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ABSTRACT. We consider a Korteweg-de Vries equation perturbed by a
noise term on a bounded interval with periodic boundary conditions. The
noise is additive, white in time and “almost white in space”. We get a local
existence and uniqueness result for the solutions of this equation. In order
to obtain the result, we use the precise regularity of the Brownian motion
in Besov spaces, and the method which was introduced by J. Bourgain, but
based here on Besov spaces.

1. INTRODUCTION

The Korteweg-de vries (KdV) equation, which models the propagation of
unidirectional weakly nonlinear waves in an infinite channel, is an ideal model,
and it is natural to consider perturbations of this model. In this direction,
stochastic perturbations of this equation were introduced in [5], [12], [19] to
model the propagation of weakly nonlinear waves in a noisy plasma.

Here, we consider as in [2], [3], a KdV equation with a stochastic pertur-
bation which is Gaussian and of white noise type in time. Contrary to the
previous works [2] and [3], we will set the equation on a bounded space inter-
val with periodic boundary conditions. Although the derivation of the KdV
equation is usually done with x € R, there is no reason to confine oneself to
localized solutions. It is also well known that the KdV equation possesses spa-
tially periodic traveling waves solutions. The study of the periodic boundary
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conditions case is also of importance when dealing with numerical computa-
tions, since these are necessarily performed on a bounded interval.

Our aim in the present paper is to study the Cauchy problem for a stochastic
KdV equation with an additive noise as previously described, and which has
spatial correlations “as rough” as our techniques allow, the aim being to stay
as close as possible to the space-time white noise.

The equation is then written as
0’B
otox
where u is a random process defined for (¢,2) € RT x T, T being a one-
dimensional torus, and ¢ is a bounded linear operator on L?(T) that will be
described in more details later. Also, B is a two parameter Brownian motion
on Rt x T, that is a zero mean Gaussian process whose correlation function
is given by

(1.1) Opu + Pu+ udu = ¢

E(B(t,2)B(s,y)) = (t As)(z Ay)
fort,s >0, z,y € T.
Note that in the case where ¢ is defined by a kernel k(x,y), then the corre-
lation function of the noise is

9B 0°B
B (05 (0005 (50) ) = el

with ¢ the Dirac §-function and
c(w.9) = [ o2k, 2)dz
T

In this formalism, the case ¢ = Id i.e. ¢(x,y) = d(x — y) corresponds to the
space-time white noise. This is the case we would like to treat. However, our
result needs a slightly more restrictive assumption, and we are only able to
treat a noise which is “almost” delta correlated in space.

Except in [2] and [3], equations of the type (1.1) have essentially been studied
by using inverse scattering theory (only in the case where the noise is space
independent) or by perturbation arguments near the integrable case (see [12],
[16], [21], [22]).

A very large attention has been paid to the (deterministic) KdV equation
on the real line (see [1], [4], [13], [18]) and improvements made on the regu-
larity needed on the initial value to get local existence of solutions occurred
step by step. On the opposite, for the periodic case, up to the famous work
of Bourgain on the KdV equation (see [4]), existence results in H*(T) were
restricted to the case s > 3/2. Then, using functions spaces based on the lin-
ear group, Bourgain was able to prove global well-posedness in L*(T). Making
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use of the same spaces, and improving the nonlinear estimate, Kenig, Ponce
and Vega (see [15]) proved local well-posedness in H*(T) for s > —1/2 (see
Colliander et al. [7] for s = —1/2). After that, using a splitting into high
and low Fourier frequencies of the solution, together with almost conserved
quantities and rescaling arguments, Colliander et al. [7] were able to prove
global existence in H*(T) for s > —1/2.

Using Bourgain’s type spaces, we were able in [3] to prove local existence of
solutions for (1.1) in the real line case, when the noise is a “localized space-time
white noise”, that is when its correlation function has the form

2 2
E (6 g (.06 5 (530) ) = KO0y
k being an L? function. It is indeed hopeless in the real line case to be able to
get even local existence of solutions in H*(R), with a pure space time white
noise. The obstruction is not due to the lack of spatial regularity of the noise,
but to its homogeneity (see [3]). In the periodic case, however, there is no
such obstruction, and we are able to treat homogeneous noises, i.e. noises
whose spatial correlation function depends only on = — y (or such that ¢ is a
convolution operator); also, thanks to the use of Bourgain’s method adapted to
Besov spaces, we are able to treat noises which have spatial correlations in H?,
s > —1/2. The main difficulty encountered in the application of Bourgain’s
method in our case, is that it needs time regularity of order 1/2. However, it
is well known that this regularity does not hold for Brownian motions unless
Besov spaces are considered. This is why we use this method in the context
of Besov spaces - see below for details. The problem of global existence of
solutions for such noises in spaces with negative regularity is not considered
here, but could probably be handled with the use of the method previously
mentioned ([7]).

Before stating our result precisely, we introduce a few notations and as-
sumptions.

We consider W (t) = 28 a cylindrical Wiener process on L?(T) which may
be written as W(t) = > ;. Bje; where (e;)jen is a complete orthonormal

system in L*(T), (53;)jen is a sequence of mutually independent real valued
Brownian motions in a fixed probability space (2, F,P) associated with a
filtration (F):>o0-

The process W = ¢W is then a ¢¢*-Wiener process (recall that ¢ is a linear
bounded operator in L*(T)), i.e. (W(t));>o is a Gaussian process with law

(N0, 09" iz0)-
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We then consider equation (1.1) in its [t6 form

(1.2) du + (O2u + ud,u)dt = dW, x € T, t >0,
supplemented with the initial condition
(1.3) u(0,z) = up(x), z € T.

Consider the Fourier transform

r 1 mnx
flm = —— / ¢ f () d

for functions f defined on T, and let for s € R, H*(T) be the Sobolev space
of functions f such that the norm

1/2
Pl = (za +n2>5\f<n>\2>

nel

is finite. We also define, for s € R, the Besov space B3 (T) as the space of
functions f defined on T for which the norm

n=fO)+) 2" Yoo f@)P

neN 2n—1|n/|<2n+l

1/2

/15

is finite.
Let U(t) = e %% be the group associated with the linear equation on L2(T),
that is v(t) = U(t)uo satisfies
O+ v =0
v(0,2) = up(z), = e€T.
Then the solution of
dw + Pw dt = dW
w(0,2) =0, z€T,

is given by the stochastic convolution

(1.4) w(t) = /0 Ut — s)dW(s).

Note that U(t) is a unitary group on H*(T) for any s € R, so that w(t) lies in
H*(T) almost surely if and only if ¢¢* has finite trace from L?*(T) into H*(T).
This clearly holds in the case ¢ is the identical operator on L?*(T) if and only
if s < —1/2.

The difficulty in the use of Bourgain’s spaces here is the smoothness in time.
Indeed, let Y'** be the space of functions f such that U(—t)f(t,-) € H*®, where
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H*? is a space-time Sobolev space, s being the regularity in space, and b the
regularity in time (see [15] for a precise definition of Y*%). Then, as was
proved in [15], the only possible value of b for which a bilinear estimate holds,
which allows to handle the nonlinear term 9, (u?) in the KdV equation using
a straightforward iteration scheme, in the periodic case, is b = 1/2. Writing
then the expression of w(t) defined by (1.4) as

t
w(t) =3 [ Ul 5)(6es)ds (o),
jen 70
one can compute the spatial Fourier transform of h(t) = U(—t)w(t) :
t
ht,n) =Y / e e, (n)d;(s).
jen 70

But, there is no hope that this term lives in H'/2[0,T] in the time variable,
because the Brownian motions 3; do not. Indeed,

() = Slare] [ e

JjEN

= Z@(n)P{E / | / e g, ()

jEN

t1 isn3 t2 isn3 2
i // | f01 : dﬂj (S) - 02 ‘ dﬁj (8)‘ dtidty p.
(0,7)2

|ty — tof?

2
H?

The first term in the right hand side above is obviously equal to %2 > jeN |<ge\] (n)[?
while the contribution of each j to the second term in the right hand side above

is infinite, due to the fact that

[ e

t1

2

E = |ty — t1].

However, H'/? is a limiting case concerning the regularity of the Brownian
motion, as far as we are dealing with Sobolev spaces. It is then natural to try
to replace Sobolev spaces here by other spaces which describe more precisely
the regularity in time of the Brownian motions. This is exactly what we will do
here, using Besov spaces instead of Sobolev spaces in time. Indeed, it is known
(see [6], [17]) that the Brownian motion lies almost surely in B;,/QQ([O, 7)) if and
only if 1 < p < 400 and ¢ = +o0. Trying to derive some bilinear estimate
which would allow us to handle in the same time both w(t) defined by (1.4)
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and the nonlinear term,

/0 U(t - 5)(0 (u2)(s))ds,

we were led to consider also Besov spaces in the space variable.
We now turn to give precise definitions of these spaces. We denote by (., .)
the L? space-time duality product, that is

= [ [ ste.oigteaat as

:Z/fma ndr

ne”L R

by the Plancherel formula; here, and in all what follows, we denote by f (resp.
§g) the Fourier transform of f (resp. ¢g) with respect to both variables. We also
use the notation (1) = (1 + |7|>)¥/2, for 7 € R. The spaces that we will use
are defined as follows. Consider first functions f defined on R x T such that
f(.,x) € S'(R) for any = € T, and such that f(T, 0) =0 for any 7 € R.

We denote by X ff the space of such functions f for which in addition the
norm

00 00 2k+1 ) 1/2
ZT”Z( Z /2 (r — >\ f(r,n') dr)

n=0 k=0 \2n-1<|p/|<2n+1
~ ) , 1/2
+225”< Z / r—n"? f(r,n) d7'>
n=0 2n—l|p/|<2n+1

is finite. In the same way, we will denote by X - the space of such functions
f for which in addition the norm

o0 2k+1 9 1/2
[flxen = Z2S"sup< Z / (r =\ f(r,n) d’i’)

n=0  FEN \ gn-1prj<on

~ 1/2
; 2
+ E 2°" ( E / =\ f(r,n') dT)
n=0 on— 1<|n/|<2n+1

is finite.

The basic space in which we will solve the Cauchy problem for the stochastic
KdV equation is Xflf . However, we will make use, at intermediate steps, of
other spaces of the same type : )?‘flf (resp. )?fﬁo) is the space of functions f
such that f(t,-) = U(t)g(t,-) with ¢ in the “space-time Besov space” (B;ll’)wt
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(resp. (B51)2(BS o)), where (B3%)4 is defined by the norm

2,00 s

0o 00 ok—+1 . 5 1/2
o= 222 > [ e ar

n=0 k=0 2n—1§|n/‘§2n+1 k—1

00 1, 5 1/2
(3 [fieanf )
n=0 2n71§|n/‘g2n+1 0

); is defined by the norm

and (Bil)x(Bb

2,00

S kb AP v
[ FleBs a0 = D sup2™* > / Fn)| dr
We(BS .

n=0 keN 2n71§‘n/|§2n+1

1/2
e 1 9
+E 25”( E /‘f(T,n’) d7'> .
n=0 2n—1§|nl|§2n+1 0

Remark 1.1. Note that the spaces X fi’ and X fi’ are different and there is no

inclusion relation between them: an alternative definition of the norm in X flf
<T - n/3>bf(7-7 TL/)

is
) 1/2
dr
, 1/2
dr ;

oo o0
_ sn
T > (S |
) Qk_1§|7'7n/3‘§2k+1
. .. . 3
here, the dyadic decomposition is made on | — n'’| and not on |7|. How-

n=0 k=0 \2n-ign/|<ontt
oo
+ 2sn /
27, 2 s
ever, embeddings do hold between these spaces with some small loss of space
regularity, as is stated in Lemma 1.1, at the end of this section.

N

~

<T - n/3>bf<T> nl)

2n—1§|n/‘§2n+1

Since all those definitions have to be used only locally in time, we will
actually consider, for T > 0 fixed, the spaces Xff’T and X5%T of restrictions
on [0, 77 of functions of X ff (resp. X ff;o) They are endowed with the natural
norm

1,00

. ~ ~ ,b . ~
Flgpr =inf {|Flyee, feXihand f=f, .},

and the equivalent for X f’;oT
To handle the integral estimate in Duhamel’s formula, we will need to make
use, as is classical, of another space which is defined as the space of zero
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(spatial) mean functions with finite corresponding norm, where

00 1/2
f 5—225”( > ’fm )
n=0

on— 1<\n'|<2n+1 (T —n”

A local space Y;r is also defined, in the same way as for XS 12T

In all the paper, we will use the notation |n/| ~ 27 for 27~ b < |n| < 27+
and |7 ~ 2F for 2" < |7| <28 if k > 1 and |7| < 2if k = 0.

As previously mentioned, we will be led to assume' that the operator ¢ is
a Hilbert-Schmidt operator (or equivalently that ¢¢* has finite trace) from
L(T) into H*(T) for some negative s with s > —1/2. We will denote by Ly*
the space of such operators, which is endowed by its natural norm :

1/2
160 = (Zwei H)
€N

where (e;)ien is any complete orthonormal system in L?(T). For convenience,

in all what follows, we take as (€;);en the usual complete orthonormal system
of L*(T) given by

ear () = \/L;cos kr, k>1, ey(x)=

5
3

eopr1(z) = \/LE sin kx.
We consider the mild form of equations (1.2), (1.3), that is

1

(1.5) u(t) = U(t)ug — 5/0 U(t — 8)0,(u?(s))ds +/0 Ut — s)dW(s).

Our main result, which concerns local existence in a situation where W is
arbitrarily close to a cylindrical Wiener process, is the following.

Theorem 1.1. Assume that Im ¢ C span {e;, j > 1} and that ¢ € L9°
for some s with s > —1/2. Let uy be Fy-measurable, with uy in the Besov
space BS(T) a.s., for some o with —1/2 < o < s; then there is a stopping
time T,, > 0 and a unique process u solution of the forced KdV equation (1.5)
which satisfies

u e C([0,7.]; BS, (T)) N X7/ > as.

Remark 1.2. The assumption Im ¢ C span {e;, j > 1} says that the spatial
mean of the noise is zero at any time. This assumption is necessary to perform

Inote that this assumption excludes the identical operator on L?(T)
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the fixed point procedure, because we work in a space of functions with zero
spatial mean. We will actually remove this assumption at the end of the paper
(see Proposition 4.2) by changing the unknown function u and the noise. At
that place, we will have to deal with a non Gaussian noise.

Remark 1.3. One can show by using classical arguments, and looking more
carefully into the proof of Proposition 3.1 (see Section 3) that the regularity
is preserved in Theorem 1.1, i.e. if ¢ € LY® and u, € Bg(T) with —1/2 <
o' < o < s, then the existence times of the solution in Bg’/l(’]l‘) and in By, (T)
are the same.

Naturally, when the noise is such that the Wiener process lies in L*(T), we
get a global existence result thanks to the invariance of the L? norm for the
deterministic equation and the embedding L*(T) C Bg,(T), for any o < 0.

Theorem 1.2. Assume that in addition, ¢ € LY°; then if uy € L2(Q; L*(T)),
the solution given by Theorem 1.1 is globally defined in time and lies in
L?(Q; L>(0,T; L*(T))) and in C(R*; BS,(T)) a.s. for any T > 0 and ¢ < 0.

As was previously mentioned, Theorem 1.1 allows to handle a situation
arbitrarily close to the space time white noise case, since this latter case corre-
sponds to ¢ = id, which is a Hilbert-Schmidt operator from L*(T) into H*(T)
for any s < —1/2. Theorem 1.1 will be proved by using a fixed point argument
in the space X7 11 2T for T small enough. We need the assumption s > —1/2
because we will need that s > ¢ > —1/2. Indeed, to show that the fixed
point works, we will first prove that the stochastic integral lies almost surely
n Xi ’;0/2. At that point, we have already lost some spatial regularity. We
then prove a bilinear estimate allowing us to handle such a term as 0,(fg)
with f € Xi’llﬂ and g € Xf”;f. To treat the term 9,(g?) in the same space,
we again have to sacrifice an arbitrarily small amount of spatial regularity.

It is not difficult to see that when ¢ = id, the stochastic integral w(t) given
by (1.4) lies almost surely in X;%g A ?_ where this latest space is defined by

1/2,1/2
oo

changing the norm in the definition of X in an obvious way. Unfortu-

nately, a bilinear estimate which would handle terms like 9,(g?) in X;jéf 172
with ¢ in X;}Q”Q seems to fail.

The paper is organized as follows. In Section 2, we prove an estimate which
shows that the stochastic integral lives in Xi io/ ? almost surely when ¢ is in

LY® with o < s (we will actually prove that the stochastic integral lies in
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)?f ’;0/2, which is enough thanks to Lemma 1.1 below). This result is based
on the works of Cieselskii and Roynette ([6], [17]), but we will use a different
characterization of Besov spaces than in [17].

In Section 3, we prove some bilinear estimates which are needed in the

proof of Theorem 1.1. The main one is an estimate of d,(fg) in X7 "2 when

fexy 1/ * and g€ Xy 7 1/ ?. Other easier bilinear estimates are proved in that
Section too.

Section 4 is devoted to the proof of Theorems 1.1 and 1.2. Once we have
the bilinear estimates in hand, together with the estimate on the stochastic
integral, it mainly remains to prove that we gain one degree of regularity in
time when passing from 0,(fg) to f(f U(t — $)0.(fg)(s)ds. The proof of this
fact has to be done because we do not stand in the usual context of Sobolev
spaces, but we deal with Besov spaces. However, the proof closely follows that
of the Sobolev case.

We end the present section by giving the lemma relating the spaces Xfi’

v s,b
and Xj'.

Lemma 1.1. For any s; > sy > s3,
v s1,b s2,b v 53,0 v S1,b s2,b 53,0
XXy o Xyy o oand Xy C Xy C Xy

Proof. We only show that X 81’ C X2 all the other embeddings are proved

1,007

similarly. Let f € X 10 and let us decompose the norm of f in X‘fQOs as

1/2
W )P d7>

|f|X92b <2232n Sup (Z/

neN k<3n—4 ! [ro2m ‘,\,Qk
1/2
+ZQS2” sup Z / 2b|f(7' n)|2 dr
neN 3n—4<k<3n+4 I/ [o2n 7-|~2k
1/2
+ Z 2%2"  sup Z / (=02 f(r,n)]? dr
neN k>3n+4 ‘n,|N2n |T|N2k

<I+I1I+1I1I.
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If k> 3n+4, |n'| ~ 2" and |7| ~ 2F, then g|7| < |7 — n| < 2|7/, hence we
easily have

1/2
11 <CY 2% sup ( > / (r — )2 f(r,n)? dT)
! |~2m [r—n’?|~2k

neN keN
S C|f|)~(1§20f

On the other hand, if & < 3n — 4, |n/| ~ 2" and |7| ~ 2F, then 23"~* <
|7 — n'®| < 237+ hence

Z 1/2
[ < E 2527’L . n/3 2% 7 ’ n, ) d
( |n/|~2m /23R4S|7'—n’3§23n+4 <T > ‘f(T )’ T

neN

Finally, if 3n—4 < k < 3n+4, [n/| ~ 2" and |7| ~ 2, then 0 < |7 —n'?| < 23716,
hence

3n+5 ) 1/2
II < 2252”< Z Z/ (1 — 2| f(r,n)? dT)

neN it zn k= 7 IT=n'?|~ 2k

1/2
< 5 2°2"(3n + 5) sup ( E /| . 2k<7- — n/3>2b|f(7-, )2 d7'>
[n/|~2m T—n'%|~

neN keN

1/2
sin 3 r
<C E 271" sup ( g /| " 2k<7- —_n >2b‘f(7', n’)|2 dT>
|n/|~27 TN

neN keN

since so < s1. The result follows. O

2. ESTIMATE ON THE STOCHASTIC INTEGRAL

In this section, we prove an estimate on the stochastic integral — that is the
last term in (1.5) — which will enable us to use a fixed point procedure to solve
(1.5) in an appropriate space of functions of the space and time variables. This
latest space will actually be of the form X f 11 /2 for some well chosen o

Although, for the sake of clarity, we did not assume that the covariance
operator ¢p¢* of the noise could be random or could depend on the time variable
t in Theorem 1.1, we will state here a proposition where ¢ is allowed to depend
both on ¢ and w, but under the condition that the Lg’(’/ norm of ¢(+) is bounded
in both ¢ and w. This will indeed be useful in order to prove that our result
generalizes to the case where the noise does not have a zero spatial mean value
(see Proposition 4.2).
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We need to use a cut-off function in the time variable: we consider a function
6 : R — R* such that (¢t) =0 for t < —1, and ¢t > 2, 6(¢t) = 1 for t € [0, 1],
and 0 € C§°(R).

Also, to state precisely our estimate on the stochastic integral, we define for
n € N, the operator A, acting on L*(T) by

Anu(n/) = ]I{Qn—1§|n/‘§2n+1}/&/(n/),

for u € L*(T) and for any n’ € Z.
We now state our proposition.

Proposition 2.1. Let s’ € R, and assume that ¢ is predictable and lies in
L=([0,T) x Q; LY for some T with 0 < T < 1; let 6§ and A, be as above;
then the stochastic integral w(t) defined by (1.4) satisfies for any o' < o < s :
Ow € L*(Q; XUI’1/2’T) and

1,00
E <|9w’Xf/’l/2’T) < C<9) Z ‘|An¢HL°°([O,T]><Q;Lg’”)
et neN
S C<97U7 S/)||¢HLoo([07T]><Q;Lg’S/)

where C(0) is a constant depending only on the function 6.

Proof. We first prove that 6w € L'(€; X72/*T) and that

1,00
E (10wlgraor) < CO) D 186l orinanis)
' neN

and then make use of Lemma 1.1.
Let g(t,-) = 6(t) f(f U(—s)dW (s) so that §(t)w(t) = U(t)g(t,-); we also set
forseR,neZand ¢ € N:
0 if s<0 or s>T
@n,ﬁ( ) = N .
o(s)ee(n) if s€0,T]
and we assume that each (, has been extended to a Brownian motion on R,

in such a way that the family () is still an independent family. We then
have, for any t € [0,7] and n € Z:

Fag()(n) =Y 0(t)Lnelt)

leN

with Lg(t) = [*_0(s)e™ pn(s) dBy(s), Fn being the Fourier transform in
space.
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In view of the equivalent definition of the space X 1 OO/ , we have to show that
1/2
(Z sup 2""+k/2 Z / g(r,n")? dT) )
—o keN i/ [o2n |7|~2k
> 1/2
(2.1) B Yo (3 / ()| dr )
n=0 [n/|~2n [71<1

< C(0) Z ||An¢||Loo([0,T]XQ;Lg’G)'
n=0

We first estimate the second term in (2.1).

1/2
> o / 4
< |'n/|22" |T|1<1 T> )
/ o(t / ()™ pue.a(5) ()" dt] d7>

>y
|n!|~2n [7[<1
400 1/2
/3
z( > [ A% [t [ aoeaasiofe)
In'|~2n Y ITIST T gen s
and using the independence of the (/3;)en, the above term is bounded by

+oo ) 2 1/2
20” / / E (62(5)] 0w o(5) ’ / it dt’ ds dr
- o n|~2n Y ITIST gen

1/2
§2|6‘%1(R)|0|QL2( ZZMSUP’E(Z Z o6 (5) )

CEN |n/|~2n

Zsup E (18|

9) Z HATLQS(.)HLOO([O,T}xQ;Lgv")a
n=0

n’é )

{eN

and this proves the estimate on the second term in (2.1).
In what follows, we assume that |7| > 1/2; by the stochastic Fubini Theorem
and using an integration by parts, we easily get forn € Z, ¢ € N and |7| > 1/2:

0L g(T) = Apo(T) + Buy(7)
with

:/RGQ(S)GZ'MS%,@(S):T dfe(s)
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and
—iTt

Butr) = [ 061 i) [ 00

Hence, two terms will be involved in the estimate of the second term in (2.1),

which are
1/2
I =TF sup 20n+k/2 / )
(> (> /.,
2 1/2
dT) .

—o keN I/ |~2m
We may assume that o = 0, replacing in the estimate we want to prove ¢, ¢
by 27", . We first estimate the second term above. With this aim in view,
we first write for £ > 0 and n > 0:
2
dr
—iTt

3 oo
o /| . Z E‘Z [ et [ 0 —at o) ar

/| 277/
= [ 303 [ 0GP (ot /Me'(t)e_mdt
|~k s T

=0 |n/|~2n

dt dﬁg(S)

b et

and

we(7)

II = E(Z sup 2“”*’“2 Z /
72

“—5 keN e

2
ds dr

where we have used again the independence of the family (5;)¢>o. Now, for |7
in [2F=1 251 we have

+o0o e—iTt
o' (¢ dt| <
[

hence we get for k,n >0 :

<2k Zz / B ZO:B”,,@(T)‘QdT>
E (I18:0() g0 )|,

< ([0,T]x %190’

0'(s)

72

+ =

—+00 —iTt
/ 0" (1) dt’gcw)-

< C(0)273
T|~2F
< C0)27 Ao ()1}
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and using Cauchy-Schwarz inequality, we get

+oo
I = Z sup E(QWQ

‘o keN

s [ S0

[n’|~2n

N 1/2

< ZZ (E 2’“ Z / ZBn',e(T)‘QdT>>
=0

< C(0) Z Z 27" A () ||L°°([0,T]><Q;L3’O)

(2.2) n=0 keN n/|~2n 7 17
n=0 keN
[o¢]

0) Z [ARAIQ) HLOO([O,T]XQ;Lg’O)'
n=0

|~2¥

Our aim is now to estimate I. We set

S .3 e—iTt
Apo(r,8) = | O(t)e™ @ o(t) ——dBu(t)
_ 1T

o0

so that

+oo
An/’g(T) = / dAn/’g(T, S).

o0

Moreover, using the Itd formula, we have

‘ffw( ) /d‘ZA/th‘

LeN

—2Re<z / / P(5)e"™ g ) i)

£,m=0
dﬁm ) / 20, ‘p’”
eN

X92<t>e_itn Pn’ m( )

= I(7) + 12 ().

15
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Hence, again, two terms are involved in the estimate of /. The estimate of the
second term is immediate. Indeed, we have

1 /2
su 2k/ 2 /
(S (X[

/| ~2n
/ 1/2
(Zsupzm Z/ /94 Ny dtd) )
(2.3) =0 el nrjzn 12" 12
k/2
sup 2 / ’ @2, ‘ dr
; keN ( Ir|~2k T |n,|ZN2W€ZN o L= ([0,T]xQ)

0) Z ||An¢(')||L°°([0,T}><Q;Lg’0)'
n=0

In order to estimate the contribution of the stochastic integral, i.e. of I,(7)
in the bound of I, we start with the following estimate.
(2.4)

2
E(‘ Z / [;;(T)d’l“)
|n/ |~2n |7|~2k

—E(] > /N2k2Re Z// 02 (s)e"™™ @M()

—1iTSs

dpBe(s)

|n|~2m

x02(t)e= " 0 )e dﬁm ))dr| )

iT(t—s)

(!Z/ZZ/ 2Re () [ S

k
|n/|~2m £=0 |7|~2

2)
iT(t—s)

_Z/E‘ 3 Z/ 2Re (62(s)6%(1)e ”/ ———dr)

|n/|~27 £=0 |7|~2F

X0%()) @uro(5) dBe(5) 0w m(t) A ()

X oo ()t >)2dt
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where we have used again the independence of the family (3,,)men. Using now
Cauchy-Schwarz inequality in n’, the above term is bounded by
(2.5)

2/ (Z Z/ 2Re (6()02(t)e "

n’[~2m

eiT(tfs)
X / dT) ©n’, Z dﬁé > Son m
|7—|’\’2]’C 7-2 |/n//z,\J2TL
< (m, 3 Sttt

0,t]xQ I/ [~2n =0

E 2 2 —i(t—s)n'> eiT(tis)
/ Z Z/ 2Re9 (5)0%(t)e / = dT)

X P 0(8) dﬁf@))

Concerning the first term in the right hand side above, we have

sup Y Z [P m ()

[0,TTxQ I/~ 2n m=0

<o Y o)

[0 T]me 0 |/ [~2n
o

< sup Y AB)enlTam = 1800} 0 1yx0i00)
0,T]x2 50
while the remaining term in (2.5) is bounded above by

L5 o

k
n/|~2n £=0 |7|~2

-
t . . 6727'(1?—8)
NSO o [ [0 [ ar

We then notice that, by interpolation between the cases a = 0 and o = 1, for
any « € [0, 1] there is a positive constant C,, such that

61’7'(15—5)
dr| <
/T|~2k 7 N

iT(t—s)

e

deE (Igne(s)[2) ds dt

2

ds dt.

CCV 2—(1+O¢)k2'
|t — 5|
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Applying this with o = 1/4, we get that the second term in (2.5) is bounded
above by

CQ*ngAn(p( )H2 0.0 // d dt
%0 ([0,T] x4 LY’ /—
< C _7k A (b 2 ’
( ) H n ()H oo OT]XQLOO

Collecting all these estimates from (2.4), we get

1 2 -2k 4
5(| X [ ] ) < cO2 P10~ enze
n/[~2n 7 I7H

and we deduce from this latest inequality that

k/2 1/2
o(Smer(x [ now)”)

|2

(g g’: k/g(%n /| » 1;,(T)d7>1/2>

G L
3R o)
<

8)2 (Z ) Ao ||L°<> [0,7]x2;L5°)
n=0 k=

where we have used Holder’s inequality at the third line; this, together with
(2.3), completes the proof of the estimate of I.

In this way, the first inequality in Proposition 2.1 is proved after an appli-
cation of Lemma 1.1, with ¢/ < 0. The second inequality follows from the
obvious fact that

2
ZO ||An¢() || w([O,T]XQ;Lg’U)

=2 278w} 0 1y
n=0

~ 12/ o 1/2
—2(s'—o)n s'n 2
< ( E 2 ( ) ) <§ 2 HAn(b()H oo([(),T}XQ;LgyO))

n=0 n=0
< 0(5/7 U) ||¢<> HL‘”([O,T]XQ;Lg’SI)'
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3. BILINEAR ESTIMATES

We now turn to prove some bilinear estimates which will allow us to handle
the nonlinear term in equation (1.5). The next one is the crucial estimate.

Proposition 3.1. Let —3 < s <0 and f € Xf:ll/Q, g€ Xf:if; then 0,(fg) €

Xi’l_lﬂ and there is a constant C > 0 such that
0:(£9)| o0 < CIf

5,1/2 5,1/2.
xp2l9l e

Proof. Let f and g be as above; using a duality argument, it is sufficient,
as usually, to prove that for some constant C' > 0, and for any function h
in X;‘fglo/ > _ where X;‘fgi/ ? is defined in an obvious way by modifying the

definition of X~ #1/2 _ we have

(0:(fg), )] < C|f

Using Plancherel Theorem, one has

xppa 9l e

1(0.(fg),h)| = E E / / nliL(T, n')g(Tl,n/l)f(T —71,n —ny)dr dr|.
n'#£0 n’17$0 T7€R J R
ny#n’

We will denote o = o(r,n') = 7 — 0", 0y = o(r,n}), 05 = o(r — 7,0 —

n}). We also set G(r,n') = n'*(a)'/24(r,n'), F(r,n') = n'*(a)"/?f(r,n') and
H(r,n') = n'"*(0)"/?h(r,n’), so that F, G and H lie respectively in X7, X{'%,
and X2 . It suffices to prove that

(3.1)

g E / / |n’|1+8|n/1|75|n' — n/1|78|ﬁT,n/||GA7—1’n’l||FT_Tl’n/_n/l|dT dT
WA g0 Y TERJTIER <O’>1/2<0'1>1/2<0-2>1/2 1
1
ny#n’

< C|H|X&?M|Gle;go |F|X§):?7

where we use H,, for H(r,n’) and so on. We divide the region (n',n},7,7) €
(Z\ {0})? x R? arising in the left hand side of (3.1) into three subregions:

(Region ) (o1) = max{{(c), (o1), (09)}

(Region IT) (o) = max{(0), (01), (092)}

(Region III) (o9) = max{(0), (1), (02)}
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and we estimate separately the contributions of each of these regions to the
left hand side of (3.1).

Region I. From the identity
3’| [y [’ = ni] = |7 —n” = (m = ni®) = (T = 7) = (0 = n})?)|

we get as usually that in region I,

1

I P < Il ] [n" = ni| < (on)
so that for any s € [—1,0],

[P ol = i < Ol

Hence, it is sufficient to prove that the contribution of region I to

|H7n’||G71n ||FT 71, —n |
I= / / ! ——dr dr
D B B A R CALE

n’#0 n} #0,

ny#n'

is bounded above by C|H|X&0w|G|X?,o |F|X?,§>. Again, we will divide region I

into several subregions.

Region I-a. We consider here the subregion for which (o) > 1/ 2,
We then estimate the contribution of this region to I; it is bounded above
by its contribution to

~ N

H GT n’| |F7—77—1 n’fn’|
(3:2) / / . ——Ldn dr
)OO DD DI S 172 (o) 72 s

n,niENkk1EN  |p/|~2n
2

/ /
n'#n}

with the convention that for k¥ = 0, |7| ~ 2F means |7| < 2. This latest term
is bounded above, using Cauchy-Schwarz inequality, by

1/2
Z Z ( Z /~2’€1 ’émn/l|2d7—l>

n,n1 €N k,k1€EN |n" ~2M1
A . 1/2
|HT,n” |F‘rf7'1,n’fn’1| 2
37 \1/3 d7'> dr .
|7|~2k (a)1/2(a)V/

<n'| o1 /ﬁlfv2 "

(3.3)

n|~2m
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Now, we use the fact that in region I-a, we have for ¢ > 0 small, which will be

chosen more precisely later,
1 e 1
oty = W Gty

and using Cauchy-Schwarz inequality in (7,7) in (3.3), it is bounded above
by
(3.4)

ey >

n,n1€N k,k1 €N

[n’|~2”1 /Tﬂ”? . ( I/ | ~2m
1/2
/ dr p
T1
2 : )12
I/ [o2n ~2k UTn E<0-7'7‘r1,n/7n/1>
1/2
A 2
sup ( E / |G| dﬁ)
k
nieN [ F1EN \ jpr gny JImi|~20

1/2
dr
X su Ssu su E
PR [z i k(o) (o —
1,7,EEN |nf[~271 |7y |~2k1 I’ |~2n |7T|~2 T T—T11,n—n}

X Z ( Z / / | o 0-7'7"/>_€|I:Lr,n’|2
T1\~2 1 |7|~2F

ki,nkeN \ |nf|~2m1

X |FT—7-1,n’—n’1| deT1> ] .

But now, the fact that

1/2
A 2
E / |G7'1,n’1 ’ dTl
|1 |N2k1

|ng [~2m1
/ . |n/’_28 <UT,n’>_E|FIT,n’|2|FT—T1,n’—n’1 |2d7—>
|7|~2

<C

[n|~2m

/+°° df < C

oo (LD +10 —al) = (14 af)i=*

for a € R, and the proof of Lemma 5.1 in [15] show that there is a constant
C > 0 such that

dr
sup sup Ssup E 1—2
ni1€Z* T ER n,keN |n/‘~2” |T|~2k <UT,n’> <O'7-77'17n/,n1>

dr
< sup sup / —
(2 fmri)

n#nj

<C,
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for any € > 0 such that 1 — 4e > 3/4, i.e. for any ¢ < 1/16. On the other
hand the last line in (3.4) is bounded above by

1/2
[( Z/ [ 7{0) " Hr dT)
n,n1 €N [n!|~2m [r|~2*

k,k1€N

1/2
X sup  sup Z / |n’\_5(U>_E/2\FT,TW/,”/1\2d71
[n/|~2m |7|~2k |n/1‘N2n1 |'7'1‘N2k1
<sp 3w (X
) ! 1

I—e —€/2 F 2d 1/2
[n'| (o) | 7'—7'1771'—71/1‘ T1

1/2
X Z ( Z /T|N2k n'|™* 6/2|HTn| dT)

nkeN \ [n/[~2n
< C.[H] oo,
/ /211 2 1/2
—& —&
xsup S s () 0 70) By g )
nREN  ken \ N2 R Dony lta|~2M

|7|~2%

One may then notice that if |n}| > 4|n/|, then |0’ —n)| ~ 2™ and if || > 4|7,
then |7 — 71| ~ 2%, so that for any n, k € N,

1/2
e ( Z /7'1|N2k1 |n/‘_€<a>_s/2‘F~rn,n/n/1|2d7'1>

ni,k1€N n/[~27

/ n
2N gpeem Y nzap
I71~2 [nf [>4]n/|
1/2
” 2
S C § ( E / |F‘r1,n’1| dTl)
k
ni k€N \ [~ ¥ IT~2

S C|F|X?‘?7
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while if |n}| < 4|n/| (with still |71| > 4|7]) then |n/|7¢ < Cnf| ¢ and V n, k, € N,

1/2
i ( Z /|T1~2k1 |n/’_5<0>_8/2’Ffr—’rl,n/_nll|2d7'1)

k1 €N |n/"“2 ’ n
n1,K1E€ ok |nf [~271 |T1|>4|T]
I~ I [ <4fn’|
1/2
SCE sup |nfj|™® E sup g |FT17n/_n/1|2d71
n1EN |n/1|~2n1 kleN‘n,|N2n |n/1‘~2n1 |7'1|N2k1
1/2
S CE E < § / ‘FT,eFdT)
k
kieN \ ez 7 Iml~2%
1/2
Sce E E ( E |FT,K’|2dT>
k
k1 €N LeN \ |gr|~t 7 IT1~2%
< C.|F|y00.
< CLIF| o0

The cases for which |r| < 4|7| are treated in the same way as the latest case
above, using that in this case, (o) < C'(r; — n/*)~¢ so that the sum over k;
converges.

It follows from these estimates that (3.4) is bounded above by

ClGxoo, [H|xo0 [Flxo0 < C|G|xo0 |H|xo0 [Flxo0,
and this achieves the estimate of the contribution of Region I-a.
Region I-b. Assume here that (g9) > %n’Q.

We may then proceed as in Region I-a, by noticing that here, we have for
€ > 0 small,

1 1
— < C.n (o —</2
<0>1/2<U2>1/2 = ’ ‘ < > <U>1/2—e/2<0,2>1/2—5/2
and that
dr
sup / — — | <+
n,k?{\]} (WXN:Q” |7 |~2k (o(r,n))1=(o (7 — 71,0 — ny))! )
ny €Z\{0

71ER

for any € < 1/8.

Region I-c. We consider now the region where (¢) < in? and (02) < in”%.
The contribution of this region to I will be the most difficult to estimate.
Again, we use in (3.2) Cauchy-Schwarz inequality in (7,7n'), to bound the
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contribution of region I-c to (3.2) by its contribution to

1/2
( 2 / ’Gmnmdﬁ)
|71 |~2F1

n,m ENkk1EN \ |nf|~2"1

[ Z / ( / |[:IT,n’|2|FT—Tl,n’—n’1|2d7->
i [z 7 ITI~25 X\ Sgn S IrI~2
p 1/2
-
>< S
( PN f o <az>>
1/2
< sup / ‘GT ] ‘2d7—1
2 [’“EN <n1|¥2"1 mlnb

n1€N

1/2
dr
IS { 2" gt <|Z /| <a><02>>

neN k1N keN

1/2
2 21 1 2
STUD S D Sy (R S A
m s T2 i gn Sl

1/2
<3 (X [, o)
T1 ~2F1

n1€N k1eN |nf [~271

1/2
dr
y Z Z {Z sup  sup (VZZNT /TINZk W)

neN kieN | ken [m11~2"1 | |~2k1
1/2
H_ ]2 F 247 d
X Sup | Hop it || ey = |“d dy
FENN gz II20 prCn 712"

and using Cauchy-Schwarz inequality in n, this is bounded above by
(3.5)

1/2
sup / \éﬁ,nﬂ?d )
7112\1 { k1eN <n’§”1 |71|~2F1 n o
> [(Z (" B, k)>2>

k1€EN neN keN
1/2
& 2| 1 2
/ |H7.7n/| |FT*Tl,n’fn'1| dr dTl
|7|~2k

(T > [ ¥

ReN | oy

n/[~2m
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with

1/2
dr
(3.6) B(ni, ki,n,k) = sup / — :
o |n) |~2m n%n pri~2r () (02)

|7—1 |~2k1

We will then make use of the following lemma.

Lemma 3.1. Let N be an integer, ky a function of (ny,ki,n) € N* with
values in N, and ng a function of (ny, k) € N? with values in N. Denote by
A(N,ny, ky) the region in N? given by

A(N, 1, k) = {(n, k) € N2, ko(na, kv,n) < k < ko(n1, ki, n) + N,
no(ny, k1) <n <ng(ny, ky) + N}.
Then there is a constant C(N) depending only on N such that
sup Z B(ny, ki,n, k) < C(N),
TREN (ke AN k1)

where B(ny, ky1,n, k) is defined by (3.6).

Proof of Lemma 3.1. It follows easily from Lemma 5.1 in [15], since

sup Z B(nh kl) n, k)

k N
1,n1E (n,k)
€A(N,n1,k1)

SNQ sup sup B<n17k17n7k)
k1,m1ENn,keN

1/2
dr
< N? sup ( Z / >
k1,m1€EN nezn(oy “R (o(r,n))(o(T — T1,m — ny))
n # ny
< 400
by Lemma 5.1 in [15]. O

Now, in order to apply Lemma 3.1, we need to show that region I-c is
embedded in a region of the form

{(nukunhkl) S N47 (n, k) € A(N, nhlﬁ)}

for some N and for some functions ng(ny, k1) and ko(nq, ki, n).
Note that we have in region I-c :

1
=0 < (o(r,n)) < 0 < [0
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hence

3 5

S < bl < S

and the property 3n — 4 < k < 3n + 4 follows easily. Hence, to prove the
preceding result, we only have to find ng(ny,k;) and N such that for any
(n, k,ny, k) in region I-c,

no(n1, k1) <n <mng(ni, ki) + N.

In order to prove this fact, we again use a partition of region I-c into three
subregions.

o Region I-c-1: 27'2|n}| < |n/| < 2'%|n)).
In this region, we obviously have the result with ng(ny, k1) = n; — 4.

e Region I-c-2: |n/| < 2712|n}].
We recall that

0 — 01— o] = 3| ] [ — 1]
from which it follows that (since (o) is dominant)
] | In" = mi| < (o1) < 3[my| || |n' — ni| + (o) + (02);
using the fact that |n/| < $|n}| and that (o) < 1|n/|* and (09) < 1|0/[%, we
easily get from the preceding inequality

1
Sl < {on) < 5[ ],

and the property follows easily with

In |2k — 23]  Inb

no(nm, ky) = In 2 In 2

e Region I-c-3: |n| > 212|n]].
We infer here, from the inequality

(0| (0] [0 —ni| < (o1) <3|’ [ny] [n" —ni] + (o) + (02)
that
1
5|ﬂ’l2ln1\ < (o) < 5n'PP|nf]

and we conclude as in the preceding case.
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Now, going back to (3.5), we may use Lemma 3.1 to show that the contri-
bution of region I-c to

o\ 1/2
sup Z ZB(nhlinJ k)
nLREN \ DN \ keN
S sup Z B(nhkhn’ k)
nuki €N oy

is bounded above by an absolute constant.

Hence, each of the contributions of Regions I-c-1, I-c-2 and I-¢-3 to (3.5) is
bounded above by

(3.7)

1/2
A 2
Yy { sup ( S [ 16 dn>
k
n1€N k]_EN |n/1‘N2"1 |71|~2 1

no+N .
DI SENFTIIND D D o ML,

k1eN L n=ng(n1,k1 )ko(n)<k<k’0(n )+N |n/‘ ~2n1 1"‘*2 1 |n/|~2m

1/2
X |FT_T1,n/_n/l |2dr d7‘1] }
1/2
<CN Z sup < Z / \érl,ng\2d71>
n1€Nk1€N I [~2m |71|~2k1

1/2
X sup sup E / |H, v |*dT
n1€N  no<n<no+N |n/|~2n |7|~2k

k€N ko<k<ko+N

1/2
X sup Z sup sup Z / |FT—T1,n'—n’1|2d7'1
nleNkleN nOSnSnO+N ‘nIINQn |TL’1|N2nl ‘T1‘~2k1

ko<k<ko+N  |7|~2F

< CNIGlxo0 |Hlo_

1/2
X sup E sup sup E / J - |*dr, )
mENToN no<n<no+N  n/[~2" [nf |~2m1 |m1|~2M1

ko<k<ko+N |T‘~2k

It remains to bound the last term in the right hand side above by C|F|.0.0.

However, this is not completely obvious, and we again have to consider sepya—
rately each of the regions I-c-1, I-c-2 and I-c-3.

Region I-c-2. Recall that we have here : |n/| < 2712|n}|.
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Then the last term in the right hand side of the above inequality is clearly

bounded by

no+N  ko+N 1/2

2supz Z Z(Z/|k Tﬁnnldﬁ> .
|n/ ‘~2n1 7'1 ~2F1

eN
"EVEEN n=ng(ni,k1) k=ko
n<ni—10

e The contribution to this term of the & and k; for which k¥ < k; — 4 or
k > ki + 4 is clearly bounded above by

1/2
2 A2
2N* sup ( E / | Frr | dT)
MEN LN \ [ [nam 7 1712

< 2N2|F’X§),?.

e It remains to consider in the sum in & and k, the contribution of the terms
for which k; —4 < k < ky +4. Since for such terms, 7 — 71 may stay bounded,
we need to show that there are only a finite number of possibilities for k. We
recall that in Region I-c, £ < 3n + 4, while in Region I[-c-2, n < ny — 10; it
follows easily that if in addition k1 —4 < k < k;+4, then k; < 3n; —4. Hence,

1. |2F1—23m _ ..
no(ny, k1) = In =—=— — 2n; = n; — 1 and the region is actually empty.

Region I-c-3 : |n'| > 2'2|n)].
Again, the last term in (3.7) is easily bounded above by

no+N  ko+N A 1/2
QSup Z Z Z sup ( Z /7—1|~2k1 ’F‘rn,n’PdTl)

eN ~
MEN L EN pmng(ni k) k=ko T2\ n/jan
n>ni1+3

e in the same way as before, the contribution in this sum of the terms for
which £ < k; —4 or k > k; + 4 is bounded by

1/2
2N? sup ( Z / .|Fﬂn’|2d7) < 2N2|F|X?:?.
neN 17N I/ [o2m |7|~2F

e in the region where k; —4 < k < ky + 4, we easily get k; > 3n; + 4, and
from the expression of ng(n1, k1) in region I-c-3, we get ng(n1, k1) = 3 (ki —ny).
Hence, n > 1(3n — 8) — $ny from which it follows that n; > n — 8, and again
the region is empty, since n > n; + 10.

Region I-c-1 : 272|n)| < |n/| < 2'2|ny|.
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This is the most difficult part; clearly, we can take in this region ng(ny, k1) =
ny. Again, we will divide the region into three subregions depending on the
size of k and k; compared to each other.

o it < k; —4 : the contribution of this region to the last term in (3.7) is then
bounded above by

—_ 1/2
2 sup Z Z sup ( Z / ) |FT1’n,_n,l|2d7-1> .
|T1[~2"1

/ ~
n1EN k1eN n—ny |n/|~2m I |~2m1

Now, since for each ny, ki, n and n’ such that |n’| ~ 2", one has

1/2
- 2
E / ’Fn,n/fn'll dTl
|nf [~271 |71[~2k1

1/2
-y ( 5 yﬁﬁ,@yzczn) ,

eN \ [orjae 7 ImI~20

the preceding term is easily bounded above by

ni+N 1/2
2 sup Z Z Z ( Z !FTl,z'\2dT1>

k
MEN —n1 kieN teN \ |p|~ae ¥ ITLIN2R

< 2N|F] go0.

o by —4 < k < k; +4 : Using again the arguments immediately above the
contribution of this region to the last term in (3.7) may be bounded above by

. 1/2
sup Z sup sup Z( Z / ) |FT_TI’E/|2d7'1>
|T1[~2"1

mEN TN m<n<ni+N  |T|~2F oy |07 ~2¢
3n<k<3n+N
k1—4<k<ki+4

1/2
< sup E sup sup Z Z / yom—r .
nleNkleN 3n1<k<3ni1+4N |7|~2k 2eN |0 |~2¢ |71 |~2F1
ky—4<k<ki+4

Here again, 7 — 7 may stay bounded even for large k£ and k; ; however, for
a fixed ni, the number of k; for which the right hand side gives a nonzero
contribution is bounded by the total number of k; for which there exists at
least one k such that 3ny < k < 3ny +4N and k; — 4 < k < k; 4+ 4, hence by
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AN + 8. In this way, the term above is bounded by

1/2
E / o |FT—717€’|2d7_1)
7'1 ~2F1

M/ N2£

1E, 4| dT)

(4N + 8) sup sup sup
n1€N kk1EN |r|~2k feN

(4N +8) ZZ > /

LeEN jEN |¢/|~2¢

< (4N + 8)|F[yoo.

7|20

® k> ki + 4 : this region is a little bit more delicate than the preceding ones
to handle. In the same way as before, we may bound above the contribution
of the present region to the last term in the right hand side of (3.7) by

1/2
sup E sup sup § § / |FT—T1 N4 |2d7—1
n1 €N k1 eN 3n1<k<3ni+2N ‘T|N2k eN |€/‘N2Z ‘Tl|N2kl

E>ki44
1/2
- 2
S [ Eapr)
|7|~2F

< 2 sup Z sup (
|¢/|~2¢

mENk N 3n1<k<3ni+2N o
k>ky+4

Again, we have to show that the number of possible k; (or n or n;) in this
region is finite. We recall that here, n and n’ are of the same order ; moreover,
since |7 —n'?| < Ln'[? and |7 — 7 — (n/ —n})?| < Hn/|?, it follows that |7| is of
the order of |n/|; then ||, which is negligible compared with |7], is negligible
compared with |n/|*. Hence 7, —n/® ~ —n}® for ny sufficiently large. Now, we
have the relation

(3.9) =’ —7r4+n? 41 —1 — (0 —n))? =3 (n —n)).

- Consider first the case where n’ and n have opposite signs. Then, taking into
account the preceding considerations one may note that the left hand side in
(3.9) is of the order of —n/? (for |n| large) while the right hand side has the
sign of n}°. Hence (3.9) cannot remain true for large |n}|, which implies that
the number of n} in this region is finite.

- Now, if n’ and n/ have the same sign, then comparing the sign of both sides
in (3.9) shows that if |n/] is large, then necessarily, n’ — n) has a sign opposite
to that of n}. But then, for |n'| (or equivalently for |n}|) large, the facts that
T~ T =71 ~ (0 —n})? and 7y is negligible compared with 7 lead again
to incompatible signs.
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This shows that, in any case, the number of possible n; (or n, or k1) in this
region is finite. Hence, (3.8) is bounded above by

1/2
C'sup sup sup E / |, 2dr
ni k1 3n1§k§3n1+2N 7 (o2t |7|~2k
< C|F|y00.
- | ‘X1,1

This ends the proof of the required estimate in Region I, that is when (o)
dominates.

Region II. Here, we use the fact that

1

I < In'ni(n" = ni)| < (o)
so that for any s € [—3,0],

[ 5 — | < o) 2

Exchanging then the role of n’ and n} — and hence of G and H — we are led
back to prove that the contribution of Region I to I is bounded above by
C\H\Xoo \G]Xoo |F\Xoo
For Reglons [-a and I b, this was already done, since the contribution of Re-
gions I-a and I-b to I was actually bounded above by C|H|X&?m |G|X25?oo |F|X;),?.
It remains only to consider the case of Region I-c. Again, the same com-
putations as before lead to bound the contribution of Region I-c to I as in
(3.7), except that the sum over ny; will be supported by H or F, so that this
contribution is bounded by (see (3.7))
(3.10)

1/2
CN sup sup ( E / |G7‘1,n’1|2d7—1>
k
n1€EN k1EN |n’1‘N2"1 |T1|~2F1

1/2
X Z { sup sup sup ( Z / \ﬁ[m,|2d7>
|~2F

ni€N k1€N no<n<no+N ko<k<ko+N n’|~2n

1/2
. 2
X g sup sup sup E / | Fr ) e |7d Ty )
kyenN MoSnsnotn koSksko+N \|"'||~2: i g ¥ Ii~2
T|~2

Hence, we have to bound above the two last lines in (3.10) by C’\H\Xo 0 |F]Xo 0.

Considering the way we have estimated the contribution of Reglons [-c- 2
and I-c-3 to (3.7), it is clear that the sum over k; in these regions can be
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supported by |F;_, ,v—n % in Region I-c-1, we have 2712[n}| < [n/| < 2'%|n}]
so that ng(ny, k1) = ny and

1/2
E sup  sup sup g / |H | *dT
k1€EN no<n<no+N ko<k<ko+N n’|~2n |7|~2F

ni1 €N
1/2
<C g sup ( E / ]H717n1| dT1>
nieN FIEN N | Cgny JIma|~201
< C|H| 00 .
- | |X1,oo

We may conclude as before.

Region III. Again, exchanging the role of G and F we are led back to prove
that the contribution of Region I to I is bounded above by C’|G|Xo o H] 00 |F|X0 0,
but this is easily done by using the same analysis as for Region I Hence the
proof of Proposition 3.1 is complete. O

We now prove that when local in time spaces are considered, that is when
Xi’l_l/ is replaced by Xs —1/2T , a small power of T" can be recovered in the
right hand side of the estlmate in Proposition 3.1. This will be useful in
the contraction procedure, since as is now classical, no small power of T is
gained, but on the opposite a InT" factor is lost in the estimate of the integral
convolution with the linear semi-group when dealing with spaces of regularity
1/2 in time.

The argument of the proof of the next proposition relies, as usual, on the
fact that we have wasted a small power of () or (02) in Lemma 3.1. Actu-
ally, looking carefully to the proof shows that Lemma 3.1 is still true with
B(ny, k1, n, k) replaced by

. d 1/2
B(nbklan’k) = sup Z / — g >1€>
|

1—e
nil~2ms N i~k (o)1= (02
|TIIN2k1

for any € < 1/4.

Proposition 3.2. Let —1/2 < s <0 and f € XSl/QT € XSl/QT then for
any a < 1/16, there is a constant C,, such that

\Gx(fg)\xi,;l/w < CO‘Ta|f‘Xf:11/2’T|g|Xf:;{2’T'
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Proof. Let f € X}’ 1/2, € Xi’io/Z, s > 1/2, both with support in [—2T, 27.
Using the arguments immediately above shows that we have actually proved,

during the course of the proof of Proposition 3.1, that
0:(£9) e < C (IFalalg + 1 slolere)

for any § > 3/8. Let s = 0 (the arguments are exactly the same in the other
cases) and ¢ such that 3/8 < ¢ < 1/2. By an obvious interpolation inequality,
one gets

s,l/2| s,0
X1,1 g Xl,l

|g|X?:(‘; < C|g|;(_?2(§ |g|2 01/2

On the other hand, using the notations introduced at the beginning of Sec-
tion 2, we have

_— 1/2
|9l x00 = E Sup< g /| . |Ang(T, n/)|2d7'>
’ T|~2

0 FEN e foy

< Z|Ang‘Li’t([—2T,ZT]x'ﬂ‘)

< oTv* Z |Anglra (o 2m)xm)

< T1/4Z Z / 2/3|Ang(7 n')| dT) v

=0 weN\{0}

where we have used in the last line above the Strichartz estimate proved in
[4]. Tt follows readily that

l9lx00, < CT1/4|9|X§)’2”3 = CTI/4|9|X?’§§2’
and from the above interpolation inequality,
g, < CTO i

In the same way, we estimate f as follows : taking a small positive €, one has
1-26)/(142¢) | £12(e+6) /(142
[flxos < LIS 22 72 11 K

0,—¢ 0 1/2
X1,1

and

|f’X;):f5 < C|f|xf;g < OT1/4|f|X§):21/3
by using again the estimate in [4] for A, f; it follows that
[Flxore < T £l o2,

Finally,
102(F9)| o172 < CaT?|fl 501729 0.1/2
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where « is chosen such that o < (1 —2d)/4, with § > 3/8, so that at the very
end, a < 1/16, and since f and g have supports in [—2T, 27, the proof of
Proposition 3.2 follows. 0

We now prove an estimate of the same type as those in Propositions 3.1
and 3.2, but in Y, spaces. We recall that the use of these spaces is needed to
handle the integral estimate in Duhamel’s formula (see Proposition 4.1).

Proposition 3.3. Let —1/2 < s <0, f € X}’ 1/2, g€ XS S ; then 0,(fg) €
Y;. Moreover, for any o < 1/16, there is a constant Cy > 0 such that

|aﬂc(fg> Ys T < CaTa’f

3,1/2,T|
X1 g

s,1/2,T .
Xl,oo

Proof. We only sketch the proof, since it is a slight modification of the proof
of Proposition 3.1, using e.g. the arguments in [20]. Let f € XS /2 and

g€ Xy ] 1/ . We only prove the estimate
10:(f9)lv. < CIf

the T factor can indeed be recovered exactly as in the proof of Proposition
3.2.

By a duality argument, the estimate will be proved if we show that there is
a constant C' > 0 such that for any function w (of the space variable ) lying
in the Besov space B, > , one has

xpielg

5,1/2,
Xl,oo

2,00

S |/ng” ()| < Clf

/750

Xf:11/2|g Xf:io/2|w|32j;o~

Setting as above F(r,n') = n/*(a(r,n'))Y2f(r,n'), G = n/*(6)"/2§ and W =
n' 1, it suffices to prove that

(311)
> [ [ HEE e Gl ,
1
T7ER J 1 ER

,7&0 50 n)) o (T — 7,0 — i)Yo (71, )1/

ny#n/
< C’F’X?:?‘G’X%SO’W‘B%OO

Again, we will consider separately the three regions defined at the beginning
of the proof of Proposition 3.1.

Region I : (o) = max({c), (o1), (02))
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As already noticed, we have in this region
[ |2y o0 =y~ < O{o(m,my)) 2.
Hence, taking ¢ > 0 small, we have
/|2 | =5 = nd | ey | Gy Wi |
(o(r,n)) o (1 = 71,1/ — ny))/? (o (11, n)))/?

|Wn’ | |FT—T1 n'—nj | |G‘r1,n’1 |

(o(T, W ))1/2+e {o(r,n/)) /2~ (o(T — 71,0/ — n}))1/2

and we conclude as in the proof of Proposition 3.1, using the fact that

]—"‘1<—W )eXO’O with

(oyiree) © Fooce

F _1<<0>V52+e>

< Ca|W|Bgyoo

X2

35

and using again the fact that Lemma 3.1 is still true with a little smaller power

of o(r,n).

Region III, that is (02) = max({o), (01), (09)) is treated in the same way.

Region I : (o) = max({0), (01), (02)).
Here, we have

||| ¥ = ni |7 < Clo(r,n))
and it follows that

1 C
(o(r,n)) ~ (o(r,n')) + |n/|2F2|n) [ 2|/ — nf |25

Hence, going back to the way we have proved Proposition 3.1, it suffices to

show that for a fixed n/,

FAQdWTﬂWSW—MPWWU )Exw

ro )+ WP — g ) e

with

< CWlgg

o))+ WP —

£ [/ [ g || — g | W ()
(o

0,0
Xoo,oo

and a constant C' that does not depend on nj.
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But this follows from the next easy computation, once we have noticed that

/Nﬁﬁg

~ 2
| - ( /[ |’ — o] W ()
(o

7o) + P i =g

X3 oo
/ |n/|2+2s|n/1|725|n/_n/1|725|W(n/)|2
= sup L i
kit an o ITI~20 ((o(T,n')) + |0/ [*T25|ny | 7250/ — nf|=29)?

Ssup [ Y [P R = w72 (0
"\ n|~an

dr
X
| na|—28>2>
< CWE, .

This ends the proof of Proposition 3.3. OJ

As a last, but easy, bilinear estimate, we briefly show that we can handle
terms like 9,(¢?) in Xf:l if g is only in X35/ (the ¢ loss of regularity
seems to be necessary here). Our motivation to treat such terms arises from

the fact that the stochastic convolution which was studied in Proposition 2.1

s+e, 1/2)

belongs to such spaces (or even to X7 if sufficient regularity is assumed

on the operator ¢, but never belongs to X7 1/2

the Brownian motion.

due to the lack of regularity of

Proposition 3.4. Let —1/2 < s < 0, and ¢ > 0; then there is a constant

C > 0 such that for any g € X332 e

|a( )‘XS 1/2<C|g| s+sl/2

If moreover, g is supported in [—2T,2T| and 0,(g?) is considered in X 12 T

then a factor T can be recovered in the right hand side above, for any a <
1/16.
Finally, the same estimate holds if in the left hand side, Xi’1_1/2 (resp.

—1/2,T
s, T
X7 ) is replaced by Yy (resp. Ysr).

Proof. Here again, we only sketch the proof, since the arguments are the same
as in the easiest cases of the proof of Proposition 3.1, that is when some small
power of (o) or (o;) can be lost.
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Indeed, taklng f.g € X3 1/2 h € Xo 81/2 and setting as before F' =
n/8+€< )1/2f G =n""(o >1/Qg and H=n'" S( Y1/2h, we need to show that

’n/|1+s|n/|—s E’n n/|—s—6 . R N
O B B T e o L DR
TE T1E

’750 nj#0
ny#n'
< O|H|X2<;Ooo |F|X25000 |G|X2<’>Ooo'
Consider e.g. Region I, where (01) dominates, and where we have the inequal-
ity
[ o — 7 < Co)

so that we are lead to estimate

TER /2 >1/2 li T 7'I’L/ T1 ’nll -7 n' ’T'L/ T
IGR ) 1

’#0 ’;éo

) #n
This latest term is then handled by the same arguments as those used in
Region I-a in the proof of Proposition 3.1, keeping in addition a small power
of (oy) to be able to sum over k, and hence to replace the norm |F|X(1)? by
|F'| xo0_ (the sum over n being handled by using |n' — nj|~%). Y
All the other regions are treated in the same way, and the arguments for the

other statements of Proposition 3.4 are exactly the same as those of Proposi-
tions 3.2 and 3.3. 0]

4. PROOF OF THEOREM 1.1 AND THEOREM 1.2

As was pointed out in the introduction, it mainly remains to show that
we may gain one degree of regularity in time when passing from 9,(gf) to
fot U(t — $)0.(fg)(s)ds. The result is stated in the next proposition.

Proposition 4.1. There is a constant C' > 0 such that if f € Xf;;l/z Ny,
s € R, theﬂtHfOtU(t_s)f( )ds € Xsl/2T and

(=] e 2z

for any T < 1.
Moreover, for any f € Y,, the map t — fg U(t—s)f(s)ds is continuous with
values in Bj,(T) and there is a constant C' > 0 such that

S
B3

sup
te[-T,T)

/0 t U(t — ) f(s)ds
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Proof. The arguments of the proof are similar to those in [14]. We consider a
cut-off function ¢ with ¢» =1 on [0, 1] and supp ¢ C [—1,2]; it is sufficient to
prove that

\w [ vt 9ras

< O<|f|xf;1‘1/2 + |f|Ys>

X2
We first write

v(o) [ Ule=s)(s)as

67,'15(7'1 —n’3) -1

=t e f(ry,n! e dr
DO N G 1
; 013
L0 [ i) S S
el ‘Tl—’l’blg‘zl 7_]_ — M
- gl(t’ ZE) + 92(t7 :L‘)
To estimate g;, we expand the exponential as
gitn=n") 1 btk (ry — %)
T — n’3 —1 k!
so that
- i*t* izn/+itn/3 p / 13\ k
91(@1‘):ZF (t)z ‘ 3|<1€ f(rn))(m —n") dm.
k=1 wez? Im=n"ls
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and it follows

|gl|Xf’f/2

' o 1/2
=22mz( > | |<T—n/3>mg1<7,nf>|2d¢)
neN =0 \ |n/|~2n /172
S (X e
neN \n/|~2n [l~2¢

1/2
~ 2
x| § T a7 — ™) fr) s — n)edr | ar |
|T1—n’3|§1 el k?'

Now,

Z /|T|N2£ (r —n'® [/ f: g¢k(7 — ) f(m, ) (1 — n'3)kd7'1} 2dr

w2 <
%0 3
Pr(T —n"")[\?
< / <7__n/3>< |—) dT( ‘ (7'1, )| dT1)
|,LZNQ frin2t ; Kl fri—n?<1
oy (o [ = )2
< sup (tT—n )( —') dT( Z |f(m, )] dT1>.
|n’\~2" ‘T|~2[’ k=1 k \n’|~2" |T1*7’L/3|§1

We deduce that

|gl|Xf’i/2

1/2
00 00 | - NI
<supd (;;ﬂgn / LN T ) 0
_ 1/2
Xz2sn< Z / \ | (7’1, )’ d7'1> .
|r1—n’?|<1

neN [n!|~2m

Now, we have for € > 0,

- By (e [@r(T — 0]\ 2
oy e [ ()
< sup Z sup < sup (7 — n’?’)_e) / (T — n/3>1+a<z \@k(Tk—' n'3)|>2dr
neN 7eN [n/|~27 N |7|~2¢ |7|~2¢ N ) P} !
< C(sup ZQE — 23">75> sup /(T — n/3>1+g< |<Pk(7k—' n,3>|)2d7
neN reN n’eN JR k=1 :

<O’Z/ZCI

H1/24e/2
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Hence

|91

31/2 <C‘Z ol

In order to estimate the norm of go, we write

Go(t,x) = go1(t, ) + goa(t, x)

H1/2+5/2|f|X1S,’?‘

with .
N T
t,x) =t e (') ———dr
it =o)X [ )
and
A eitn’3
paltr) = —v® X [ ) .
el |7'1—Tl'3|21 7_]_ — M
We have X
R n T,n
o (1, ) Z/ (T — Tl)f(l—/s)dﬁ’
|11 —n’3|>1 T —n
and

N IS IR

[z
2
SC Z / |:/ <7- >1/2|w |‘f T, N 71i| dr
|n/|~2n |7|~2k |T1_”'3|21
1/2 f T1, T 2
+C Z [ (T — )2 (r |’ dTl] dr
I/ [~2n |7|~2F |71 —n/3|>1
<I+1I.

For the term I, we have
1<cY /
In|~2n 717
Let h € L2, then

7—17n)|
Z /|7—|~2k T,n' /W —n ,3>1/2d7'1d7"

|n|~2m

/W I > /r|~2k 2d7’>1/2

n[~2m

fr =)\
(X J ) i

n|~2m

7—1’”)| 2
2k / |¢ n/3>1/2 dTl} dr.
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We deduce from the preceding estimate that
. ) " 2
reo [pel( X [ YRR i)
|/ |~2n |F+71|~2F <T >
In the same way, we can prove that
FEP 2
ch(/m Y2 0p(7y) Z / o /3>2d%> d¢1> :
! |~2n T+T1‘N2k

Hence we have

I+1I< (J</<T1 VY210 (my
R

and we deduce that

S [ i Par)

k=0 |n/|~27

o3 [ 3 [ U,

g Il

<oy [ i)

k1=0 | ~2k1

n’|~2n trja2b

(> / |"; T_Z/)J;dT)l/Qdﬁ)

41

(S Y XTI

k<ki—4 k1—4<k<ki;+4 k>k1+4 ‘nllNZn
Since

(Zr 2 T ENE L m)

k<ki—4 k1— 4<k<k1+4 k>ki1+4 |n’|~2”

2 1/2
< O(ky — / |f il @7)
\n’|~2"]——1 Fnatrs (T —1%)
[fF 0P\ 172
+8< / ~—dT)
n’IZNZn frmairts (7 —1%)

+Cz< 3 /ﬂNzk |<J;( )|> d7'>1/27

keN  |n/|~27
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we may easily bound the preceding term by

2 / (L+ k)25 2 () |dr Y (Y /|T|~2k %Cwm

k
k1=0 1 |~2k1 k=0  |n/|~2n

~ © ~ N2 /

k=0 ‘n’|~2n

thus

|92,1

s,—1/2.
Xl,l

xpir S Cl(r) =P | f

At last,
Jr) )

—n3>1 T1 — n’3

Goo(T,n') = (T — n'®) /

and hence

1/2

neN kE "~2n

1/2
< Z gsn Z ( sup /|T|N2]c (r — n/3>|¢(7 B n/3)|2d7>

neN kEN [n/|~2m

1/2
j{: |f'717 )2
|n/|~27 Tl - n,3

<Cy 28n<2<2k _ 2%)_5)

neN keN

><< sup /R<7-_n/3>1+s|772)(7__n,3)|2d7>1/2

|2

; , )\ /2
o 2 () o))

This ends the proof of the first estimate in Proposition 4.1. The proof of
continuity with values in Bj; and the second estimate follow in an obvious
way from a slight modification of the proof of Lemma 2.2 in [10]. O

The next lemma shows that the free term in equation (1.5) belongs to
X7 if g is in Bg, (T).
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Lemma 4.1. Let ug € B (T), and T < 1. Then U(t)uy € X7} /2T and there
is a constant C' > 0 such that

|U(t)U0|Xf,11/2,T § CY|UO|B§’71'

Proof. Let 1) be a cut-off function with ¢» = 1 on [0, 1] and let us prove that
’wU(t)uO‘Xa,l/2 < C|u0|Ba .

We use the fact that X7 > 1/ e

wﬁt\mw, ') = do(n' )b (7 — ")
to get the following bound :

C Xi’fm for any ¢ > 0, and that

W)U( )U0|Xa 1/2 S C |77/JU(t)U0|Xa,1/2+e

/ n / 1/2
<022m S [ i )

|n|~2m

w
= 22”" w( > / P — ) Par)

L N EE A

& . 1/2
eSS (X [ e PG o)
n—0 |[T—n/3|~27

j 0 |n’|~2n
oo

<oy ( ¥ o) 3 (f

|n/|~2n j7=0 |7|~27

< CE‘UO’B;leB;/IHS-

D)

O
Proof of Theorem 1.1. We now have all the estimates in hand, and we proceed
exactly as in [3]; we work path-wise on equation (1.5), using a fixed point
argument in the space X7’ 1/2T with —1/2 < 0 < s, s being defined by the
assumption on ¢, and T § 1 sufficiently small.
Let uy Fo-measurable with ug € Bf,(T) almost surely, o as above and
assume first that 4y(0) = 0 a.s. We set

(4.1) 2(t) = U(t)uo;
then by Lemma 4.1, z € Xf’ll/z’T for any 7' < 1, a.s. and

(42) o'l/2T < O|UO|BU a.S.

2] o



44 A. DE BOUARD, A. DEBUSSCHE, AND Y. TSUTSUMI

Let w(t) be defined by (1.4). By Proposition 2.1, w € X2 - X&Z;}f’T

1,00
almost surely, for any ¢’ with 0 < ¢’ < s. We fix such a ¢’ and consider w € §2
such that uy € B, (T) and w € X7 2T for any T < 1, a.s.

1,00
In terms of v(t) = u(t) — z(t) — w(t), equation (1.5) is written as
1 t
(4.3) v(t) = To(t) = —5/ U(t— )0, (v +w® +2° + 20w + 20z + 2wz)(s)ds.
0

Taking 0 < o < 1/16 in Propositions 3.2, 3.3 and 3.4, and ¢ < «/2 in Propo-
sition 4.1, we easily get the existence of a constant C, > 0 such that

’TU’X;&UZT S CaTDt/Q (lU@(;,ll/z,T + |w|§<17;0/27" + ‘UOIQBgJ) .

In the same way, if vy, vy € Xﬂl/z’T

)

then
]Tvl — TUQ|X¥,,11/2,T S OaTa/Q <”U1’Xi,11/2,T + |02‘Xi,11/2,T
+|U)|X<17,1/2,T + |U0|Bg71 |’Ul — Vg Xf,11/2,T.
Hence, setting first
R‘td = ”U)’Xf,lﬂ,t + ’uo‘Bg’l
and then defining the stopping time T}, by
T, =inf {t >0, 2C.t*°R! >1/2}

it is easily checked that 7" maps the ball of radius Rl in X7 X /2T into itself,
and that

3
’TUl — TUQ’Xi,ll/Q,Tw S Z"Ul — U2|XE,11/2,TW.

Hence 7 has a unique fixed point, which is the unique solution of (4.3) in
XA

It follows from classical arguments and the second part of Proposition 4.1
that z and v are in C([0,7,]; BS;(T)) a.s. On the other hand, since ¢ €
LY® and U(t) is a unitary group in H*(T), we have w € C([0,T,]; H*(T)) C
C([0,T.]; BS,(T)) by Theorem 6.10 in [8]. Hence, the solution u = v + z +w
of (1.5) is almost surely continuous with values in B3 ,(T).

One classically get rid of the condition y(0) = 0 a.s. by considering v(t, z) =
u(t,z + agt) — ap with ag = [ uo(x)dx; indeed, v then satisfies the KdV
equation (1.2) and the condition 7,(0) = 0.

This ends the proof of Theorem 1.1. O

We now explain how we can get rid of the condition that the spatial mean
of the noise is zero almost surely at any time.
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Proposition 4.2. The conclusion of Theorem 1.1 is still true without the
assumption that Im ¢ C span {e;, j > 1}.

Proof. Let P be the orthogonal projector on span {ep} in L*(T) i.e. (Pu)(x) =
(u, ep)eg for u € L*(T), where (-, -) denotes the inner product in L?(T). Then,
clearly, ¢ = (I — P)¢ satisfies Im ¢ C span {ej, 7 > 1}; on the other hand,
W = PoW + oW, and ((t) = PeW (t) = > ren(®ek, €0) Br(t)eg is a real valued
Brownian motion since Y, y(dex, €9)? = \¢*eo\%2m < +o00.

Let v = u — (3, then if u satisfies the KAV equation (1.2), v satisfies

dv + (D20 + (v + B)0pv)dt = pdW,
v(0) = up

and setting (¢, x) = v(t,x + fot G(s)ds), we get the equation for @

dv + (30 + 00,0)dt = dW

(4.4)
17(0) = Ug

with W (t, z) = ZkeN(éek)(x — fot 3(s)ds)Bk(t) and it is clear that we can
apply all the arguments of the proof of Theorem 1.1 to equation (4.4), leading
to the existence and uniqueness of v from which we deduce the existence and
uniqueness of u. Indeed, note that in Proposition 2.1, ¢ was allowed to depend
on t and w provided that it was in L=((0,T) x Q; Ly*), which is obviously the
case here. 0

Proof of Theorem 1.2. The arguments are exactly the same as in [3]: let
T > 0 fixed; under the assumptions of Theorem 1.2, considering a sequence
¢n in LY such that ¢, — ¢ in L and a sequence wug, in L*(; H3(T)) such
that ug,, — ug in L*(Q; L*(T)); one can easily prove (see [2]) the existence of
a unique solution w,, in C([0,T]; H3(T)) of

un(t) = U(t)ug, — %/0 U(t — 5)0,(u2(s))ds +/0 Ut — 5)¢ndW (s).

Using It6 formula on ]un]%Q(T) and a martingale inequality, one gets as in [3]
E( s [un(®)Ezr)) < E (JtonlZam) + COlI6nl2n0:
t€[0,T] 2

hence, up to a subsequence, u,, converges in L*(2; L>°(0,T; L*(T))) weak star
to some process @. Then if 7, is defined in the same way as 7 in the proof
of Theorem 2.1, replacing uo and ¢ respectively by wg, and ¢,, one shows
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that, given o < 0, 7,, is a uniform contraction in the ball of radius R~ in
Xi 11 / 2’T“; moreover the unique fixed point of 7, is equal to u,, which, as a

result, converges to u (the solution given by Theorem 1.1) in X7 11 /2T for any
o < 0. It follows that «w = @ a.s. on [0,7,], and that

[u(Te)|Bg (1) < Colw(Ti)|r2(m) < |U]porir2(my)  a-s.

so that u may be extended to [0, 7] almost surely, giving the result. U
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