
FINITE-TIME BLOW-UP IN THE ADDITIVE SUPERCRITICAL
STOCHASTIC NONLINEAR SCHRÖDINGER EQUATION : THE
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Abstract. We review some results concerning the apparition of finite time

singularities in nonlinear Schrödinger equations with a Gaussian additive noise
which is white in time and correlated in space. We then extend the results

to the case where the noise is real valued, which is the case in some physical
situations.

1. Introduction

The nonlinear Shrödinger (NLS) equation is a generic equation describing the
propagation of weakly nonlinear waves in strongly dispersive media. It is found in
diverse fields of physics, such as hydrodynamics, plasma physics, nonlinear optics,
or molecular biology, where it appears to be the continuum limit of certain discrete
systems (see [2] and the references therein).

Recently, interest has grown up in the influence of Gaussian white noise on the
dynamical behaviour of solutions of this equation; especially, in the focusing case,
propagation of soliton solutions in the presence of noise has been the subject of
several investigations.

A one dimensional NLS equation with additive Gaussian space-time white noise
is e.g. considered in [7], with the aim of computing error probability in signal
transmissions.

Another example of NLS equation with noise is given in [1] and [2], where it
describes energy transfer in monolayer molecular aggregates, and where the noise
stands for thermal fluctuations. As explained in [2], this noise may be multiplicative
if it describes process where excitation is not being created or destroyed and in this
case the noise appears in the equation as a linear potential. It may also be additive
in the case of and exciton that creates or absorbs a photon. In both cases, the noise
is real valued and depends on space and time variables.

Here, we consider the stochastic nonlinear Schrödinger equation

(1.1) i∂tψ − (∆ψ + |ψ|2σψ) = ξ

in general dimension n. The noise ξ is an additive real valued Gaussian noise, which
is white in time and correlated in space. The nonlinear term |ψ|2σψ is a supercritical
power of the solution, and our aim is to investigate the possible blow-up of solutions.

It is well known indeed that when there is no noise, i.e. ξ = 0 in equation (1.1),
and when σ satisfies 2

n ≤ σ < 2
n−2 (σ ≥ 2

n in dimension n = 1 or 2), a solution of
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(1.1) (with ξ = 0) starting from ψ0 with a finite negative energy, that is with

H(ψ0) =
1
2

∫
|∇ψ0(x)|2dx−

1
2σ + 2

∫
|ψ0(x)|2σ+2dx < 0

cannot be globally well defined. More precisely, there is a positive t∗ such that

(1.2) lim
t↗t∗

∫
Rn

|∇ψ(t, x)|2dx = +∞.

The ingredient of the proof of such a fact uses what is sometimes called the
“variance identity” (see [8], [11], [12]) which consists in computing the second order
time derivative of the quantity

V (ψ(t)) =
∫

Rn

|x|2|ψ(t, x)|2dx.

Using the equation satisfied by ψ and the fact that the energy H is a conserved
quantity for the deterministic equation, it is indeed possible to show that under the
preceding conditions on σ,

(1.3) V (ψ(t)) ≤ V (ψ0) + t
d

dt
V (ψ(t))|t=t0 + 8H(ψ0)t2.

V (ψ) being a nonegative quantity, this inequality cannot remain true for all time if
e.g. the energy H(ψ0) is negative, and it leads to (1.2). The condition H(ψ0) < 0
is of course far from necessary in order that the solution blows up, and some much
more precise criteria may be exhibited (see [10]).

We have generalized in [5] this identity to the stochastic equation (1.1), where
ξ is a complex valued noise which is correlated in space and white in time. In this
case, the solution is a random process, which is defined on a random time interval
[0, τ∗(ψ0)), provided that ψ is sufficiently correlated in space, as was proved in [4].
Assuming that for some deterministic t > 0, one has t < τ∗(ψ0) almost surely and
that

E
∫ t

0

(∫
Rn

|∇ψ(s, x)|2dx+
(∫

Rn

|ψ(s, x)|2σ+2dx

) 2σ+1
σ+1

ds

)
< +∞,

we have proved that E(V (ψ(t))) satisfies an inequality of the form (1.3) where the
right hand side is replaced by a third order polynomial in time; here, the expres-
sion E(v) stands for the mathematical expectation, or mean value, of the random
variable v. In this third order polynomial, the coefficient of t3 depends only on the
covariance operator of the noise, while the coefficient of t2 is 8E(H(ψ0)). Hence, by
choosing ψ0 such that E(H(ψ0)) is sufficiently negative, again the inequality cannot
remain true for all positive time because the right hand side takes negative values,
and the solution necessarily blows up (see Proposition 2.3 for a precise definition
of blow-up).

This result does not make use of the fact that the noise is complex valued, and
it is true with exactly the same proof in the present case of a real valued noise.

We then made use in [5] of a control argument to show that if the noise is
nondegenerate, the stochastic equation is irreducible in the sense that for any time
T > 0, initial data ψ0 and final data ψT , the solution of (1.1) with ψ(0) = ψ0 is close
at time T to ψT with a positive probability. Choosing then ψT with sufficiently
negative energy allowed us to apply the stochastic variance identity, to the solution
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of (1.1) starting from ψT at time T , so that this solution finally blows up. Hence,
blow-up occurs for any initial data.

Contrary to the variance identity, the control argument leading to the irreducibil-
ity of the equation strongly uses the fact that the noise is complex valued, since in
this case it is sufficient to control the equation with a complex valued determinis-
tic forcing term. The aim of the present note is first to review the existence and
blow-up results that were previously obtained and then to show that the control
argument is still valid in the real valued case, implying the same result as in the
complex valued case, that is any solution of (1.1) blows up in finite time if the noise
is sufficiently correlated.

Note that on the opposite case of a completely uncorrelated noise in space – that
is a space-time white noise – even though we are not able to prove any theoretical
result, some numerical computations have been performed in [6], which seem to
indicate that if the noise is multiplicative and arises as a Stratonovitch potential
then it will tend to prevent the blow-up phenomenon.

We now describe more precisely the noise that we consider. We introduce a prob-
ability space (Ω,F ,P), endowed with a filtration (Ft)t≥0, and a sequence (βk)k∈N
of independent real valued Brownian motions on R+ associated to the filtration
(Ft)t≥0. We then consider a complete orthonormal system (ek)k∈N in the space of
real valued square integrable functions on Rn, and a bounded linear operator Φ on
this space. The process

W (t, x, ω) =
∞∑
k=0

βk(t, ω)Φek(x), t ≥ 0, x ∈ Rn, ω ∈ Ω,

is then a Wiener process on the space of real valued square integrable functions

on Rn, with covariance operator tΦΦ∗. We then set ξ =
∂W

∂t
. Note that if Φ is

defined through a real valued kernel K, which means that for any real valued square
integrable function u,

Φu(x) =
∫

Rn

K(x, y)u(y)dy,

then the correlation function of the noise is given by

E
(
∂W

∂t
(t, x)

∂W

∂t
(s, y)

)
= c(x, y)δt−s

with

c(x, y) =
∫

Rn

K(x, z)K(y, z)dz.

We then write equation (1.1) as

(1.4) idψ − (∆ψ + |ψ|2σψ)dt = dW.

Note that in the physical situations described at the beginning, the correlation
function c(x, y) is a Dirac delta function, corresponding to space-time white noise
(in this case, Φ is the identical operator). We are not able to treat that case for
two reasons. To understand them, one should consider the linear equation{

idz −∆zdt = dW
z(0) = 0
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whose solution is given by the stochastic integral

(1.5) z(t) =
∫ t

0

S(t− s)dW (s)

where S(t) = e−it∆ is the group associated with the linear Schrödinger equation.
Since S(t) is a unitary group in any Sobolev space Hs(Rn), it is easy to see that
z(t) lies in Hs(Rn) almost surely if and only if Φ is a Hilbert-Schmidt operator
from L2(Rn) into Hs(Rn). Note indeed the identity

|z(t)|2Hs(Rn) =
∣∣∣∣∫ t

0

S(t− s)dW (s)
∣∣∣∣2
Hs(Rn)

= t‖Φ‖2HS(L2,Hs)

where ‖Φ‖2HS(L2,Hs) ≡
∑
k |Φek|2Hs(Rn) is the Hilbert-Schmidt norm of Φ as an

operator from L2(Rn) into Hs(Rn).
However, it is easy to see that a convolution operator – i.e. an operator defined

through a kernel K(x, y) = k(x − y) – will never be Hilbert-Schmidt from L2(Rn)
into Hs(Rn), even if s is largely negative. This proves that the integral z(t) cannot
live in Hs(Rn) if the noise is homogeneous. This is the first reason : homogeneity
of the noise.

The second reason is the irregularity of the correlations : even if one adds
some localization in the correlations of the noise – e.g. if Φ is given by a ker-
nel K(x, y) = k(x)δx−y – there is no hope that z(t) lies in a more regular space
than H−n/2(Rn). However, it has been proved (see [9]) that the deterministic
conservative NLS equation is ill posed in any Hs(Rn) with negative s.

This implies in particular that treating the stochastic term as a perturbation
by using the integral z(t) will never lead to the existence of a strong solution of
the stochastic equation with a space-time white noise, as long as we deal with Hs

Sobolev spaces ; note that the Hs spaces have revealed to be very natural spaces
to handle the deterministic NLS equation.

Anyway, we only consider correlated noise in this note, which means that we
will require from Φ sufficient regularization properties, and the above mentionned
problem will not appear here.

The note is organized as follows : in Section 2, we recall the results proved in
[4] and [5] concerning the existence of solutions and blow-up for some initial data.
Those results were proved in the context of a complex valued noise, but they hold
with exactly the same proof for equation (1.4) with a real valued noise, so that
we do not recall the proofs. we will give for each particular result the minimal
assumptions required on Φ, and on the initial data. In Section 3, we prove that
the controlability problem allowing to deduce the irreducibility of equation (1.4)
has a solution in the real valued case – and here the proof is different and more
complicated than in the complex valued case. We then deduce the irreducibility as
in [5] from this result and from the continuity with respect to the forcing term in
the equation. Finally, irreducibility together with the blow-up result of Section 2
implies as in [5] the blow-up for any initial data (see Theorem 3.1).

2. Review of existence and blow-up for a restricted class of initial
data

We start with some local and global existence results. All these results are proved
in [4].
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2.1. Local and global existence results.

Theorem 2.1. Assume that 0 ≤ σ < 2/(n − 2) if n ≥ 3 or 0 ≤ σ for n = 1, 2,
that Φ is Hilbert-Schmidt from L2(Rn) into H1(Rn) and that the initial data ψ0 is
a F0 measurable random variable with values in H1(Rn); then there exists a unique
solution ψ to (1.4) with continuous H1 valued paths, such that ψ(0) = ψ0. This
solution is defined on a random interval [0, τ∗(ψ0)), where τ∗(ψ0) is a stopping time
such that

τ∗(ψ0) = +∞ or lim
t↗τ∗(ψ0)

|ψ(t)|H1(Rn) = +∞.

Furthermore, τ∗ is almost surely lower semicontinuous with respect to ψ0.

In order to prove the global existence result in the subcritical case σ < 2/n, the
following invariant quantities of the deterministic NLS equation have been used in
[4] : the momentum

M(ψ) =
∫

Rn

|ψ(x)|2dx

and the Hamiltonian

H(ψ) =
1
2

∫
Rn

|∇ψ(x)|2dx− 1
2σ + 2

∫
Rn

|ψ(x)|2σ+2dx.

The evolution of these quantities along the solutions of the stochastic equation (1.4)
is described in the next proposition.

Proposition 2.1. Let ψ0, σ and Φ be as in Theorem 2.1. For any stopping time τ
such that τ < τ∗(ψ0) a.s., we have

(2.1) M(ψ(τ)) = M(ψ0)− 2Im
∑
`∈N

∫ τ

0

∫
Rn

ψ(x)Φe`(x)dxdβ`(s) + τ
∑
`

|Φe`|2L2

where ψ is the solution of (1.4) given by Theorem 2.1 with ψ(0) = ψ0.
Moreover, for any k ∈ N,

(2.2) E
[

sup
t∈[0,τ ]

Mk(ψ(τ))
]
≤ CkE

[
Mk(ψ0)

]
for a constant Ck ≥ 0.

In the same way, for any τ such that τ < τ∗(ψ0) a.s. we have

(2.3)

H(ψ(τ)) = H(ψ0)− Im

∫
Rn

∫ τ

0

(∆ψ̄ + |ψ|2σψ̄)dWdx

+
1
2

∑
`∈N

∫ τ

0

∫
Rn

|∇Φe`|2 dxds

−1
2

∑
`∈N

∫ τ

0

∫
Rn

[
|ψ|2σ |Φe`|2 + 2σ|ψ|2σ−2(Re (ψ̄Φe`))2

]
dxds

where ψ(·) is the solution of (1.4) given by Theorem 2.1 with ψ(0) = ψ0.

Using the preceding proposition, the following global existence result was proved
in [4] in the subcritical case.

Theorem 2.2. If in addition to the assumptions of Theorem 2.1, σ < 2/n, then
for any F0-measurable ψ0, the solution of (1.4) with ψ(0) = ψ0 given by Theorem
2.1 is global, i.e. τ∗(ψ0) = +∞ a.s.
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Note that the result of Theorem 2.1 is still true with L2 solutions instead of H1

solutions, if 0 ≤ σ ≤ 2/n and if Φ is only Hilbert-Schmidt in L2(Rn). In this case,
the solutions are global, due to the estimate (2.1) on the L2 norm.

2.2. Blow-up for some initial data. The blow-up result for a restricted class of
initial data, which is proved exactly as in [5], is based on Proposition 2.1, together
with another identity, which we call the “stochastic variance identity”. This identity
is proved in [5] in the case of a complex valued noise – the real noise case is proved
exactly in the same way – and requires slightly more regularity on Φ and ψ0. In
order to state precisely the assumptions we need, we introduce the space

Σ =
{
v ∈ H1(Rn),

∫
Rn

|x|2|v(x)|2dx <∞
}
.

Proposition 2.2. Let ψ0, σ and Φ be as in Theorem 2.1, and assume furthermore
that Φ is Hilbert-Schmidt form L2(Rn) into Σ and that ψ0 lies almost surely in Σ.
Then for any stopping time τ such that τ < τ∗(ψ0) a.s. the solution ψ of (1.4) with
ψ(0) = ψ0 belongs to L∞(0, τ ; Σ) a.s. and satisfies

V (ψ(τ)) = V (ψ0) + 4G(ψ0)τ + 8H(ψ0)τ2 + 4
2− σn

σ + 1

∫ τ

0

(τ − s)|ψ|2σ+2
L2σ+2ds

+cΣΦτ + 4
3c

1
Φτ

3

−4
∑
`∈N

∫ τ

0

(τ − s)2
∫

Rn

|ψ|2σ |Φe`|2 + 2σ|ψ|2σ−2
(
Re(ψ̄Φe`)

)2
dxds

+2Im
∫

Rn

∫ τ

0

|x|2ψ̄dWdx

−16Im
∫

Rn

∫ τ

0

∫ s2

0

∫ s1

0

(
∆ψ̄ + |ψ|2σψ̄

)
dW (r)ds1ds2dx

+4Re
∑
`∈N

∫ τ

0

∫ s

0

∫
Rn

ψ̄(2x · ∇Φe` + nΦe`)dxdβ`ds

with
G(v) = Im

∫
Rn

v(x)x.∇v̄(x)dx

for v ∈ Σ, and with

cΣΦ =
∑
`∈N

∫
Rn

|x|2|Φe`|2dx and c1φ =
∑
`∈N

|∇φe`|2L2 .

Note that the first four terms in this identity already occur in the deterministic
identity, and that the other terms vanish in the absence of noise. The last three
terms are stochastic integrals and are responsible for technical difficulties. In the
particular case where τ = T is a deterministic time, the mean value of these last
three terms vanishes. Let us denote EΩ0(f) = E(f1lΩ0)/P(Ω0) for f ∈ L1(Ω0) or f
measurable and nonnegative on Ω0, and Ω0 a F0 measurable set.

In the preceding case of a deterministic τ = T , and if we assume moreover that

EΩ0

(∫ T

0

|∇ψ(s)|2L2 + |ψ(s)|2σ+2
L2σ+2ds

)
is finite, then Proposition 2.1 implies that

EΩ0(V (ψ(t))) ≤ EΩ0(V (ψ0)) + (4EΩ0(|G(ψ0)|) + cΣΦ)t+ 8EΩ0(H(ψ0))t2 + 4
3c

1
Φt

3
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for any t ∈ [0, T ]. Now, it is possible to choose ψ0 in such a way that the right hand
side polynomial takes negative values for some t ∈ [0, T ], leading to a contradiction
since the left hand side is nonnegative. More precisely, we have

Proposition 2.3. Assume that 2/n ≤ σ < 2/(n−2), and that Φ is Hilbert-Schmidt
from L2(Rn) into Σ. For each T̄ > 0, V̄ > 0, Ḡ > 0, H̄1 > 0, let H̄2 be such that

(2.4) V̄ +
(
4Ḡ+ cΣΦ

)
T̄ + 4

(
H̄1 −

1
σ + 1

H̄2

)
T̄ 2 +

4
3
c1ΦT̄

3 < 0;

then for each F0 measurable ψ0 with values in Σ and for any Ω0 ∈ F0 with P(Ω0) >
0 such that

(2.5)
EΩ0

(
|∇ψ0|2L2

)
≤ H̄1, EΩ0 (|G(ψ0)|) ≤ Ḡ

EΩ0 (V (ψ0)) ≤ V̄ and EΩ0

(
|ψ0|2σ+2

L2σ+2

)
≥ H̄2,

then either

(2.6) P(τ∗(ψ0) < T̄ ) is positive

or

(2.7) EΩ0

(∫ T̄

0

(
|∇ψ(s)|2L2 + |ψ(s)|4σ+2

L2σ+2

)
ds

)
= +∞,

where ψ is the solution of (1.4) with ψ(0) = ψ0 given by Theorem 2.1.

The possibility that (2.7) occurs instead of (2.6) is due to the fact that we had
to choose a deterministic time T in the argument above in order to cancel the mean
value of the stochastic terms in the stochastic variance identity. If instead we use
a stopping time, then the expectation of those terms do not vanish. Under more
restrictive assumptions on σ and Φ, however, they may be handled and lead to the
following result.

Proposition 2.4. Assume that 2/n < σ < min( 2
3 ,

2
n−2 ), that Φ is Hilbert-Schmidt

from L2(Rn) into Σ, with moreover
∑
`∈N |Φe`|2L4σ+2 < ∞, and bounded from

L2(Rn) into H2(Rn) ∩ L∞(Rn). Let T̄ , V̄ , Ḡ, H̄1, H̄2,Ω0 and ψ0 be as in Propo-
sition 2.2, with moreover, EΩ0(M(ψ0)1/(1−σ)) <∞ ; then

P(τ∗(ψ0) < T̄ ) > 0.

Note that the assumptions on the power σ in Proposition 2.4 are compatible
only when n ≥ 4.

3. The controlability problem and blow-up for any initial data

In this section, we prove the irreducibility of equation (1.4), or equivalently of
the following equation :

(3.1) v(t) = S(t)ψ0 − i

∫ t

0

S(t− s)
(
|v + z|2σ(v + z)

)
ds

where z is given by (1.5), in the case where the noise is nondegenerate. (Note that
if z is given by (1.5) and v satisfies (3.1), then ψ = v + z is a solution of (1.4)
with ψ(0) = ψ0.) This is done by using the following controlability result, which
was already proved in [5] in the case of a complex valued noise, together with some
continuity property . The controlability result is more difficult to prove in the real
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valued case, because we have to control the NLS equation by using a real valued
forcing term instead of a complex valued one, which means that we can act only on
one of the two components of the solution. The result is also weaker in the sense
that it requires more smoothness on the forcing term and on ψ0. Of course, this
will affect the main result in consequence (see Theorem 3.1).

We define some other spaces which are necessary to state the assumptions : for
k, ` ∈ N we define

Σk,` =
{
v ∈ Hk+`(Rn), |x|`v ∈ Hk(Rn)

}
endowed with the natural norm∣∣v∣∣2

Σk,` =
∣∣v∣∣2

Hk+` +
∣∣|x|`v∣∣2

Hk

and let Sn be the following space (recall that n is here the dimension of the space
variable) :

S1 = Σ, S2 = ∪α>0Σ
α,1, Sn = Σ1,2 if n ≥ 3.

In order to understand how Proposition 3.1 below is related to the controlability
of the NLS equation by a real valued forcing, one only needs to note that ũ is a
solution of

(3.2)

 i
dũ

dt
−
(
∆ũ+ |ũ|2σ ũ

)
=
df

dt

ũ(0) = ψ0

if and only if ũ = v + z̃ with z̃ satisfying

(3.3)

 i
dz̃

dt
−∆z̃ =

df

dt
,

z̃(0) = 0,

and v satisfies equation (3.1) with z replaced by z̃. In addition, f(t) is real valued
if and only if iz̃(t)−

∫ t
0

∆z̃(s)ds is real valued.

Proposition 3.1. For any T1 > 0, ψ0 ∈ Sn ∩ Hs, s > n/2, for any real valued
function b1 in Sn, there exists a z̃ in C ([0, T1] ;Sn) such that z̃(0) = 0, iz̃(t) −∫ t
0

∆z̃(s)ds is real valued for any t ∈ [0, T1] and such that the solution v(z̃, ψ0, ·) of
(3.1) exists on [0, T1], with

Im (z̃(T1) + v (z̃, ψ0, T1)) = b1.

Moreover, for any δ > 0, z̃ may be chosen so that

|Re (z̃(T1) + v (z̃, ψ0, T1))−Re (ψ0)|Sn
≤ δ.

Remark 3.1. This result is weaker than what we proved in [5] for a complex val-
ued noise in two ways. First, we are not able to choose z̃(·) such that z̃(T1) +
v (z̃, ψ0, T1) = u1 for some fixed u1; only the imaginary part can be controled ex-
actly. However this is not a problem for our purpose as will be made clear later.
Also, here we have to assume that ψ0, b1 have extra smoothness assumptions if
n ≥ 2: they are assumed to be in Sn∩Hs(Rn). This is the reason why Theorem 3.1
below is restricted to initial data in Sn ∩Hs(Rn).
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Proof of Proposition 3.1. It is convenient in this proof to decompose the solution
of the nonlinear Schrödinger equation into its real and imaginary parts. We first
construct the forcing f in (3.2) and then deduce z̃ solution of (3.3) by the formula

z̃(t) = −if(t)−
∫ t

0

S(t− s)(i∆)f(s)ds.

We note that ũ solves

i
dũ

dt
−
(
∆ũ+ |ũ|2σ ũ

)
=
df

dt
for a real valued f if its real and imaginary parts a and b solve

(3.4)
da

dt
−∆b−

(
a2 + b2

)σ
b = 0,

and

(3.5) −db
dt
−∆a−

(
a2 + b2

)σ
a =

df

dt
.

The idea is to construct b explicitly such that b(0) = Im (ψ0) , b (T1) = b1 and b = 0
on a large interval in (0, T1) . In that way da

dt = 0 in that interval and a (T1) is close
to a(0).

Take k1 ∈ N and denote by U(t) the semigroup on Σ associated to the linear
equation 

dw

dt
+ (−∆)k1w + |x|2k1w = 0, x ∈ Rn,

w(0) = ψ0.

For ε > 0 to be chosen, we set

b(t) =


ε−t
ε U(t) Im (ψ0) , t ∈ [0, ε],

0, t ∈ [ε, T1 − ε]

t−T1+ε
ε U (T1 − t) b1, t ∈ [T1 − ε1, T1] .

Clearly, for k1 large enough, b is in C ([0, T1] ;Sn)∩L1 (0, T1;Hs(Rn)) and ∆b is in
L1(0, T1; Sn ∩Hs(Rn)). Then, for any δ > 0, there exists ε > 0 depending on ψ0

and b1 such that (3.4) has a solution a in C ([0, ε];Sn ∩Hs(Rn)) such that

a(0) = Re (ψ0)

and

|a− a(0)|C([0,ε];Sn∩Hs) ≤
δ

2
.

This can be proved by a fixed point argument.
Similarly, there exists a solution a of (3.4) on [T1 − ε, T1] such that a (T1 − ε) =

a(ε) and

|a− a(ε)|C([T1−ε,T1];Sn∩Hs) ≤
δ

2
.

Then, since b = 0 on [ε, T1 − ε] , setting a(t) = a(ε) on [ε, T1 − ε] we obtain a
solution of (3.4) on [0, T1] such that

|a− Re (ψ0)|C([0,T1];Sn∩Hs) ≤ δ.
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We now define

f(t) = −b(t) + b(0)−
∫ t

0

∆a+
(
a2 + b2

)σ
ads

and

z̃(t) = −f(t)− i

∫ t

0

S(t− s)∆f(s)ds

so that v = a+ ib− z̃ solves

i
dv

dt
−∆v = |ũ|2σ ũ,

with ũ = a+ ib, and for any t ∈ [0, T1] , iz̃(t)−
∫ t
0

∆z̃(s)ds = f(t) is real valued.
We can choose k1 in the definition of U(·) sufficiently large to ensure that

|b|2σ+1 ∈ L1 (0, T1;Sn) . Moreover, since Sn ∩ Hs is an algebra, we also have
|a|2σ+1 ∈ L1 (0, T1;Sn) . It follows that |ũ|2σ ũ ∈ L1 (0, T1;Sn) and since (S(t))t∈R
is strongly continuous in Sn and v(0) ∈ Sn, v ∈ C ([0, T1] ;Sn) . Since we know that
ũ also belongs to this space, we have proved :

z̃ ∈ C ([0, T1] ;Sn) ,

and this ends the proof of Proposition 3.1.

The following corollary of Proposition 3.1 shows that it is possible to reach a
state which leads to blow-up by controlling only the imaginary part of the solution.

Corollary 3.1. For any T̄1, T̄ > 0, ψ0 ∈ Sn∩Hs(Rn) for some s > n/2, there exist
V̄ > 0, Ḡ > 0, H̄1 > 0, H̄2 > 0 satisfying (2.4) and there exists z̃ ∈ C ([0, T1] ;Sn)
such that z̃(0) = 0, iz̃(t) −

∫ t
0

∆z̃(s)ds is real valued for any t ∈ [0, T1], v(z̃, ψ0, ·)
exists on [0, T1] and ũ1 = z̃(T1) + v(z̃, ψ0, T1) verifies

|∇ũ1|2L2 ≤
1
2
H̄1, |G(ũ1)| ≤

1
2
Ḡ, V (ũ1) ≤

1
2
V̄ , and |ũ1|2σ+2

L2σ+2 ≥ 2H̄2.

Proof. Assume first that Im(ψ0) 6= 0 ; set uλ = Re(ψ0) + iλIm(ψ0). Then the
expression

4V (uλ) + (16G(uλ) + cΣΦ)T̄ + 4
(

4|∇uλ|2L2 −
1

2(2σ + 2)
|uλ|2σ+2

L2σ+2

)
T̄ 2 +

4
3
c1ΦT̄

3

is negative for λ large enough, say larger than λ0. Then, by Proposition 3.1 with
b1 = λ0Im(ψ0), given δ > 0, we can find z̃ with z̃(0) = 0, iz̃(t)−

∫ t
0

∆z̃(s)ds is real
valued for any t ∈ [0, T1], v(z̃, ψ0, ·) exists on [0, T1] and with moreover

Im(z̃(T1) + v(z̃, ψ0, T1) = λ0Im(ψ0),

and
|z̃(T1) + v(z̃, ψ0, T1)− uλ0 |Sn

≤ δ.

Now, the quantities |∇u|2L2 , |G(u)|, V (u), |u|2σ+2
L2σ+2 depend continuously on u ∈ Sn,

so that choosing δ small enough, and setting ũ(t) = z̃(t) + v(z̃, ψ0, t), we have

|∇ũ(T1)|2L2 ≤ 2|∇uλ0 |2L2 , |G(ũ(T1))| ≤ 2|G(uλ0)|, V (ũ(T1)) ≤ 2V (uλ0)

and
|u(T1)|2σ+2

L2σ+2 ≥
1
2
|uλ0 |2σ+2

L2σ+2 .

Hence we obtain the result with H̄1 = 4|∇uλ0 |2L2 , Ḡ = 4|G(uλ0)|, V̄ = 4V (uλ0) and
H̄2 = 1

4 |uλ0 |2σ+2
L2σ+2 .
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Assume now that Im(ψ0) = 0, and let us consider the solution ũ of (3.2) with
f = 0; it is not difficult to see that the imaginary part of ũ cannot be identically
zero on a whole time interval [0, t0] with t0 > 0; indeed, writting ũ as a+ ib with a
and b satisfying respectively (3.4) and (3.5), this would imply that a is a stationary
solution of the deterministic NLS equation on [0, t0], but it is well known that there
is no such solution in H1(Rn). Hence, for some positive t0, one has Im(ũ(t0)) 6= 0,
and we can reproduce the preceding argument by starting at time t0 from ũ(t0)
(which corresponds to taking z̃ ≡ 0 on [0, t0]).

We have now all the tools in hand to state and prove the main result.

Theorem 3.1. Assume that 2/n ≤ σ < 2
n−2 if n ≥ 3, or 2/n ≤ σ if n = 1 or

2, that Φ is Hilbert-Schmidt from L2(Rn) into Sn and that the null space of Φ∗ is
reduced to {0}. Then for any ψ0 ∈ Sn ∩Hs for some s > n/2, and for any t > 0
the solution ψ(t) starting from ψ0 and given by Theorem 2.1 satisfies either

P(τ∗(ψ0) < T̄ ) > 0

or

E

(∫ T̄

0

(
|∇ψ(s)|2L2 + |ψ(s)|4σ+2

L2σ+2

)
ds

)
= +∞.

If furthermore Φ satisfies the assumptions of Proposition 2.4, then ψ blows up with
a positive probability.

Proof of Theorem 3.1. The proof follows exactly the same lines as the proof of
Theorem 2.1 in [5], once we have Corollary 3.1 in hand. We repeat shortly the
arguments for the sake of completeness. Let T̄1, T̄ > 0, and ψ0 ∈ Sn∩Hs(Rn) with
s > n/2. Applying Corollary 3.1, we get V̄ , Ḡ, H̄1, and H̄2 satisfying (2.4), and
z̃ ∈ C ([0, T1] ;Sn) such that if we set ũ(t) = z̃(t) + v(z̃, ψ0, t) then

|∇ũ(T1)|2L2 ≤
1
2
H̄1, |G(ũ(T1))| ≤

1
2
Ḡ, V (ũ(T1)) ≤

1
2
V̄ , and |ũ(T1)|2σ+2

L2σ+2 ≥ 2H̄2.

Now, for t ∈ [0, T1], the mapping z 7→ v(ψ0, z, t) is continuous on a neighbourhood
of z̃ in C([0, T1],Σ)∩Lr(0, T1;W 1,2σ+2)∩L1(0, T1;Sn) with values in H1(Rn), and
lower semi-continuous with values in Σ (see Proposition 3.4 and 3.5 in [5]). Hence,
there is a ball B centered at z̃ in the preceding space, such that for any z ∈ B,
u = z + v(z, ψ0, ·) exists on [0, T1] and satisfies
(3.6)
|∇u(T1)|2L2 ≤ H̄1, |G(u(T1))| ≤ Ḡ, |V (u(T1))| ≤ V̄ , and |u(T1)|2σ+2

L2σ+2 ≥ H̄2.

The solution of (1.4) with ψ(0) = ψ0 is given by ψ(t) = z(t) + v(z, ψ0, t) with

z(t) =
∫ t

0

S(t− s)dW (s)

almost surely on [0, τ∗(ψ0)). Since Φ is Hilbert-Schmidt from L2(Rn) into Sn, z is
almost surely in C ([0, T1] ;Sn) (see [3], Theorem 6.10). Moreover, it is shown in [4]
that z is almost surely in Lr

(
0, T ;W 1,2σ+2

)
. Since the null space of Φ∗ is equal to

{0}, Φ has dense range in Sn and in W 1,2σ+2, we deduce that z is non-degenerate
(note that z is a Gaussian process with values in Sn) and P(z ∈ B) > 0; therefore
the probability that τ∗(ψ0) ≥ T1 and ψ(T1) satisfies (3.6) is positive. We now set

Ω1 = {ω ∈ Ω, τ∗ (u0) ≥ T1 and ψ(T1) satisfies (3.6)}
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and note that ψ(T1),Ω1, T̄ , V̄ , Ḡ, H̄1, H̄2 satisfy the condition of Proposition 3.1, or
Proposition 3.2. The result follows.
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