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Abstract. We prove the global existence and uniqueness of solutions both in the energy
space and in the space of square integrable functions for a Korteweg-de Vries equation with
noise. The noise is multiplicative, white in time, and is the muliplication by the solution of a
homogeneous noise in the space variable.

1. Introduction and statement of the results

The aim of the paper is to prove the global existence and uniqueness of strong solutions for
a Korteweg-de Vries equation with noise, which may be written in Itô form as

(1.1) du + (∂3
xu +

1

2
∂x(u2))dt = uφdW

where u is a random process defined on (t, x) ∈ R
+ ×R, W is a cylindrical Wiener process on

L2(R) and φ is a convolution operator on L2(R) defined by

φf(x) =

∫

R

k(x − y)f(y)dy, for f ∈ L2(R)

where the convolution kernel k is an H1(R) ∩ L1(R) function of x ∈ R. Here H1(R) is the
usual Sobolev space of square integrable functions of the space variable x, having their first
order derivative in L2(R). Considering a complete orthonormal system (ei)i∈N in L2(R), we
may alternatively write W as

(1.2) W (t, x) =
∑

i∈N

βi(t)φei(x),

(βi)i∈N being an independent family of real valued Brownian motions. Hence, the correlation
function of the process φW is

E(φW (t, x)φW (s, y)) = c(x − y)(s ∧ t), x, y ∈ R, s, t > 0,
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where

c(z) =

∫

R

k(z + u)k(u)du.

The existence and uniqueness of solutions for stochastic KdV equations of the type (1.1) but
with an additive noise have been studied in [4], [7], [8]. Here we extend those results to equation
(1.1), that is the multiplicative case with homogeneous noise.

Note that an equation of this form, but with an additional weak dissipation has been con-
sidered in [13]. Indeed, in this latter case where a dissipative term is added, such a noise may
be viewed as a perturbation of the dissipation. Although our existence and uniqueness results
would easily extend to the case where weak dissipation is added, the dissipative term is of no
help in the existence proof, so we prefer stating the result for equation (1.1).

Assuming k ∈ H1(R) ∩ L1(R) will allow us to prove the global existence and uniqueness
of solutions to equation (1.1) in the energy space H 1(R), that is in the space where both
quantities

(1.3) m(u) =
1

2

∫

R

u2(x)dx

and

(1.4) H(u) =
1

2

∫

R

(∂xu)2dx −
1

6

∫

R

u3dx

are well defined. Note that m and H are conserved quantities for the equation without noise,
that is

(1.5) ∂tu + ∂3
xu +

1

2
∂x(u2) = 0.

It is important to solve equation (1.1) in the energy space, indeed most of the studies on the
qualitative behavior of the solutions are done in this space. One of our aim in the future
is to analyse the qualitative influence of a noise on a soliton solution of the deterministic
equation, as we did in the additive case in [6], and this requires the use of the hamiltonian
(1.4). However, our method of construction of solutions easily extends to treat the case of
a kernel k ∈ L2(R) ∩ L1(R), obtaining global existence and uniqueness in L2(R). It seems
difficult to get a result with less regularity.

It may be noted also that the use of a noise of the form given in (1.1) naturally brings some
localization in the noisy part of the equation, at least in the limit where the amplitude of
the noise goes to zero, and when the initial state is a solitary wave – or soliton – solution of
the deterministic equation, that is a well localized solution which propagates with a constant
shape and velocity. This localization in the noise was a missing ingredient in the study of the
influence of an additive noise on the propagation of a soliton (see [6]).

The precise existence result is the following, and the method we use to prove it closely
follows the method in [7].

Theorem 1.1. Assume that the kernel k of the noise satisfies k ∈ H s(R) ∩ L1(R), s = 0 or
1. Then for any u0 in Hs(R), there is a unique adapted solution u with paths almost surely in
C(R+;Hs(R)) of equation (1.1). Moreover, u ∈ L2(Ω;C(R+;L2(R))).
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As in [7, 8], we use the functional framework introduced by Bourgain to study dispersive
equations. Following [3], [14], [15], for s, b ∈ R, Xb,s denotes the space of tempered distributions
f ∈ S ′(R2) for which the norm

‖f‖Xb,s
=

(∫ ∫

R2

(1 + |ξ|)2s(1 + |τ − ξ3|)2b|f̂(τ, ξ)|2dτdξ

)1/2

is finite, where f̂(τ, ξ) stands for the space-time Fourier transform of f(t, x). In the same way,
we set for b, s1, s2 ∈ R,

‖f‖ eXb,s1,s2
=

(∫ ∫

R2

|ξ|2s2(1 + |ξ|)2s1(1 + |τ − ξ3|)2b|f̂(τ, ξ)|2dτdξ

)1/2

and

X̃b,s1,s2 =
{
f ∈ S ′(R2), ‖f‖ eXb,s1,s2

< +∞
}
.

Note that the use of the space X̃b,s1,s2 is necessary here. Indeed, since we work with stochastic
equations driven by white in time noises, we cannot require too much time regularity, and we
have to choose 0 < b < 1/2. But then the bilinear estimate which allows to treat the KdV
equation is not true in the space Xb,s as was already mentioned for the additive case in [7].

For T ≥ 0, we also introduce the spaces XT
b,s and X̃T

b,s1,s2
of restrictions to [0, T ] of functions

in Xb,s and X̃b,s1,s2 . They are endowed with

‖f‖XT
b,s

= inf
{
‖f̃‖Xb,s

, f̃ ∈ Xb,s and f |[0,T ] = f̃ |[0,T ]

}

‖f‖ eXT
b,s1 ,s2

= inf
{
‖f̃‖ eXb,s1 ,s2

, f̃ ∈ X̃b,s1,s2 and f |[0,T ] = f̃ |[0,T ]

}
.

Because equation (1.1) is a multiplicative equation with a nonlinear deterministic part, we
have to consider first a cut-off version of this equation (see Section 2). As we make use of
the functional framework defined above, the cut-off will arise as a function of the norm of the
solution of the type ‖·‖Xt

b,s
. Moreover, this function of the norm must be a regular function, in

order to allow us to use a fixed point argument (i.e. in order that our mapping is a contraction
mapping, see Section 2). The fact that the functional spaces we consider are nonlocal spaces
in the time variable then brings a lot of technical difficulties, concerning points that would be
obvious if we were dealing with more classical function spaces (see e.g. the proof of Lemma
2.1).

The paper is organized as follows: Section 2 is devoted to the proof of several preliminary
lemmas and propositions, which once brought together lead quite easily to the proof of global
existence and uniqueness for the cut-off version of the equation – or to the local existence and
uniqueness for equation (1.1). In Section 3 we prove that the solutions of equation (1.1) are
global in time, by using estimates on the moments of the L2-norm of the solution. Again, due
to the spaces we consider for the local existence, the globalization argument is not obvious.



4 A. DE BOUARD AND A. DEBUSSCHE

2. Preliminaries and existence for a truncated equation

As is usual, we introduce the mild form of the stochastic Korteweg-de Vries equation (1.1).

We denote by U(t) = e−t∂3
x the unitary group on L2(R) generated by the linear equation

∂u

∂t
+

∂3u

∂x3
= 0.

Using Fourier transform, we have F(U(t)v)(ξ) = eitξ3
F(v)(ξ). We then rewrite (1.1) as follows

(2.1) u(t) = U(t)u0 −
1

2

∫ t

0
U(t − r)∂x(u2(r))dr +

∫ t

0
U(t − r)(u(r)φdW (r)), t ≥ 0.

The Xb,s and X̃b,s1,s2 norms defined in the introduction have the nice property that they
are increasing with T . However, it is more convenient to work with other norms, given by the
multiplication by the function 1l[0,T ]. In the case we consider here, that is 0 ≤ b < 1/2, we can
prove the following result, stating that the two norms are equivalent.

Lemma 2.1. Let s ≥ 0 and 0 ≤ b < 1/2, then there exist two constants C1, C2 depending on
b but not on T such that for any f ∈ Xb,s

C1‖f‖XT
b,s

≤ ‖1l[0,T ](t)f‖Xb,s
≤ C2‖f‖XT

b,s
.

Proof. The first inequality is clear and in fact we may choose C1 = 1. For the other inequality,
let us set g(t) = 1l[0,T ](t)U(−t)f(t) so that

‖1l[0,T ](t)f‖
2
Xb,s

=

∫ ∫

R2

(1 + |ξ|)2s(1 + |τ |)2b|ĝ(τ, ξ)|2dτdξ

=

∫ ∫

R2

(1 + |ξ|)2s‖(Fxg)(·, ξ)‖2
Hb

t
dξ.

The result follows from the following inequality

‖1l[0,T ]h‖Hb(R) ≤ C‖h‖Hb(R), h ∈ Hb(R),

which holds for a constant C ≥ 0 depending on 0 < b < 1/2. To prove this, we use the
following equivalent norm on H b(R) (see for instance [1]):

‖h‖2
Hb(R) =

∫ ∫

R2

|h(t) − h(r)|2

|t − r|1+2b
dtdr + ‖h‖2

L2(R).

Clearly, ‖1l[0,T ]h‖
2
L2(R) ≤ ‖h‖2

L2(R). Moreover

∫ ∫

R2

∣∣1l[0,T ](t)h(t) − 1l[0,T ](r)h(r)
∣∣2

|t − r|1+2b
drdt = 2

∫ ∫

r<t

∣∣1l[0,T ](t)h(t) − 1l[0,T ](r)h(r)
∣∣2

|t − r|1+2b
drdt

= 2

∫ T

0

∫ t

0

|h(t) − h(r)|2

|t − r|1+2b
drdt + 2

∫ T

0

∫ 0

−∞

|h(t)|2

|t − r|1+2b
drdt + 2

∫ ∞

T

∫ T

0

|h(r)|2

|t − r|1+2b
drdt

= I + II + III.
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The first term I is less than ‖h‖Hb(R). The second and third terms are equal to

II =
1

b

∫ T

0
|t|−2b|h(t)|2dt, III =

1

b

∫ T

0
|T − r|−2b|h(r)|2dr.

Both are bounded by C‖h‖Hb(0,T ). To see this, we note that it is obvious for b = 0 and results

from Hardy inequality for b = 1 when H b(0, T ) is replaced by H1
0 (0, T ). The result follows by

interpolation since, for 0 ≤ b < 1/2, H b(0, T ) = Hb
0(0, T ) . �

We now define Y T
b,0 = XT

b,0 ∩ X̃T
b,0,−3/8 endowed with the norm

‖f‖Y T
b,0

= max{‖f‖XT
b,0

, ‖f‖ eXT
b,0,−3/8

}.

We also use the space Y T
b,1 = XT

b,1 ∩ X̃T
b,1,−3/8 with a similar definition of its norm. From now

on and thanks to Lemma 2.1, we will use the definition ‖v‖T
Yb,s

= ‖1l[0,T ]v‖Yb,s
each time we

take a norm in Y T
b,s with 0 ≤ b < 1/2.

For u0 ∈ L2(Ω;H1(R)), we set

z(t) = U(t)u0, and v(t) = u(t) − z(t).

Then (2.1) is rewritten as

(2.2)

v(t) = − 1
2

∫ t

0
U(t − r)

[
∂x(v2(r)) + ∂x(z2(r)) + 2∂x(z(r)v(r))

]
dr

+

∫ t

0
U(t − r)((z(r) + v(r))φdW (r)), t ≥ 0.

Let θ be a cut-off function – θ(x) = 0 for x ≥ 2, θ(x) = 1 for 0 ≤ x ≤ 1, with θ ∈ C∞
0 (R+) –

and let θR = θ( .
R); we consider the cut-off version of (2.2) written for R > 0 as:

(2.3)

vR(t) = −
1

2

∫ t

0
U(t − r)

[
θ2
R

(
‖vR‖Y r

b,0

)
∂x(v2

R(r))
]
dr

−

∫ t

0
U(t − r)

[
θR

(
‖vR‖Y r

b,0

)
∂x(z(r)vR(r))

]
dr

−
1

2

∫ t

0
U(t − r)

[
∂x(z2(r))

]
dr

+

∫ t

0
U(t − r)((z(r) + vR(r))φdW (r)), t ≥ 0.

We find vR as a fixed point of the mapping TR, TRvR being defined by the right hand side
above. Note that the cut-off is made in the L2 in space norm, even for the H1 result. We will
choose 0 < b < 1/2 and 1/2 < c.

We use the following Lemma.
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Lemma 2.2. For any 0 ≤ b < 1/2, R > 0, v ∈ Y T
b,1, there exists C(R) such that

∥∥∥θR

(
‖v‖Y t

b,0

)
v(t)

∥∥∥
Y T

b,0

≤ C(R)

and, for s = 0 or 1, there is a positive constant C, independent of R, such that
∥∥∥θR

(
‖v‖Y t

b,0

)
v(t)

∥∥∥
Y T

b,s

≤ C ‖v(t)‖Y T
b,s

.

Proof. We use arguments similar to the proof of Lemma 2.1. Let w(t) = U(−t)v(t) then,
using the same norm on Hb(R) as in Lemma 2.1,

∥∥∥θR

(
‖v‖Y t

b,0

)
v(t)

∥∥∥
2

XT
b,0

≤ C

∫

R

∥∥∥θR

(
‖v‖Y t

b,0

)
(Fxw)(t, ξ)

∥∥∥
2

Hb
t ([0,T ])

dξ.

The L2 part of the Hb norm above is easily estimated, while the other part is bounded above
by

C

∫

R

∫ T

0

∫ t

0
θ2
R

(
‖v‖Y t

b,0

) |(Fxw)(t, ξ) − (Fxw)(r, ξ)|2

|t − r|1+2b
drdtdξ

+C

∫

R

∫ T

0

∫ t

0

(
θR

(
‖v‖Y t

b,0

)
− θR

(
‖v‖Y r

b,0

))2 |(Fxw)(r, ξ)|2

|t − r|1+2b
drdtdξ

= I + II.

Next, we define τR = inf{t ≥ 0, ‖v‖Y t
b,0

≥ 2R}; then θR

(
‖v‖Y t

b,0

)
= 0 for t ≥ τR and

I ≤ C

∫

R

∫ τR

0

∫ t

0

|(Fxw)(t, ξ) − (Fxw)(r, ξ)|2

|t − r|1+2b
drdtdξ

≤ C

∫

R

‖(Fxw)(·, ξ)‖2
Hb(0,τR) dξ ≤ C‖v‖X

τR
b,0

≤ 2CR.

In order to estimate II, we use the fact that for r < t,

(
θR

(
‖v‖Y t

b,0

)
− θR

(
‖v‖Y r

b,0

))2
≤

C

R2
|θ′|2L∞ |‖v‖Y t

b,0
− ‖v‖Y r

b,0
|2

≤
C

R2
|‖1l[0,t]v‖Yb,0

− ‖1l[0,r]v‖Yb,0
|2 ≤

C

R2
‖1l[r,t]v‖

2
Yb,0

≤
C

R2

∫

R

(1 + |η|−3/4)‖1l[r,t](Fxw)(., η)‖2
Hb dη.

We leave to the reader the estimate of the contribution to II of the L2 part of the Hb norm
above; indeed, it follows the same line as the estimate of the remaining contribution, which is
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bounded above by

C

R2

∫

R

∫

R

(1 + |η|−3/4)

∫ τR

0

∫ t

0

∫ t

r

∫ σ2

r

|(Fxw)(σ2, η) − (Fxw)(σ1, η)|2

|σ2 − σ1|1+2b
dσ1dσ2

×
|(Fxw)(r, ξ)|2

|t − r|1+2b
drdtdηdξ

≤
C

R2

∫

R

∫

R

(1 + |η|−3/4)

∫ τR

0

∫ σ2

0

∫ σ1

0

(∫ τR

σ2

dt

|t − r|1+2b

)
|(Fxw)(r, ξ)|2dr

×
|(Fxw)(σ2, η) − (Fxw)(σ1, η)|2

|σ2 − σ1|1+2b
dσ1dσ2dηdξ

where we have inverted the integrals in the time variables; this last term is in turn bounded
above by

C

R2

∫

R

∫

R

(1 + |η|−3/4)

∫ τR

0

∫ σ2

0

(∫ σ1

0
|σ1 − r|−2b|(Fxw)(r, ξ)|2dr

)

×
|(Fxw)(σ2, η) − (Fxw)(σ1, η)|2

|σ1 − σ2|1+2b
dσ1dσ2dηdξ ,

by the fact that |τR − r|−2b ≤ |σ2 − r|−2b ≤ |σ1 − r|−2b for 0 ≤ r ≤ σ1 ≤ σ2 ≤ t ≤ τR.
Using then the same arguments as in the proof of Lemma 2.1, we finally get

II ≤
C

R2

∫

R

‖(Fxw)(., ξ)‖2
Hb(0,τR)dξ

∫

R

(1 + |η|−3/4)‖(Fxw)(., η)‖2
Hb(0,τR)dη

≤
C

R2
‖v‖2

Y
τR

b,0
‖v‖2

X
τR
b,0

.

This, together with the estimate of I implies the first inequality of the Lemma for the Xb,0

part of the Yb,0 norm; the X̃b,0,−3/8 part, and the second inequality of the Lemma are proved
in the same way. �

Next results state the estimates on the bilinear term appearing in (2.3).

Proposition 2.3. Let a > 0, 0 < b < 1/2 < c < 1, with b + c > 1 and a, b, c sufficiently close
to 1/2, then for any v ∈ Y T

b,s, z ∈ XT
c,s, s = 0 or 1, we have

‖∂x(v2)‖Y T
−a,s

≤ C‖v‖Y T
b,0
‖v‖Y T

b,s
,

‖∂x(vz)‖Y T
−a,s

≤ C
(
‖v‖Y T

b,0
‖z‖XT

c,s
+ ‖v‖Y T

b,s
‖z‖XT

c,0

)
,

and

‖∂x(z2)‖Y T
−a,s

≤ C‖z‖XT
c,s
‖z‖XT

c,0
.
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Proof. These estimates are proved in [7], Proposition 2.2 and 2.3, for s = 0. These are easily
extended to s = 1. It suffices to add a factor 1 + |ξ| in the expression

|〈f, ∂x(gh)〉|

=

∣∣∣∣
∫

τ

∫

ξ
ξf̂(τ, ξ)

∫

τ1

∫

ξ1

ĝ(τ − τ1, ξ − ξ1)ĥ(τ1, ξ1)dτ1dξ1 dτdξ

∣∣∣∣ ,

and to use the fact that 1 + |ξ| ≤ (1 + |ξ − ξ1|) + (1 + |ξ1|). �

Remark 2.4. It does not seem possible to get rid of the homogeneous Sobolev space, i.e.

of X̃b,0,−3/8, to get the result of Proposition 2.3, when b < 1/2, even in the case s = 1;
indeed, a careful reading of the proof of Proposition 2.2 in [7] shows that the additional

factor |ξ|−3/4 induced by the use of X̃b,0,−3/8 is necessary in a region of the integral where
|ξ1| � |ξ|, so that |ξ − ξ1| ∼ |ξ|, and with moreover |ξ| ≤ 1; hence the supplementary factor
(1 + |ξ − ξ1|)(1 + |ξ1|)/(1 + |ξ|) is of no help there.

It remains to derive the estimates on the stochastic integrals in (2.3). In order to be able to
globalize the solutions in Section 3, we will need estimates on all the moments of the stochastic
integrals.

Proposition 2.5. Let m ∈ N, s = 0 or 1, and v ∈ L2m(Ω, XT
b,s); then for any 0 ≤ b ≤ 1/2,

E

(∥∥∥∥
∫ t

0
U(t − r) [v(r)φdW (r)]

∥∥∥∥
2m

XT
b,s

)
≤ C‖k‖2m

Hs(R)E

(
‖v‖2m

XT
0,s

)

≤ CT bm‖k‖2m
Hs(R)E

(
‖v‖2m

XT
b,s

)
.

Moreover

E



∥∥∥∥
∫ t

0
U(t − r) [v(r)φdW (r)]

∥∥∥∥
2m

eXT
b,s−3/8


 ≤ C

(
‖k‖2m

Hs(R) + ‖k‖2m
L1(R)

)
E

(
‖v‖2m

XT
0,s

)

≤ CT bm
(
‖k‖2m

Hs(R) + ‖k‖2m
L1(R)

)
E

(
‖v‖2m

XT
b,s

)
.

Proof. We prove the result for s = 1, the proof is exactly the same for s = 0. We set

w(t) = 1l[0,T ](t)

∫ t

0
U(t − r)[v(r)φdW (r)]. Let

g(t) = 1l[0,T ](t)

∫ t

0
U(−r) [v(r)φdW (r)] ,

then w(t) = U(t)g(t), t ≥ 0. We have

E

(
‖w‖2m

Xb,1

)
= E

((∫ ∫

R2

(1 + |ξ|)2(1 + |τ |)2b|ĝ(τ, ξ)|2dτdξ

)m)
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Choosing Brownian motions (βk)k∈N, defined on R, we have

(Fxg)(t, ξ) =
∞∑

k=0

1l[0,T ](t)

∫ t

0
eirξ3

Fx (v(r)φek) (ξ)dβk(r)

=

∞∑

k=0

1l[0,T ](t)

∫ t

−∞
1l[0,T ](r)e

irξ3
Fx (v(r)φek) (ξ)dβk(r).

It follows

ĝ(τ, ξ) =
∞∑

k=0

∫

R

1l[0,T ](t)

∫ t

−∞
1l[0,T ](r)e

irξ3
Fx (v(r)φek) (ξ)dβk(r)e−iτ tdt

=

∞∑

k=0

∫

R

1l[0,T ](r)e
irξ3

Fx (v(r)φek) (ξ)

(∫ ∞

r
1l[0,T ](t)e

−iτ tdt

)
dβk(r).

By Burkholder inequality, we deduce:

E

((∫ ∫

R2

(1 + |ξ|)2(1 + |τ |)2b|ĝ(τ, ξ)|2dτdξ

)m)

≤ CmE

(( ∞∑

k=0

∫ ∫ ∫

R3

(1 + |ξ|)2(1 + |τ |)2b1l[0,T ](r) |Fx (v(r)φek) (ξ)|2

×

∣∣∣∣
∫ ∞

r
1l[0,T ](t)e

−iτ tdt

∣∣∣∣
2

drdξdτ

)m)

It easy to see that

∣∣∣∣
∫ ∞

r
1l[0,T ](t)e

−iτ tdt

∣∣∣∣
2

≤ min{T 2, 2τ−2}.

Therefore, using Lemma 2.6 below,

E

((∫ ∫

R2

(1 + |ξ|)2(1 + |τ |)2b|ĝ(τ, ξ)|2dτdξ

)m)

≤ CE

((∫ ∫ ∫ ∫

R4

(1 + |ξ|)2(1 + |τ |)2b min{T 2, 2τ−2}1l[0,T ](r) |(Fxv(r))(ξ + η)|2

×|k̂(η)|2dηdrdξdτ

)m)
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which in turn we bound from above, using the unitarity of U(t) in L2 and in H1, by

CE

((∫ ∫ ∫

R3

[
(1 + |ξ + η|)2 + (1 + |η|2)

]
1l[0,T ](r) |(Fxv(r))(ξ + η)|2

×|k̂(η)|2dηdrdξ

)m)

≤ C
[
‖k‖2m

L2(R)E

(
‖1l[0,T ]v‖

2m
X0,1

)
+ ‖k‖2m

H1(R)E

(
‖1l[0,T ]v‖

2m
X0,0

)]

≤ C

[
‖k‖2m

L2(R)E

(
‖v‖2m

XT
0,1

)
+ ‖k‖2m

H1(R)E

(
‖v‖2m

XT
0,0

)]
.

For the second statement, we proceed similarly. However, the extra |ξ|−3/4 implies that a

special treatment of the integral for |ξ| ≤ 1. On the region |ξ| ≥ 1, we simply use |ξ|−3/4 ≤ 1.
The following estimate is thus sufficient to conclude.

E

((∫

|ξ|≤1

∫ ∫

R2

(1 + |ξ|)2|ξ|−3/41l[0,T ](r) |(Fxv(r))(ξ + η)|2 |k̂(η)|2dηdrdξ

)m)

≤ CE

((∫ ∫

R2

(∫

|ξ|≤1
|ξ|−3/4|k̂(η − ξ)|2dξ

)
1l[0,T ](r) |Fx(v(r))(η)|2 dηdr

)m)

≤ C‖k̂‖L∞(R)E

(
‖v‖2m

XT
0,0

)

≤ C‖k‖L1(R)E

(
‖v‖2m

XT
0,0

)
.

�

We now give the Lemma used in the above proof.

Lemma 2.6. Let v ∈ X0,0, then for any complete orthonormal system (ek)k∈N of L2(R), we
have

∞∑

k=0

|Fx (v(r)φek) (ξ)|2 =

∫

R

|Fx(v(r))(ξ + η)|2 |k̂(η)|2dη.

Proof. We have

Fx (v(r)φek) (ξ) = Fx

(
v(r, x)〈k(x − y), ek(y)〉L2

y

)
(ξ) = 〈Fx (v(r, x)k(x − y)) (ξ), ek(y)〉L2

y
.

Therefore, by Parseval identity,
∞∑

k=0

|Fx (v(r)φek) (ξ)|2 = ‖Fx (v(r, x)k(x − y)) (ξ)‖2
L2

y
,

and by Plancherel theorem and an easy computation
∞∑

k=0

|Fx (v(r)φek) (ξ)|2 = ‖Fx,y (v(r, x)k(x − y)) (ξ, η)‖2
L2

η
= ‖Fx(v(r))(ξ + .)

¯̂
k‖2

L2 ,
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which gives the conclusion. �

The proof of the next proposition is left to the reader. It only makes use of classical
arguments and ideas similar to those at the end of the proof of Proposition 2.5.

Proposition 2.7. Let s = 0 or 1. For any T0 > 0, any stopping time τ and any predictable
process v ∈ L2(Ω;C([0, T0 ∧ τ ];Hs(R))),

∫ ·
0 U(· − r)[φv(r)dW (r)] has continuous paths with

values in Hs(R) ∩ Ḣ−3/8(R) and for any integer m, there is a constant Cm with

E

(
sup

t≤T0∧τ

∥∥∥∥
∫ t

0
U(t − r)[φv(r)dW (r)]

∥∥∥∥
2m

Hs∩Ḣ−3/8

)
≤ CmE

(
sup

t≤T0∧τ
‖v(t)‖2m

Hs

)
.

We are now able to prove the following existence theorem for the truncated equation.

Theorem 2.8. Let s = 0 or 1 and assume that the convolution kernel of the operator φ
satisfies k ∈ Hs(R) ∩ L1(R); then for any u0 in Hs(R), equation (2.3) with z(t) = U(t)u0

has a unique solution vR ∈ Y T0
b,s , for any b with 0 < b < 1/2, and any T0 ≥ 0. Moreover

vR ∈ L2(Ω;C([0, T0];H
s(R))).

Proof. We use a fixed point argument on equation (2.3). The following lemma, whose first
and third estimates were proved in [7], while the second one can be proved in the same way, is
useful.

Lemma 2.9. • Let u0 ∈ Hs(R), s = 0 or 1. For any T > 0 and c > 1/2, z = U(·)u0 ∈
XT

c,s and

‖z‖XT
c,s

≤ C(T )‖u0‖Hs(R).

• For any u0 ∈ Hs(R) ∩ Ḣ−3/8(R), and any b with 0 ≤ b < 1/2, z = U(·)u0 ∈ Y T
b,s and

‖z‖Y T
b,s

≤ C(T )(‖u0‖Hs(R) + ‖u0‖Ḣ−3/8(R)).

• For any a, b ∈ (0, 1) with a + b ≤ 1, and any f ∈ Y T
−a,s,

∫ ·
0 U(· − r)f(r)dr ∈ Y T

b,s and

∥∥∥∥
∫ ·

0
U(· − r)f(r)dr

∥∥∥∥
Y T

b,s

≤ CT 1−(a+b)‖f‖Y T
−a,s

.

We first assume that the hypothesis of Theorem 2.8 hold with s = 0. Let us fix a, b, c as in
Proposition 2.3, with a + b < 1. We fix T0 and take T ≤ T0. Let v1, v2 ∈ Y T

b,0, T being also

fixed. We set ṽi(t) = θR

(
|vi|Y t

b,0

)
vi(t), i = 1, 2. Then, recalling that TRvR is defined by the
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right hand side of (2.3), we have

E

(
‖TRv1 − TRv2‖

2
Y T

b,0

)

≤ CE

(∥∥∥∥
∫ t

0
U(t − r)∂x

[
(ṽ1(r))

2 − (ṽ2(r))
2
]
dr

∥∥∥∥
2

Y T
b,0

)

+CE

(∥∥∥∥
∫ t

0
U(t − r)∂x [(ṽ1(r) − ṽ2(r)) z(r)] dr

∥∥∥∥
2

Y T
b,0

)

+CE

(∥∥∥∥
∫ t

0
U(t − r) [(v1(r) − v2(r)) φdW (r)]

∥∥∥∥
2

Y T
b,0

)

which, by Lemma 2.9 and Proposition 2.5, applied with m = 1, is bounded above by

CT 2(1−(a+b))
E

(∥∥∥∂x

(
(ṽ1)

2 − (ṽ2)
2
)∥∥∥

2

Y T
−a,0

)
+ CT 2(1−(a+b))

E

(
‖∂x ((ṽ1 − ṽ2) z)‖2

Y T
−a,0

)

+CT b
E

(
‖v1 − v2‖

2
XT

b,0

)
.

By Proposition 2.3, it follows

E

(
‖TRv1 − TRv2‖

2
Y T

b,0

)

≤ CT 2(1−(a+b))
{

E

(
‖ṽ1 − ṽ2‖

2
Y T

b,0
‖ṽ1 + ṽ2‖

2
Y T

b,0

)
+ E

(
‖ṽ1 − ṽ2‖

2
Y T

b,0

)
‖z‖2

XT
c,0

}

+CT b
E

(
‖v1 − v2‖

2
XT

b,0

)
.

By Lemma 2.2,

‖ṽ1 + ṽ2‖
2
Y T

b,0
≤ C(R).

Moreover, it is not difficult to use the arguments of the proof of Lemma 2.2 and prove

‖ṽ1 − ṽ2‖
2
Y T

b,0
≤ C(R) ‖v1 − v2‖

2
Y T

b,0
.

We deduce that for some α > 0,

E

(
‖TRv1 − TRv2‖

2
Y T

b,0

)
≤ C(R, T0, ‖u0‖L2(R))T

α
E ‖v1 − v2‖

2
Y T

b,0
.

Thus, TR has a unique fixed point vR ∈ L2(Ω;Y T
b,0) for T ≤ T∗ where T∗ is chosen such that

C(R, T0, ‖u0‖L2(R))T
α
∗ ≤ 1/2.

Moreover, using arguments similar to the proof of Proposition 2.5, it can be seen that∫ t
0 U(−r) [(z(r) + vR(r)) φdW (r)] is a square integrable martingale in L2(R)∩Ḣ−3/8(R). Since
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(U(t))t∈R is strongly continuous on L2(R) ∩ Ḣ−3/8(R), we deduce that

∫ t

0
U(t − r) [(z(r) + vR(r))φdW (r)] ∈ L2(Ω;C([0, T∗];L

2(R) ∩ Ḣ−3/8(R))).

Using then Lemma 2.9 with b > 1/2 and similar estimates as above, we deduce that vR is also

in L2(Ω;C([0, T∗];L
2(R) ∩ Ḣ−3/8(R))).

Then, we construct a solution in [T∗, 2T∗]. First, we write equation (2.3) with t ≥ T∗ in the
form

(2.4)

vR(T∗ + t) = U(t)vR(T∗) −
1

2

∫ t

0
U(t − r)

[
θ2
R

(
‖vR‖Y T∗+r

b,0

)
∂x(v2

R(T∗ + r))
]
dr

−

∫ t

0
U(t − r)

[
θR

(
‖vR‖Y T∗+r

b,0

)
∂x(z(T∗ + r)vR(T∗ + r))

]
dr

−
1

2

∫ t

0
U(t − r)

[
∂x(z2(T∗ + r))

]
dr

+

∫ t

0
U(t − r)((z(T∗ + r) + vR(T∗ + r))φdW (r)), t ≥ 0.

Since vR(T∗) ∈ L2(Ω;L2(R)∩ Ḣ−3/8(R)), the first term is in L2(Ω;Y T∗

b,0 ). It is then easily seen

that vR can be found on [T∗, 2T∗] as a fixed point in L2(Ω;Y T∗

b,0 ) in the same way as on the

interval [0, T∗].

Iterating this, we get a solution on [0, T0] which is in fact in L2(Ω;Y T0
b,0 ) and also in

L2(Ω;C([0, T0];L
2(R) ∩ Ḣ−3/8(R))). This proves the result for s = 0.

Now suppose that the assumptions hold with s = 1. Let v ∈ L2(Ω;Y T
b,1); we have, setting

ṽ(t) = θR(‖v‖Y t
b,0

)v(t), and using Lemma 2.9,

‖TRv‖Y T
b,1

≤ CT 1−(a+b)
[
‖ṽ∂xṽ‖Y T

−a,1
+ ‖∂x (ṽz)‖Y T

−a,1
+
∥∥∂x

(
z2
)∥∥

Y T
−a,1

]

+

∥∥∥∥
∫ t

0
U(t − r) [z(r)φdW (r)]

∥∥∥∥
Y T

b,1

+

∥∥∥∥
∫ t

0
U(t − r) [v(r)φdW (r)]

∥∥∥∥
Y T

b,1

,

so that by Proposition 2.3,

‖TRv‖Y T
b,1

≤ CT 1−(a+b)
[
‖ṽ‖Y T

b,0
‖ṽ‖Y T

b,1
+ ‖ṽ‖Y T

b,0
‖z‖XT

c,1
+ ‖ṽ‖Y T

b,1
‖z‖XT

c,0
+ ‖z‖XT

c,0
‖z‖XT

c,1

]

+

∥∥∥∥
∫ t

0
U(t − r) [z(r)φdW (r)]

∥∥∥∥
Y T

b,1

+

∥∥∥∥
∫ t

0
U(t − r) [v(r)φdW (r)]

∥∥∥∥
Y T

b,1

.
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We then make use of Lemma 2.2 and Lemma 2.9 to get

‖TRv‖Y T
b,1

≤ CT 1−(a+b)

(
‖v‖Y T

b,1
+ ‖z‖

X
T0
c,1

)(
C(R) + ‖z‖

X
T0
c,0

)

+

∥∥∥∥
∫ t

0
U(t − r) [z(r)φdW (r)]

∥∥∥∥
Y T

b,1

+

∥∥∥∥
∫ t

0
U(t − r) [v(r)φdW (r)]

∥∥∥∥
Y T

b,1

≤ C(R, T0, ‖u0‖L2(R))T
1−(a+b)

(
‖v‖Y T

b,1
+ ‖u0‖H1(R)

)

+

∥∥∥∥
∫ t

0
U(t − r) [z(r)φdW (r)]

∥∥∥∥
Y T

b,1

+

∥∥∥∥
∫ t

0
U(t − r) [v(r)φdW (r)]

∥∥∥∥
Y T

b,1

.

Thus, by Proposition 2.5 and Lemma 2.9,

E

(
‖TRv‖2

Y T
b,1

)
≤
[
C(R, T0, ‖u0‖L2(R))T

2(1−(a+b)) + CT b
] (

E

(
‖v‖2

Y T
b,1

)
+ ‖u0‖

2
H1(R)

)
.

This shows that TR maps L2(Ω;Y T
b,1) into itself. Moreover, the ball in L2(Ω;Y T

b,1) of radius

R0 is invariant by TR if T ≤ T∗∗ such that C(R, T0, ‖u0‖L2(R))T
2(1−(a+b))
∗∗ + CT b

∗∗ ≤ 1/2 and
R0 ≥ ‖u0‖H1(R).

Choosing T∗ ≤ T∗∗ in the construction of the solution vR of (2.3) in L2, it follows that

the solution vR is in L2(Ω;Y T∗

b,1 ). We then use similar arguments as above to prove that

vR ∈ L2(Ω;C([0, T∗];H
1(R)) and

E

(
sup
[0,T∗]

‖vR‖
2
H1(R)

)
≤ CT

2(1−(a+b̃))
∗

(
E

(
‖vR‖

2
Y T∗

b,1

)
+ ‖u0‖

2
H1(R)

)(
C(R) + ‖u0‖L2(R)

)2

+E

(
sup
[0,T∗]

∥∥∥∥
∫ t

0
U(t − r) [(z(r) + vR(r))φdW (r)]

∥∥∥∥
2

H1(R)

)

≤ CT
2(1−(a+b̃))
∗

(
E

(
‖vR‖

2
Y T∗

b,1

)
+ ‖u0‖

2
H1(R)

)(
C(R) + ‖u0‖L2(R)

)2

+CT∗E

(
sup
[0,T∗]

‖vR‖
2
H1(R)

)
+ CT∗ ‖u0‖

2
H1(R) ,

with b̃ > 1/2 and a + b̃ < 1. Choosing a smaller T∗ if necessary, we deduce

E

(
sup
[0,T∗]

‖vR‖
2
H1(R)

)
≤ R2

0,

if R0 ≥ ‖u0‖H1(R). On [T∗, 2T∗], we use equation (2.4) and obtain by similar arguments

E

(
‖vR(T∗ + ·)‖2

Y T∗

b,1

)
≤ C(T∗)E

(
‖vR(T∗)‖

2
H1(R)∩Ḣ−3/8(R)

)
+ ‖u0‖

2
H1(R),
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and

E

(
sup

[T∗,2T∗]
‖vR‖

2
H1(R)

)
≤ CE

(
‖vR(T∗)‖

2
H1(R)∩Ḣ−3/8(R)

)
+ R2

0.

We know from the L2 contruction that vR ∈ L2(Ω;C([0, T0]; Ḣ
−3/8(R))), therefore

E

(
sup

[T∗,2T∗]
‖vR‖

2
H1(R)

)
≤ CE

(
‖vR(T∗)‖

2
H1(R)

)
+ R2

0 + E

(
sup
[0,T0]

‖vR‖
2
Ḣ−3/8(R)

)
.

It is now easy to iterate this argument and deduce that the solution vR is in L2(Ω;Y T0
b,1 ) and

also in L2(Ω;C([0, T0];H
1(R))). �

Theorem 2.8 gives the following local in time existence result for the non truncated equation.

Corollary 2.10. Let s = 0 or 1 and assume that k ∈ H s(R)∩L1(R); then for any u0 ∈ Hs(R),
there is a stopping time τ ∗(u0, ω) a.s. positive, such that (2.1) has an adapted solution u,
defined a.s. on [0, τ ∗(u0)[, unique in some class, and with paths a.s. in C([0, τ ∗(u0)[;H

s(R)). If
s = 1, the uniqueness holds among solutions with paths in C([0, τ ∗(u0)[;H

1(R)) a.s; moreover,
the stopping time τ ∗(u0) satisfies

τ∗(u0) = +∞ or lim sup
t↗τ∗(u0)

‖u − U(·)u0‖Y t
b,0

= +∞, a.s.

Remark 2.11. Let us explain what we mean by a solution on the random interval [0, τ ∗(u0)[.
This means that u is defined on [0, τ ∗(u0)[ and is an adapted process such that for any stopping
time τ < τ ∗(u0) the following holds on [0, τ ]:

u(t) = U(t)u0 −
1

2

∫ t

0
U(t − r)∂x(u2(r))dr +

∫ t∧τ

0
U(t − r)(u(r)φdW (r)).

Proof. Let z(t) = U(t)u0 and let vR ∈ Y T0
b,s for any b < 1/2 and any T0 > 0 be the solution

of (2.3) given by Theorem 2.8. We then set τR = inf{t ≥ 0, ‖vR‖Y t
b,0

≥ R}; for t ∈ [0, τR], we

have θR(‖vR‖Y t
b,0

) = 1, hence vR is a solution of (2.2) on [0, τR]. It is not difficult to see that

τR is non decreasing in R and that vR+1 = vR on [0, τR]. Hence we may define u on [0, τ ∗(u0)[
with τ∗(u0) = limR→∞ τR by setting u(t) = vR(t) + z(t) for t ∈ [0, τR] and u is then a solution
of (2.1) on [0, τ ∗(u0)[. The uniqueness for u holds in the class z + Y τR

b,0 for any R and it is not

difficult to see that any solution u with paths in C([0, τ ∗(u0)[;H
1(R)) is in this class. The last

property of the lemma is an immediate consequence of the definition of τ ∗(u0). �

3. Global existence

As already seen, Theorem 2.8 gives a local in time existence result for the equation without
cut-off. In the present section, we end the proof of Theorem 1.1 by showing that those solutions
are globally defined in time. To that aim we need an estimate on ‖v‖Y T

b,0
. We will use the

following result.

Proposition 3.1. Assume that k ∈ L2(R). Let u ∈ C([0, τ ]);L2(R)) be a solution of equation
(2.1) with u0 ∈ L2(R), where τ is a stopping time. Then, for any m ≥ 1, u ∈ L2m(Ω;C([0, τ ];L2(R)))
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and for any T > 0

E

(
sup

t∈[0,τ∧T ]
|u(t)|2m

L2(R)

)
≤ C(T, ‖u0‖L2(R),m).

Proof. The result is a straightforward consequence of Ito formula. We prove it for m = 2.
For m ≤ 2 it then follows from Hölder inequality. For m ≥ 2, the proof is similar.

We apply Ito formula to M(u) = ‖u‖2
L2(R) and obtain after a regularization argument and

easy computations (see [4] for more details in the case of an additive noise or [5] for the case
of the stochastic Schrödinger equation):

M(u(τ ∧ r)) = M(u0) + 2

∞∑

k=0

∫ τ∧r

0

∫

R

u2(σ, x)φek(x)dxdβk(σ) + ‖k‖2
L2(R)

∫ τ∧r

0
M(u(σ))dσ.

We take the square of this identity and deduce:

E

(
sup

r∈[0,τ∧T ]
M2(u(r))

)

≤ 2M2(u0) + 4E


 sup

r∈[0,τ∧T ]

∣∣∣∣∣

∞∑

k=0

∫ r∧T

0

∫

R

u2(σ, x)φek(x)dxdβk(σ)

∣∣∣∣∣

2



+2‖k‖4
L2(R)E

((∫ τ∧T

0
M(u(σ))dσ

)2
)

≤ 2M2(u0) +
(
4‖k‖2

L2(R) + 2T‖k‖4
L2(R)

)
E

(∫ τ∧T

0
M2(u(r))dr

)
,

thanks to Burkholder and Hölder inequalities, and to Lemma 2.6. The result follows from
Gronwall Lemma. �

Let vR be the solution given by Theorem 2.8, let T0 > 0 be fixed, and let τR = inf{t ∈
[0, T0], ‖vR‖Y t

b,0
≥ R}; then on [0, τR], vR+z is a solution to (2.1) which is a.s. in C([0, τR];L2(R))

and Proposition 3.1 applies:

(3.1) E

(
sup

t∈[0,τR∧T0]
|vR(t) + z(t)|2m

L2(R)

)
≤ C(T0, ‖u0‖L2(R),m).

We now show that this implies an estimate on the Y T
b,0 norm of vR.

Lemma 3.2. Let vR be the solution of the truncated equation (2.3), then there exists a constant
C(T0, ‖u0‖L2(R)) independent of R such that

E

(
‖vR‖Y

τR
b,0

)
≤ C(T0, ‖u0‖L2(R)).

Proof.
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Step 1: Using similar arguments as in the beginning of the proof of Theorem 2.8, taking into
account the fact that vR satisfies equation (2.3), we prove using Lemma 2.2 that for T0 ≥ T ≥ 0,

‖vR‖Y
T∧τR
b,0

≤ CT 1−(a+b)

[
‖vR‖

2

Y
T∧τR
b,0

+ ‖z‖2

X
T0
c,0

]
+

∥∥∥∥
∫ t

0
U(t − r) [uR(r)φdW (r)]

∥∥∥∥
Y

T0
b,0

≤ CT 1−(a+b)

[
‖vR‖

2

Y
T∧τR
b,0

+ C(T0) ‖u0‖
2
L2(R)

]
+

∥∥∥∥
∫ t

0
U(t − r) [uR(r)φdW (r)]

∥∥∥∥
Y

T0
b,0

,

with uR(t) = vR(t) + U(t)u0. We set

K1 = K1(ω) = CT
1−(a+b)
0 C(T0) ‖uR‖

2
C([0,T0];L2(R)) +

∥∥∥∥
∫ t

0
U(t − r) [uRφdW (r)]

∥∥∥∥
Y

T0
b,0

,

then

CT 1−(a+b) ‖vR‖
2

Y
T∧τR
b,0

− ‖vR‖Y
T∧τR
b,0

+ K1 ≥ 0.

Therefore, if we choose T = T (ω) such that T 1−(a+b) =
3

16CK1
, we have

‖vR‖Y
T∧τR
b,0

≤ 2K1.

Note indeed that vR(0) = 0 and that ‖vR‖|Y
t
b,0 is a continuous function of t. Similarly, for any

k ≥ 0, we define

vk
R(t) = uR(t) − U(t − kT )uR(kT ), t ∈ [kT, (k + 1)T ],

with T = T (ω) chosen above. Then the same argument shows that

∥∥∥vk
R

∥∥∥
Y

[kT∧τR,(k+1)T∧τR]

b,0

≤ 2K1,

where we use the space Y
[T1,T2]
b,0 whose definition is exactly the same as Y T

b,0 but [0, T ] is replaced

by [T1, T2].

Step 2: Since uR is a solution of (2.1) on [0, τR], we may write for any t ∈ [0, τR], uR(t) as

uR(t) = U(t)u0 −
1
2

∫ t

0
U(t − r)∂x(u2

R(r))dr +

∫ t

0
U(t − r) [uR(r)φdW (r)]

= U(t)u0 −
1

2

kt∑

k=0

∫ (k+1)T∧t

kT
U(t − r)∂x

[(
vk
R(r) + U(r − kT )uR(kT )

)2
]

dr

+

∫ t

0
U(t − r) [uR(r)φdW (r)] ,
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where kt is the integer part of t/T . Using this decomposition and the unitarity of U(σ) in

Ḣ−3/8 for any σ, we deduce that for any t ∈ [0, τR],

‖uR(t) − U(t)u0‖Ḣ−3/8(R)

≤
1

2

kt∑

k=0

∥∥∥∥∥

∫ (k+1)T∧t

kT
U(t − r)∂x

[(
vk
R(r) + U(r − kT )uR(kT )

)2
]

dr

∥∥∥∥∥
Ḣ−3/8(R)

+

∥∥∥∥
∫ t

0
U(t − r) [uR(r)φdW (r)]

∥∥∥∥
Ḣ−3/8(R)

≤
1

2

kt∑

k=0

∥∥∥∥∥

∫ (k+1)T∧t

kT
U((k + 1)T ∧ t − r)∂x

[(
vk
R(r) + U(r − kT )uR(kT )

)2
]

dr

∥∥∥∥∥
Ḣ−3/8(R)

+

∥∥∥∥
∫ t

0
U(t − r) [uR(r)φdW (r)]

∥∥∥∥
Ḣ−3/8(R)

.

Now, suppose that a is fixed with 0 < a < 1/2 in such a way that Proposition 2.3 holds, and set

b̃ = 1− a, so that b̃ > 1/2. Then, using the fact that Y
[T1,T2]

b̃,0
⊂ C([[T1, T2];L

2(R)∩ Ḣ−3/8(R))

for any positive T1, T2, we have for t ∈ [0, τR] and k = 0, . . . , kt,

∥∥∥∥∥

∫ (k+1)T∧t

kT
U((k + 1)T ∧ t − r)∂x

[(
vk
R(r) + U(r − kT )uR(kT )

)2
]

dr

∥∥∥∥∥
Ḣ−3/8(R)

≤

∥∥∥∥
∫ ·

kT
U(· − r)∂x

[(
vk
R(r) + U(r − kT )uR(kT )

)2
]

dr

∥∥∥∥
C([kT∧τR,(k+1)T∧τR];Ḣ−3/8(R))

≤ C

∥∥∥∥
∫ ·

kT
U(· − r)∂x

[(
vk
R(r) + U(r − kT )uR(kT )

)2
]

dr

∥∥∥∥
Y

[kT∧τR,(k+1)T∧τR]

b̃,0

.

By Lemma 2.9, the above term is majorized for each k ∈ {0, · · · , kt} by

CT 1−(a+b̃)
∥∥∥∂x

[(
vk
R + U(· − kT )uR(kT )

)2]∥∥∥
Y

[kT∧τR,(k+1)T∧τR]
−a,0

≤ C

{∥∥vk
R

∥∥2

Y
[kT∧τR,(k+1)T∧τR]

b,0
+ ‖uR(kT )‖2

L2(R)

}
,

by Proposition 2.3 and Lemma 2.9 again, since a + b̃ = 1. By the result of step 1, we obtain

‖uR(t) − U(t)u0‖Ḣ−3/8(R) ≤ K2, t ∈ [0, τR],

with

K2 =
1

2
CT0T

−1
[
4K2

1 + ‖uR‖
2
C([0,T0];L2(R))

]
+

∥∥∥∥
∫ ·

0
U(· − r) [uR(r)φdW (r)]

∥∥∥∥
C([0,T0];Ḣ−3/8(R)

.
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Step 3: By Lemma 2.9, and the unitarity of U(kT ) on L2(R) ∩ Ḣ−3/8(R) we have

‖U(t − kT )uR(kT ) − U(t)u0‖Y
[kT∧τR,(k+1)T∧τR]

b,0

≤ C ‖U(−kT )uR(kT ) − u0‖L2(R)∩Ḣ−3/8(R)

≤ C ‖uR(kT ) − U(kT )u0‖L2(R)∩Ḣ−3/8(R) .

Therefore, using step 2,

‖U(· − kT )uR(kT ) − U(·)u0‖Y
[kT∧τR,(k+1)T∧τR]

b,0

≤ K3 = C
(
K2 + 2 ‖uR‖C([0,T0];L2(R))

)
.

Finally, for t ∈ [kT ∧ τR, (k + 1)T ∧ τR], we have

vR(t) = vk
R(t) + U(t − kT )uR(kT ) − U(t)u0,

and we may write, k0 being the integer part of T0/T ,

‖vR‖Y
τR
b,0

≤

k0∑

k=0

‖vR‖Y
[kT∧τR,(k+1)T∧τR]

b,0

≤

k0∑

k=0

∥∥∥vk
R

∥∥∥
Y

[kT∧τR,(k+1)T∧τR]

b,0

+ ‖U(· − kT )u(kT ) − U(·)u0‖Y
[kT∧τR,(k+1)T∧τR]

b,0

≤

(
T0

T
+ 1

)
(2K1 + K3) .

Note that T−1 is proportional to K
1/(1−(a+b))
1 ; by Proposition 3.1 and Proposition 2.7, K1 and

K3 have all moments finite, and it follows

E

(
‖vR‖Y

τR
b,0

)
≤ c(T0, ‖u0‖L2(R))

which concludes the proof of Lemma 3.2. �

It is now straightforward to achieve the proof of Theorem 1.1. Indeed, due to Corollary
2.10, it suffices to see that lim supR→∞ τR ∧ T0 = T0 in probability as R goes to infinity. But
this is an easy consequence of Markov inequality and Lemma 3.2, since

P (τR < T0) = P

(
‖vR‖Y

T0∧τR
b,0

≥ R

)
.
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