- 2/ Soit $v \in L^2(\mathbb{R}^N)$ et $h \in \mathbb{R}^N$. On pose

$$D_h v(x) = \frac{v(x+h) - v(x)}{|h|}.$$

Montrer que pour tout $v \in H^1(\mathbb{R}^n)$, on a

$$||D_h v||_{L^2(\mathbb{R}^N)} \le ||\nabla v||_{L^2(\mathbb{R}^N)}.$$

- 3/ Réciproquement, soit $v \in L^2(\mathbb{R}^N)$; Montrer que s'il existe une constante C telle que pour tout $h \neq 0$, on a $||D_h v||_{L^2(\mathbb{R}^N)} \leq C$ alors $v \in H^1(\mathbb{R}^N)$.
- 4/ En utilisant l'équation satisfaite par $D_h u$, montrer que $||D_h u||_{H^1(\mathbb{R}^N)} \le ||f||_{L^2(\mathbb{R}^N)}$. En déduire que u appartient en fait à $H^2(\mathbb{R}^N)$.
- 5/ Ecrire l'équation satisfaite par $\frac{\partial u}{\partial x_i}$ et en déduire que, si $f \in H^m(\mathbb{R}^N)$ avec m entier positif, alors $u \in H^{m+2}(\mathbb{R}^N)$.
- 6/ Soit Ω un ouvert borné de \mathbb{R}^N . Soit $f \in L^2(\Omega)$ et $u \in H^1(\Omega)$ qui vérifient

$$-\Delta u + u = f \operatorname{dans} \Omega$$

sans condition aux limites spécifiées. Montrer le résultat de régularité intérieure suivant : si $f \in H^m(\Omega)$, alors, pour tout ouvert ω tel que $\overline{\omega} \subset \Omega$, on a $u \in H^{m+2}(\omega)$.

Exercice III. Conditions de transmission

 Ω désigne un ouvert borné, régulier de \mathbb{R}^N qui se décompose sous la forme $\Omega = \Omega^+ \cup \Omega^-$ et $\Gamma = \partial \Omega^+ \cap \partial \Omega^-$. On étudie le problème variationnel suivant :

Trouver $u \in H_0^1(\Omega)$ tel que

$$\int_{\Omega} h(x) \nabla u \cdot \nabla v dx = \int_{\Omega} f v dx, \quad \forall v \in H_0^1(\Omega)$$

où $f \in L^2(\Omega)$, h est une fonction bornée inférieurement: $h(x) \ge \alpha > 0$. On suppose de plus que la restriction de h à $\Omega^+(\text{resp. }\Omega^-)$ appartient à $\mathcal{C}^0(\overline{\Omega^+})$ (resp. $\overline{\Omega^-}$). Par contre, h peut être discontinue à l'interface Γ . On pose pour $x \in \Gamma$:

$$h^+(x) = \lim_{y \in \Omega^+, y \to x} h(y), \quad h^-(x) = \lim_{y \in \Omega^-, y \to x} h(y).$$

- 1/Montrer que la formulation variationnelle admet une solution unique u.
- 2/ De quel problème classique u est-elle solution ? En particulier, quelles sont les conditions vérifiées par u le long de Γ ?