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Abstract. We study from a mathematical point of view a model equation for Bose Einstein

condensation, in the case where the trapping potential varies randomly in time. The model is

the so called Gross-Pitaevskii equation, with a quadratic potential with white noise fluctuations

in time. We prove the existence of solutions in 1D and 2D in the energy space. The blow-

up phenomenon is also discussed under critical and super critical nonlinear interactions in the

attractive case.

1. Introduction

In this paper we consider the following nonlinear Schrödinger equation (named Gross-
Pitaevskii equation in this context) perturbed by a random quadratic potential in dimen-
sion one or two :

i∂tu + (∆u − V (x)u + λ|u|2σu + iγu) = εK(x)uξ̇, x ∈ R
d, d = 1, 2, t ≥ 0, (1.1)

where V (x) = K(x) = |x|2, λ = ±1 and ξ̇ is a white noise in time with correlation function

E(ξ̇(t)ξ̇(s)) = δ0(t−s). Here, δ0 denotes the Dirac measure at the origin, σ > 0, γ ≥ 0 and
ε > 0. The product arising in the right hand side is interpreted in the Stratonovich sense,
since the noise here naturally arises as the limit of processes with nonzero correlation
length. We moreover assume that the noise is real valued.

Equation (1.1) with d = 2, σ = 1 and V (x) = K(x) = |x|2 was introduced in [1] as
a model for the evolution of the wave function of a Bose-Einstein condensate trapped
by a system of laser beams (see also [2]). Indeed, according to [1], fluctuations of the
laser intensity should be taken into account in this case, and those fluctuations may be

1991 Mathematics Subject Classification. 35Q55, 60H15 .
Key words and phrases. Nonlinear Schrödinger equation, stochastic partial differential equations, white

noise.
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regarded as fluctuations of the harmonic trap potential in the mean field approximation.
Assuming that those fluctuations are delta-correlated in time, one is then lead to consider
equation (1.1), in which the term εξ̇(t) represents the deviations of the laser intensity
E(t) around its mean value (see [1]). Also, in this model, the sign of λ is related to the
sign of the atomic scattering length, which may be positive or negative. A similar model
was used in [17] in dimension three, except that the fluctuations there were not assumed
to be delta-correlated. Related equations may also be found in the context of optic fibers.
In [3] e.g., equation (1.1) with V (x) = 0 and K(x) = |x|2 is considered as a model for
optical soliton propagation in fibers with random inhomogeneities.

In [1], the qualitative properties of solutions of (1.1) is studied by using the “moments
method” which consists in finding (finite dimensional) evolution equations satisfied by a
few integral quantities of the solutions, like e.g. energy momentum, and so on. A closed
system is then found in the case where there is no damping. The solutions of this system,
which is a system of stochastic differential equations, are then formally approximated
in the limit where the noise tends to zero. Numerical computations are also shown in
[1]. However, no really clear conclusion is made about the occurence or not of collapsing
states for the condensate. Our aim in the present paper is to give a precise mathematical
meaning to the solutions of (1.1) and to show the occurence of collapse in the attractive
case, by the use of a virial method.

In order to state precisely the problem and our results, we will consider a probability
space (Ω,F , P) endowed with a standard filtration (Ft)t≥0 and a standard real valued

Brownian motion W (t) on R
+ associated with the filtration (Ft)t≥0. We set ξ̇ = dW

dt
and

then consider the stochastic nonlinear Schrödinger equation:

idu + (∆u − |x|2u + λ|u|2σu + iγu)dt = ε|x|2u ◦ dW, (1.2)

where ◦ stands for a Stratonovich product in the right hand side of (1.2) and λ = ±1.
We will use the equivalent Itô equation which may be written as

idu + (∆u − |x|2u +
i

2
ε2|x|4u + λ|u|2σu + iγu)dt = ε|x|2udW, (1.3)

in order to be able to use the Itô calculus. As usual, the corrective term
i

2
ε2|x|4u in

(1.3) arises as a damping term, here with a function of |x|4. An equation of the same
kind as (1.3), but without quadratic potentials (corresponding to the case V (x) = 0 and
K(x) = 1) was considered in [11, 12, 13]. The noise was there depending on both the time
and space variables, with white correlations in time and coloured in space. The product
in the equation was also a Stratonovich product, but the corrective term coming from
the Itô correction was there considered as a perturbation of the deterministic equation,
in particular when using a fixed point method in order to get the local (in time) existence
of solutions. This is not possible here because the linear corrective term |x|4u does not
live in the domain of the operator −∆ + |x|2. In [11, 12], the authors could make use
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of the Strichartz estimates established in the deterministic theory. In the present case,
the linear operator, corresponding to (1.3) with λ = 0 or with λ = 0 and K ≡ 0, does
not easily allow us to use a similar argument. Indeed, even if the Strichartz estimates for
the deterministic Schrödinger operator with a superquadratic potential are known (see
[21, 22]), the linear operator under consideration here is not self-adjoint and in particular
the |x|4 term in the potential is a dissipative term. Also as was recalled in [8, 15], the
evolution of the linear deterministic case with a quadratic potential is given by Mehler’s
formula, whose generalization to the non-deterministic case would not be so clear. For
the reasons mentioned above, we consider only the one or two dimensional cases, in which
the nonlinear term may be handled without making use of Strichartz estimates.

In the case where V (x) = |x|2 and K ≡ 0, it is known that in the energy space (see
the definition of Σ below) equation (1.1) is locally well posed for λ = ±1, and globally
well posed if either λ = −1 or λ = 1 and σ < 2/d (see [9, 19]). Also, blow up phonomena
appear for λ = 1 and σ ≥ 2/d with a certain condition on initial data, for example, a
datum with negative energy (see [7]). We here generalize these deterministic results to
equation (1.3), with a condition on the initial datum, which now depends on ε.

We now give some notations. For p ≥ 1, Lp(Rd) is the Lebesgue space of complex
valued, p-th summable functions, and the inner product in the real Hilbert space L2(Rd)
is denoted by 〈·, ·〉, i.e.,

〈u, v〉 = Re

∫

Rd

u(x)v(x)dx, for u, v ∈ L2(Rd).

The norm in Lp(Rd) is denoted by | · |Lp.

We define for s ∈ R the space Hs(Rd) of tempered distributions v ∈ S
′

(Rd) whose
Fourier transform v̂ satisfies (1 + |ξ|2)s/2v̂ ∈ L2(Rd). The norm in Hs(Rd) is denoted by
| · |Hs. We denote the weighted space {v ∈ H1(Rd); |x|v ∈ L2(Rd)} by Σ and its norm by
| · |Σ = | · |H1 + |x · |L2.

If I is an interval of R, E is a Banach space, and 1 ≤ r ≤ ∞, then Lr(I; E) is the
space of strongly Lebesgue measurable functions v from I into E such that the function
t → |v(t)|E is in Lr(I). We define similarly the spaces Cα(I; E), or Lr(Ω; E), where α is
the Hölder exponent.

It will be convenient to approximate the stochastic nonlinear Schrödinger equation
(1.2) in order to justify some formal computations. We use a cut-off function θ that is,
0 ≤ θ(ρ) ≤ 1, θ ∈ C∞

0 (R+) and θ(ρ) = 0 for ρ ≥ 2, θ(ρ) = 1 if 0 ≤ ρ ≤ 1. We define

θn(x) = θ
(

|x|2

n

)

so that |Dαθn|L∞ = O
(

n−l/2
)

for n ∈ N, |α| = l, l = 1, 2.

3



We define the energy

H(u) =
1

2
|∇u|2L2 +

1

2
|xu|2L2 −

λ

2σ + 2
|u|2σ+2

L2σ+2, (1.4)

which is a conserved quantity of the deterministic equation, i.e. (1.1) with K ≡ 0 and
V (x) = |x|2. We will look for solutions in the space Σ since H(u) is well defined in Σ,
thanks to the embedding Σ ⊂ H1(Rd) ⊂ L2σ+2(Rd), if d = 1 or 2, and it will allow us to
get an estimate for the global existence.

We will have to make use of a compactness method, and Prokhorov and Skorohod
Theorems. A suitable space to get estimates allowing us to use those theorems is, in the
present paper for m ∈ N,

Σm = Hm ∩ {u ∈ L2(Rd) ; (1 + |x|2)m/2u ∈ L2(Rd)} ⊂ Σ.

The dual space of Σm in the L2 sense, which we denote by Σ−m, is

Σ−m = H−m +

{

u ∈ S
′

(Rd) ;
u

(1 + |x|2)m/2
∈ L2(Rd)

}

,

and the norm in Σ−m is given by

|u|Σ−m = inf

{

|u1|H−m +

∣

∣

∣

∣

u2

(1 + |x|2)m/2

∣

∣

∣

∣

L2

; u = u1 + u2

}

for u ∈ Σ−m.

The results are the following. First, we study the local well posedness of (1.3).

Theorem 1. Assume σ > 0, γ ≥ 0 and λ = ±1.

(i) Assume d = 1. For any u0 ∈ Σ, there exist a stopping time τ ∗(u0, ω) and a unique

solution u(t) adapted to (Ft)t≥0 of (1.3) with u(0) = u0, which is almost surely in

C([0, τ ]; Σ) for any τ < τ ∗(u0). Moreover, we have almost surely,

τ ∗(u0, ω) = +∞ or lim sup
tրτ∗(u0,ω)

|u(t)|Σ = +∞.

(ii) Assume d = 2 and σ ≤ 1. For any u0 ∈ Σ, there exist a stopping time τ ∗(u0, ω)
and a unique solution u(t) adapted to (Ft)t≥0 of (1.3) with u(0) = u0, which is

almost surely continuous on [0, τ ] with values in Σ endowed with its weak topology,

for any τ < τ ∗(u0). Moreover, we have almost surely,

τ ∗(u0, ω) = +∞ or lim sup
tրτ∗(u0,ω)

|u(t)|L2σ+2 = +∞.

As was previously mentioned, a compactness method will be used in order to prove
Theorem 1. We note that the condition u ∈ Σ is not sufficient to ensure that the quadratic
variation of the martingale part in equation (1.3) is finite. Thus we have to use a cut-off
of the diffusion coefficient. Moreover, since the equation is nonlinear, we have to use
also a cut-off in the nonlinear term, thus introducing a new parameter in our sequence of
approximate solutions, as is classical for stochastic partial differential equations.
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The uniqueness of the solution of (1.3) is necessary to derive the convergence in proba-
bility of the original sequence of regularized solutions. In order to obtain the convergence
of the original sequence, we will make use of the following lemma, which was first used
by Gyöngy and Krylov in [18].

Lemma 1.1. Let Zn be a sequence of random elements in a Polish space E equipped

with the Borel σ algebra. Then Zn converges in probability to an E-valued random ele-

ment if and only if for every pair of subsequences (Zφ(n), Zψ(n)), there is a subsequence

of (Zφ(n), Zψ(n)) which converges in law to a random element supported on the diagonal

{(x, y) ∈ E × E, x = y}.

However, some difficulty occurs in proving the uniqueness of the limit of the sequence of
approximate solutions. Indeed, we do not know whether this uniqueness holds for a fixed
value of the parameter corresponding to the cut-off in the nonlinear term. For that reason,
we need to include the whole sequence of cut-off parameters in the approximate solution.
A similar idea has been developped in [14] in which the convergence of a semi-discretized
version of Equation (1.1) with K = V = 0 is studied. However, the main difference with
[14] is that here we do not expect the solutions to be global in time, in general. This
causes difficulties in the passage to the limit procedure (see the proof of Lemma 2.6).

Secondly, we show the global existence of the solution of (1.3) in the subcritical and
defocusing cases. For that purpose, we need to apply the Itô Formula to the energy H(u).
In this process, it is required that the reguralized solutions to (1.3) converge to a solution
of (1.3) in the topology of strongly continuous functions of time with values in Σ. We
note that Theorem 1 (ii), i.e. the case d = 2, gives only the existence of a solution which
is weakly continuous in time with values in Σ. To realize the strong convergence we need
an estimate on the regularized solutions in a more regular space than Σ, for example Σ2

in our case. We will then apply the argument of [6] and more regularity on the initial
data and the nonlinearity will be required.

Theorem 2. Assume d = 2, λ = ±1, γ ≥ 0 and 1/2 ≤ σ ≤ 1. For any u0 ∈ Σ2 there is

a unique solution u(t) adapted to (Ft)t≥0 of (1.3) with u(0) = u0, which is almost surely

in C([0, τ ]; Σ) for any τ < τ ∗(u0), where τ ∗ is the same random time as in Theorem 1.

As a consequence, using an estimate for the energy, we have the following theorem
concerning global existence.

Theorem 3. Assume σ > 0 and γ ≥ 0.

(i) Suppose that either λ = −1 or λ = 1 and σ < 2/d. Assume also that u0 ∈ Σ if

d = 1 or u0 ∈ Σ2 and σ ≥ 1/2 if d = 2, then the solution of (1.3) with u(0) = u0

is global, i.e. τ ∗(u0) = +∞, a.s.

(ii) Suppose λ = 1 and σ = 2/d. Assume that u0 ∈ Σ if d = 1 and u0 ∈ Σ2 if d = 2,
then the solution of (1.3) with u(0) = u0 satisfying

|u0|
4/d
L2 < 1/(2Cd)
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is global, i.e. τ ∗(u0) = +∞ a.s., where Cd is the best constant in the Gagliardo-

Nirenberg Inequality

1
4
d

+ 2

∫

Rd

|v|4/d+2dx ≤ Cd|∇v|2L2|v|
4/d

L2 .

Lastly, the blow up phenomenon will be discussed. In the following theorem, we only
consider the case γ = 0. We remark

that if d = 1 we may prove an analogous result for the case γ > 0 if σ > 2 (see Remark
4.2 for details).

Theorem 4. Let γ = 0. Assume that u0 ∈ Σ and σ ≥ 2 if d = 1 or u0 ∈ Σ2 and σ = 1 if

d = 2. Assume also that λ = 1 and for some deterministic t̄ > 0 with ε2t̄ ≤ 1,

I(u0) + 4G(u0)t̄ + 8H(u0)t̄
2 < 0,

then

P(τ ∗(u0) ≤ t̄) > 0.

For equation (1.1) with K ≡ V ≡ 0 and a noise which is white in time and correlated
but nondegenerate in space, the authors in [13] proved that the blow-up phenomenon
occurs for any nonzero initial data if σ > 2. We are not able to prove such a result in
the present case (see Remark 4.1), and a noise depending only on time might not have
enough influence to cause the blow-up for any initial data.

The paper is organized as follows: in Section 2, we prove the local well posedness of
(1.3). In Section 3, we show the global existence of the solution of (1.3), and in Section
4 we study the blow up phenomenon. To lighten notations, we denote in what follows by
C(u0, · · · ) a constant which depends on u0 and so on.

2. Local existence

This section is devoted to prove Theorems 1 and 2. We will give a detailed proof only
for the case d = 2 since the proof in the case d = 1 is much simpler. We will just make
some remarks for d = 1 at the end of the section.

2.1. Proof of Theorem 1 (ii) (d = 2). First we consider an approximation of Eq.(1.3)
as follows:

idun + (∆un − |x|2un +
i

2
ε2θ2

n(x)|x|4un + gn(un) + iγun)dt = εθn(x)|x|2undW, (2.1)

with un(0) = u0, where

gn(s) = λ|s|2σs if |s| ≤ n, gn(s) = λn2σs if |s| ≥ n.
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We remark that for all u0 ∈ Σ, there is a unique solution un ∈ L2(Ω; C([0, +∞); Σ))
of (2.1). This solution satisfies the following estimates which will allow us to apply a
compactness method, and pass to the limit as n goes to infinity.

Lemma 2.1. Assume σ > 0, λ = ±1, γ ≥ 0 and u0 ∈ Σ. Let un be the solution of (2.1).
For any T > 0 and R > 0, un satisfies

E

(

sup
t∈[0,τR

n ∧T ]

|un(t)|
2
Σ

)

≤ C(T, |u0|Σ, R),

where τRn = inf{t ≥ 0; |un(t)|L2σ+2 > R}.

Lemma 2.2. Assume σ > 0, λ = ±1, γ ≥ 0 and u0 ∈ Σ. Let un be the solution of (2.1).
For any T > 0 and any real number 0 ≤ α < 1/4, there exists a constant C independent

of n such that

E

(

|un(t)|
2
Cα([0,τR

n ∧T ];Σ−4)

)

≤ C(T, |u0|Σ, R). (2.2)

We do not prove these lemmas right here, but we will give a proof in Appendix. As
already mentioned before, we will need the uniqueness of the limit sequence. We first have
the following result, which is obtained exactly as in Section 3.6 of [9], by using suitable
stopping times.

Lemma 2.3. Let T > 0 be fixed. Assume 0 < σ ≤ 1, γ ≥ 0, λ = ±1 and u0 ∈ Σ. Let u(t)
and v(t) be two adapted processes with paths a.s. in L∞(0, T ; Σ) ∩ C([0, T ]; L2) and with

u(0) = v(0) = u0 a.s.; we assume that u and v are solutions of (1.3) on [0, τu] and [0, τv]
respectively, where τu and τv are stopping times. Then we have u = v on [0, τu ∧ τv ∧ T ],
a.s.

Proof. Let w = u− v and τ = τu ∧ τv. Then w satisfies the following equation on [0, τ ]:

idw + (∆w − |x|2w)dt +
i

2
ε2|x|4wdt + iγwdt + λ(|u|2σu − |v|2σv)dt = ε|x|2wdW

Applying the Itô formula to |w|2L2 we have

d|w|2L2 = 2λ〈|u|2σu − |v|2σv, iw〉dt− 2γ|w|2L2dt.

Therefore if we define the function h ∈ L∞(0, T ; Σ) a.s. by

h(t) = |u(t)| + |v(t)|, for all t ∈ [0, T ],

then since σ ≤ 1,

|w(t ∧ τ)|2L2 ≤ C

∫ t∧τ

0

(
∫

R2

(1 + h2(s))|w(s)|2dx

)

ds

a.s. for any t ∈ [0, T ]. Now we consider for M > 0,

τ̃M = inf{t, 0 ≤ t ≤ T, |h|L∞(0,t;Σ) > M, or |w|L∞(0,t;Σ) > M},
7



and any number p ∈ (2, +∞). We deduce from Hölder’s and interpolation inequalities
that

∫

R2

h2|w|2dx ≤

(
∫

R2

h2pdx

)1/p

|w|
4/p

L4 |w|
(2p−4)/p

L2 , (2.3)

a.s. for all t ∈ [0, τ ∧ τ̃M ]. Here we remark that by Trudinger inequality, there exist two
positive constants K(M) and µ(M) such that

∫

R2

(eµh
2(t) − 1)dx ≤ K, (2.4)

for all t ∈ [0, τ ∧ τ̃M ]. It follows from (2.3), (2.4) and the elementary inequality

z2p ≤

(

p

µ

)p

(eµz
2

− 1), z ∈ R,

that we have a.s.
∫

R2

h2|w|2dx ≤ C(M)p|w|
(2p−4)/p
L2 ,

for all t ∈ [0, τ ∧ τ̃M ]. Let now φ(t) = |w(t)|2L2. Since |φ|L∞(0,τ∧τ̃M ;R) ≤ M2, for p large

enough we have φ(t) ≤ pφ(t)(p−2)/p if t ∈ [0, τ ∧ τ̃M ]. We can then conclude, exactly as in
[9], by considering the differential inequality satisfied by

Φp(t) =

∫ t

0

φ(s)
p−2

p ds

on [0, τ ∧ τ̃M ] that for a certain T (M) > 0, we have
∫ T (M)∧τ∧τ̃M

0

φ(s)ds = 0, a.s.

Thus, w ≡ 0 a.s. on [0, T (M) ∧ τ ∧ τ̃M ]. We repeat the above argument on [T (M) ∧ τ ∧
τ̃M , 2T (M) ∧ τ ∧ τ̃M ], and so on. Finally we get w ≡ 0 a.s. on [0, τ ∧ τ̃M ], for all M > 0.
Since h ∈ L∞(0, T ; Σ) and w ∈ L∞(0, T ; Σ) a.s., it follows that limM→+∞ τ̃M = T a.s. and
so, w ≡ 0 a.s. on [0, τu ∧ τv ∧ T ], i.e., u = v a.s. on [0, τu ∧ τv ∧ T ]. �

We are now in position to prove Theorem 1. From now on, we always assume σ > 0,
λ = ±1 and γ ≥ 0.

Let
{

vRn (t) = un(t) for t ≤ τRn
dvRn (t) = vRn (τRn )dt for t > τRn ,

where un is a solution of (2.1) with u0 ∈ Σ, and τRn is defined in Lemma 2.1.

Remark 2.1. Note that τRn is equivalently defined as

τRn = inf{t ≥ 0; |vRn (t)|L2σ+2 > R}.

Indeed, for t > τRn ,
vRn (t) = un(τ

R
n ) + (t − τRn )un(τ

R
n ).
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Thus, we have

|vRn (t)|L2σ+2 = (1 + t − τRn )|un(τ
R
n )|L2σ+2 = (1 + t − τRn )R > R.

We now consider the sequence {(vRn )R∈N}n∈N, and set Vn = (vRn )R∈N. We then prove
the following lemma concerning the tightness of the sequence of regularized solutions.

Lemma 2.4. Let T > 0. For any pair of subsequence (l(n), k(n))n∈N, the family of

laws (L(Vl(n), Vk(n), W ))n∈N is tight in (C([0, T ]; L2σ+2 ∩ L2))
N
×(C([0, T ]; L2σ+2 ∩ L2))

N
×

C([0, T ], Σ).

Proof of Lemma 2.4. The proof follows from Lemmas 2.1 and 2.2, standard properties
of the Brownian motion W whose paths are in Cα([0, T ]; R) with 0 ≤ α < 1/2, Markov’s
inequality, and Ascoli-Arzela and Tychonov Theorems. �

Let us fix a pair of subsequences (l(n), k(n))n∈N. We infer from Lemma 2.4, the
Prokhorov Theorem and the Skorohod Theorem, that there is a subsequence of
(Vl(n), Vk(n), W ) which we still denote by the same letters, a probability space (Ω̃, F̃ , P̃) and

random variables (Ṽ1,n, Ṽ2,n, W̃n), (Ṽ1, Ṽ2, W̃ ) with values C([0, T ]; L2σ+2 ∩ L2)N

× C([0, T ]; L2σ+2 ∩ L2)N × C([0, T ]; R), such that for any n ∈ N,

L(Ṽ1,n, Ṽ2,n, W̃n) = L(Vl(n), Vk(n), W ) (2.5)

and such that

Ṽj,n → Ṽj as n → +∞, P̃ a.s. in C([0, T ]; L2 ∩ L2σ+2)N, for j = 1, 2,

W̃n → W̃ as n → +∞, P̃ a.s. in C([0, T ]; R).

We here define
F̃t = σ{Ṽj(s), W̃ (s), 0 ≤ s ≤ t, j = 1, 2}

and
F̃n
t = σ{Ṽj,n(s), W̃n(s), 0 ≤ s ≤ t, j = 1, 2}.

It can be easily seen that W̃ and W̃n are standard real valued Brownian motions associated
respectively with (F̃t)t≥0 and (F̃n

t )t≥0.

Setting now, for j = 1, 2, Ṽj,n = (ṽRj,n)R∈N, and Ṽj = (ṽRj )R∈N, we obtain from (2.5) that

ṽRj,n satisfy (2.1) on [0, τ̃Rj,n], with W replaced by W̃n and

τ̃Rj,n = inf{t, 0 ≤ t ≤ T ; |ṽRj,n(t)|L2σ+2 > R}. (2.6)

Define
τ̃Rj = inf{t, 0 ≤ t ≤ T ; |ṽRj (t)|L2σ+2 > R}. (2.7)

We now perform the passage to the limit in (2.1).

Lemma 2.5. For any R ∈ N and j = 1, 2,

(i) τ̃Rj,n converges to τ̃Rj as n → +∞.
9



(ii) ṽRj satisfies the equation
{

idṽRj + (∆ṽRj − |x|2ṽRj + i
2
ε2|x|4ṽRj + λ|ṽRj |

2σṽRj + iγṽRj )dt = ε|x|2ṽRj dW̃ t ≤ τ̃Rj ,
dṽRj (t) = ṽRj (τ̃Rj )dt t > τ̃Rj ,

and ṽRj (0) = ũ0,

(iii) ṽRj (t) = ṽR+1
j (t) for t ≤ τ̃Rj .

Proof. Let R > 0 and j = 1 or 2 be fixed. First we begin with the proof of (i).
Since τ̃Rj,n ∈ [0, T ] for any n ∈ N, there exists a subsequence {τ̃Rj,nk

} such that τ̃Rj,nk
→ τR

as k → ∞. If t < τR, we have |ṽRj,nk
(t)|L2σ+2 ≤ R for sufficiently large k; thus, since

ṽRj,nk
→ ṽRj in C([0, T ]; L2σ+2), we conclude |ṽRj (t)|L2σ+2 ≤ R which implies τ̃Rj ≥ τR. On

the other hand, if t > τR, we can say that for sufficiently large k, t ≥ τ̃Rj,nk
+ ε, where

ε = (t − τR)/2 > 0. Therefore,

|ṽRj,nk
(t)|L2σ+2 = (1 + t − τ̃Rj,nk

)|ṽRj,nk
(τ̃Rj,nk

)|L2σ+2 ≥ (1 + ε)R > R.

Then, letting k to +∞, we have

|ṽRj (t)|L2σ+2 ≥ (1 + ε)R > R,

and so t ≥ τ̃Rj . Accordingly, τR = τ̃Rj and in the same way all converging subsequences

converge to τ̃Rj .

Secondly, since ṽRj,n converges to ṽRj in C([0, T ]; L2 ∩ L2σ+2) a.s. as n → +∞ and ṽRj,n
satisfies (2.2), we can prove (ii), letting n → +∞ in (2.1) and using Remark 2.1. The fact
(iii) follows in a similar way to Lemma 4.1 in [11]. �

Adding a point ∆ at infinity in L2σ+2(Rd) with the topology such that neighborhoods
of {∆} in L2σ+2(Rd) ∪ {∆} are defined as complements of closed balls of L2σ+2(Rd), we
set

ṽj(t) =

{

ṽRj (t) if there exists R such that t < τ̃Rj
∆ if t ≥ lim supR→∞ τ̃Rj = τ̃ ∗

j .

Similarly, we put
vn(t) = vRn (t), if t < τRn .

Note that in the above definition, such a R always exists since vn ∈ L∞(0, T ; Σ). We
define in the same way

ṽj,n(t) = ṽRj,n(t), if t < τ̃Rj,n.

Also, for any R > 0 and any j = 1, 2, and for a.e. ω ∈ Ω, ṽRj,n ∈ C([0, T ]; Σ) and

|ṽRj,n|L∞(0,T ;Σ) ≤ C(ω); hence ṽRj,n converges in L∞(0, T ; Σ) weak star to ṽRj ∈ L∞(0, T ; Σ)
a.s. It follows from Lemma 2.3 (note that here we need σ ≤ 1) and Lemma 2.5 that
ṽR1 = ṽR2 on [0, τ̃R1 ∧ τ̃R2 ] for each R > 0, hence τ̃ ∗

1 = τ̃ ∗
2 and ṽ1(t) = ṽ2(t) on [0, T ], a.s.

In order to apply Lemma 1.1 to the sequence vn, we shall prove the following lemma.

Lemma 2.6. Let T > 0 be fixed. Then ṽj,n converges to ṽj in probability in

C([0, T ]; L2σ+2 ∪ {∆}).
10



Remark 2.2. The space L2σ+2(Rd) ∪ {∆} with the topology defined above is actually
a metric space, since we may endow it with the distance induced by the “stereographic
projection”. Indeed, let φ be the mapping from L2σ+2(Rd) ∪ {∆} into L2σ+2(Rd) × R

defined by

φ(v) =

(

2v

1 + |v|2L2σ+2

,
|v|2L2σ+2 − 1

1 + |v|2L2σ+2

)

if v ∈ L2σ+2(Rd), and φ(∆) = (0, 1). Then it is not difficult to check that φ is bijective
and bicontinuous from L2σ+2(Rd) ∪ {∆} into {(v, λ) ∈ L2σ+2(Rd) × R, |v|2L2σ+2 + λ2 = 1}.
It suffices then to define the distance d(ū, v̄) = ‖φ(ū) − φ(v̄)‖L2σ+2×R, for ū and v̄ in
L2σ+2(Rd) ∪ {∆}.

Proof of the Lemma. For fixed ε ∈ (0, 1], we show that

P̃

(

sup
t∈[0,T ]

d(ṽj,n(t), ṽj(t)) > ε

)

→ 0, as n → +∞,

where d is the distance defined in Remark 2.2. We set τ ∗ = τ̃ ∗
1 = τ̃ ∗

2 . Then, we have,

P̃

(

sup
t∈[0,T ]

d(ṽj,n(t), ṽj(t)) > ε

)

≤ P̃

(

sup
t<τ∗

d(ṽj,n(t), ṽj(t)) > ε

)

+ P̃

(

sup
t≥τ∗

d(ṽj,n(t), ∆) > ε

)

= I + II.

We fix R large enough so that

{v ∈ L2σ+2(Rd), |v|L2σ+2 > R} ⊂ {v ∈ L2σ+2(Rd), d(v, ∆) < ε/2}.

Then we may estimate I as follows.

I = P̃

(

sup
t<τ∗

d(ṽj,n(t), ṽj(t)) > ε

)

≤ P̃

(

sup
t<τ̃2R

j

d(ṽj,n(t), ṽj(t)) > ε

)

+ P̃

(

sup
τ̃2R
j ≤t≤τ∗

d(ṽj,n(t), ∆) >
ε

2

)

= (I.1) + (I.2).

We first consider the term (I.1). Since ṽj(t) = ṽ2R
j (t) for t ≤ τ̃ 2R

j ,

(I.1) = P̃

(

supt≤τ̃2R
j

d(ṽj,n(t), ṽ
2R
j (t)) > ε

)

≤ P̃

(

supt≤τ̃2R
j

|ṽj,n(t) − ṽ2R
j (t)|L2σ+2 > δ(ε)

)

,
(2.8)

for some δ(ε) with 0 < δ(ε) ≤ 1, since none of the terms ṽj,n and ṽ2R
j attains the value ∆.
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Let us now set

τ̂Rj,n = inf{t ≥ 0; |ṽj,n(t) − ṽ2R
j (t)|L2σ+2 > δ(ε)}.

Then, we obtain

(I.1) ≤ P̃

(

sup
t≤τ̃2R

j ∧τ̂R
j,n

|ṽj,n(t) − ṽ2R
j (t)|L2σ+2 ≥ δ(ε)

)

. (2.9)

Furthermore, we remark that ṽj,n(t) = ṽ2R+1
j,n (t) on [0, τ̃ 2R

j ∧ τ̂Rj,n], since

|ṽj,n(t) − ṽ2R
j (t)|L2σ+2 ≤ δ(ε) ≤ 1.

Therefore, finally,

(I.1) ≤ P̃

(

sup
t≤τ̃2R

j ∧τ̂R
j,n

|ṽ2R+1
j,n (t) − ṽ2R

j (t)|L2σ+2 ≥ δ(ε)

)

,

and this quantity goes to 0 as n goes to infinity, due to Lemma 2.5 (iii) and the fact that
ṽ2R+1
j,n converges to ṽ2R+1

j a.s. in C([0, T ]; L2σ+2).
On the other hand, by the choice of R,

(I.2) ≤ P̃

(

sup
τ̃2R
j ≤t≤τ∗

|ṽj,n(t)|L2σ+2 ≤ R

)

≤ P̃(τ̃ 2R
j ≤ τ̃Rj,n).

But the right hand side tends to 0 as n goes to infinity, since limn→∞ τ̃Rj,n = τ̃Rj < τ̃ 2R
j a.s.

�

We have shown that ṽj,n converges to ṽj in probability in C([0, T ]; L2σ+2 ∪{∆}). Thus,
(ṽ1,n, ṽ2,n) converges in probability to (ṽ1, ṽ2) which is supported on the diagonal, since
ṽ1 = ṽ2. By Lemma 1.1, vn converges to v in probability. It is easy to check that v is
a solution of (1.3) with W̃ replaced by W on [0, τ ∗), where τ ∗ = lim supR→+∞ inf{t ≥
0; |v(t)|L2σ+2 > R}. Moreover, for any τ < τ ∗, a.s., it is easily seen by the same arguments
as above that v has paths in L∞(0, τ ; Σ) ∩ C([0, τ ]; L2(Rd)) a.s., hence its paths are a.s.
continuous in time with values in Σ endowed with its weak topology. �

2.2. Proof of Theorem 2. Since we may prove Theorem 2 in a similar way to the
previous subsection, we only mention some key points. The problem in the previous
subsection was that we could not have the strong convergence of the regularized solution
ṽRj,n in C([0, T ]; Σ), since it is not easy to have an estimate for un in L2(Ω; C([0, τRn ∧T ]; Σ2))

due to the nonlinearity. However, if we assume that u0 ∈ Σ2 and 1/2 ≤ σ ≤ 1, we can
obtain the following estimates, applying the Itô formula to 1 + log(1 + |un|

2
Σ2) and using

the Brezis-Gallouet inequality (see [6]). The next Lemma is proved in the Appendix.
12



Lemma 2.7. Assume 1/2 ≤ σ ≤ 1, λ = ±1, γ ≥ 0 and u0 ∈ Σ2. Let un be the solution

of (2.1). For any T > 0 and N > 0, un satisfies

E

(

sup
t∈[0,τ̂N

n ∧T ]

(1 + log(1 + |un(t)|
2
Σ2))

)

≤ C(T, |u0|Σ2, N), (2.10)

where

τ̂Nn = inf{t ≥ 0; |un(t)|Σ > N}.

Note that it can also easily be proved as in Lemma 2.2 that

E

(

|un(t)|
2
Cα([0,τ̂N

n ∧T ];Σ−4)

)

≤ C(T, |u0|L2, N),

where 0 < α < 1/4.
As previously, we apply the compactness methods to the sequence {(vNn )N∈N}n∈N, which

is defined by
{

vNn (t) = un(t) for t ≤ τ̂Nn
dvNn (t) = vNn (τ̂Nn )dt for t > τ̂Nn .

In fact, the estimate (2.10) allows us to have the tightness of the law of {(vNn )N∈N}n∈N

since, for any N > 0 and r > 0, we have

P( sup
t∈[0,τ̂N

n ∧T ]

|vNn (t)|Σ2 > r) ≤
E
(

supt∈[0,τ̂N
n ∧T ](1 + log(1 + |vNn |

2
Σ2))

)

1 + log(1 + r2)
≤

C(T, |u0|Σ2 , N)

1 + log(1 + r2)
.

Thus, for any ε > 0 and N > 0, taking r(N) sufficiently large, the set

KN = {v ∈ C([0, T ]; Σ2) ; |v|L∞(0,T ;Σ2) ≤ r(N), |v|Cα([0,T ];Σ−4) ≤ r(N)}

is compact in C([0, T ]; Σ) and P(vNn 6∈ KN) ≤ ε, the result follows from Tychonov’s
Theorem.

Then, there exist ṽNj,n and ṽNj such that ṽNj,n converges to ṽNj a.s. in C([0, T ]; Σ) for

j = 1, 2 and each N ∈ N, and ṽNj satisfies equation (1.3) for 0 ≤ t ≤ ˜̂τNj = limn→∞
˜̂τNj,n.

These stopping times correspond to ṽNj and ṽNj,n respectively, as in (2.6) and (2.7).
For all N > 0, we define

ṽj(t) =

{

ṽNj (t) if there exists N such that t < ˜̂τNj ,

∆ if t ≥ lim supN→∞
˜̂τNj .

We see that ṽj,n, which is defined by ṽj,n(t) = ṽNj,n(t) for t ≤ ˜̂τNj,n, converges to ṽj in
probability in C([0, T ]; Σ ∪ {∆}).

Then by Lemma 1.1, we get as in Section 2.1 a unique solution v of (1.3) with paths
a.s. in C([0, τ ]; Σ) for any τ < τ ∗∗, where τ ∗∗ = lim supN→+∞ τ̂N and

τ̂N = inf{t ≥ 0; |v(t)|Σ > N},
13



Lastly we remark that τ ∗∗ = τ ∗ a.s. The fact that τ ∗∗ ≤ τ ∗ simply follows from the
embedding Σ ⊂ L2σ+2(Rd); on the other hand, we can show

E( sup
t∈[0,τR∧T ]

|v(t)|2Σ) ≤ C(|u0|Σ, R, T ), (2.11)

(see the proof of Lemma 2.1.) This proves, using Markov’s inequality that

P(τR > τ̂N ) ≤ P
(

supt∈[0,τR] |v(t)|Σ > N
)

≤ 1
N2 C(|u0|Σ, R, T ).

Hence letting N go to infinity, we get P(τR > τ ∗∗) = 0 for any R, thus τ ∗ = τ ∗∗ a.s. �

2.3. Remarks for the case d = 1. The verification for the case d = 1 being much
simpler, we briefly note how we may establish Theorem 1 (i).

We first solve the stochastic equation with linear drift:

idu − iAudt = x2udW, (2.12)

where

A = i(∂2
x − x2) −

1

2
x4 − γ,

using a compactness method; for example, we employ a cut-off in the quadratic potential.
As a priori estimate, using Martingale inequalities for the stochastic integrals, we can
show that for an approximate solution un(t) with u0 ∈ D(A) and for any T > 0, there
exists a constant C(T ) independent of n such that

E

(

sup
t∈[0,T ]

|un(t)|
2
Σ2

)

≤ C(T )|u0|
2
Σ2.

It follows that the sequence of the laws of un is tight in C([0, T ]; Σ). Then, Prokhorov
and Skorohod Theorems, together with the uniqueness of solutions of (2.12), lead to the
existence of a strong solution of (2.12) in the probabilistic sense. Note that here, the
uniqueness of solutions is easily verified for any σ > 0 since Σ ⊂ L∞(R).

Moreover, it is not difficult, by approximating the initial data, to extend this existence
result to any u0 ∈ Σ, and more generally to any initial state of the form u(s) = us, with
us measurable with respect to Fs with values in Σ, a.s. In this way, we define a random
propagator U(t, s, ω) by assigning to U(t, s, .)us the value at time t of the unique solution
of (2.12) with u(s) = us.

Next we solve the following equation, using a fixed point argument in L2(Ω; C([0, T ]; Σ))
and a cut-off for the nonlinear term :

u(t) = U(t, 0)u0 + i

∫ t

0

U(t, s)

[

θ

(

|u(s)|Σ
R

)

|u(s)|2σu(s)

]

ds,

and we obtain a solution as stated in Theorem 1 (i).
14



3. Global existence

In this section we study the global existence. Let T > 0 be arbitrary and u(t) be a
solution obtained by Theorem 1 (i) if d = 1, and Theorem 2 if d = 2. In order to prove
Theorem 3, we verify that τ ∗ = T almost surely. It suffices to show that there exists a
constant C = C(T, u0) > 0, independent of R, such that

E

(

sup
t∈[0,τR∧T ]

|u(t)|Σ

)

≤ C, (3.1)

where here
τR = inf{t ∈ [0, τ ∗ ∧ T ); |u(t)|Σ > R};

it will then follow from Markov’s inequality that limR→+∞ P(τR < T ) = 0, so τ ∗ = T
almost surely. We first give a proof of Theorem 3 (i).

Proof of Theorem 3 (i). The two following lemmas will be useful to obtain the estimate
(3.1).

Lemma 3.1. Let σ, γ, λ and u0 be as in Theorem 1 (i) and (ii). For any t < τ ∗(u0), we

have,

|u(t)|L2 = e−γt|u0|L2 ≤ |u0|L2 , a.s.,

where u(t) is the solution given by Theorem 1 (i) and (ii) with u(0) = u0.

Lemma 3.1 is a consequence of the Itô formula applied to (1.3). The computation may
be justified by an idea similar to that of [12], using a cut-off and regularization argument.

Lemma 3.2. Let u ∈ Σ. We assume σ < 2/d if λ = 1. Then there exists a constant

C > 0 such that

|xu|2L2 + |∇u|2L2 ≤ 2H(u) + Cβ(λ)|u|σ̃L2. (3.2)

Here σ̃ = 2{(2 − d)σ + 2}/(2 − σd) > 2 and

β(λ) =

{

1, if λ = 1
0, if λ = −1

Proof. This is a standard consequence of the Gagliardo-Nirenberg inequality. �

We now get an estimate on the energy evolution. If τ is a stopping time with τ ≤ τR

almost surely, we have by a formal application of the Itô formula,

H(u(τ)) = H(u0) − 2εIm

∫ τ

0

∫

Rd

∇u · xūdxdW (s) + 2ε2

∫ τ

0

|xu|2L2ds

−γ

∫ τ

0

(|xu|2L2 + |∇u|2L2)ds + λγ

∫ τ

0

|u|2σ+2
L2σ+2ds. (3.3)

This formal computation may be justified by using a cut-off and regularizing procedure as
in [12]. However, in order to obtain the equality in (3.3), we need the strong convergence
in C([0, T ]; Σ) of the sequence of regularized solutions, which is the case if u0 ∈ Σ2 and
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1/2 ≤ σ ≤ 1 for d = 2, as shows the proof of Theorem 2. We note that the stochastic
integral in the right hand side of (3.3) is a square integrable real valued martingale since

∫ τR∧T

0

∣

∣

∣

∣

Im

∫

Rd

∇u · xūdx

∣

∣

∣

∣

2

ds ≤ CT sup
0≤t≤τR∧T

(|∇u|4L2 + |xu|4L2) ≤ CTR, a.s. (3.4)

We first estimate the expectation of the energy. For a stopping time τ < τR, we have,
using (3.3) and Lemma 3.2,

E(H(u(τ))) = H(u0) + 2ε2
E(

∫ τ

0

|xu|2L2ds)

−γE(

∫ τ

0

(|xu|2L2 + |∇u|2L2)ds) + λγE(

∫ τ

0

|u|2σ+2
L2σ+2ds)

≤ H(u0) + 2ε2

∫ T

0

E(1l[0,τ ]|xu|2L2)ds + Cγβ(λ)E(

∫ τ

0

(|∇u|2L2 + |u|σ̃L2)ds)

≤ H(u0) + Cε2

∫ T

0

E(H(1l[0,τ ]u(s)) + β(λ)1l[0,τ ]|u|
σ̃
L2)ds

+Cγβ(λ)E(

∫ T

0

(1l[0,τ ]|∇u|2L2 + 1l[0,τ ]|u|
σ̃
L2)ds)

≤ H(u0) + β(λ)TC(ε, γ)|u0|
σ̃
L2 + C(ε, β(λ), γ)

∫ T

0

E(H(1l[0,τ ]u(s)))ds,

where we have used Lemma 3.1 in the last inequality. Thus we have, by the Gronwall
Lemma,

E(H(1l[0,τ ]u(t))) ≤ (C + H(u0) + β(λ)TC(ε, γ)|u0|
σ̃
L2)eCT

= C(ε, γ, T, H(u0), β(λ)|u0|
σ̃
L2). (3.5)

Next, we have from (3.3)

E

(

sup
t∈[0,τR∧T ]

H(u(t))
)

≤ H(u0) + 2εE

(

sup
t∈[0,τR∧T ]

|

∫ t

0

∫

Rd

∇u · xūdxdW (s)|
)

+2ε2
E
(

∫ τR∧T

0

|xu|2L2ds
)

+ β(λ)γE
(

∫ τR∧T

0

|u|2σ+2
L2σ+2ds

)

.

It follows from a standard martingale inequality that

E

(

sup
t∈[0,τR∧T ]

|

∫ t

0

(

∫

Rd

∇u · xūdx
)

dW (s)|2
)

≤ 4 sup
t∈[0,T ]

E
(

|

∫ t∧τR

0

(

∫

Rd

∇u · xūdx
)

dW (s)|2
)

.

(3.6)
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Using (3.6) and the Cauchy-Schwarz inequality,

E

(

sup
t∈[0,τR∧T ]

H(u(t))
)

≤ H(u0) + Cε
(

E
(

∫ T∧τR

0

(|∇u|4L2 + |xu|4L2)ds
))1/2

+2ε2
E
(

∫ τR∧T

0

|xu|2L2ds
)

+ β(λ)γE
(

∫ τR∧T

0

|u|2σ+2
L2σ+2ds

)

≤ H(u0) + Cε + Cε
(

∫ T

0

E(1l[0,τR∧T ](|xu(s)|4L2 + |∇u(s)|4L2))ds
)

+2ε2
E
(

∫ τR∧T

0

|xu|2L2ds
)

+ Cβ(λ)γE
(

∫ τR∧T

0

(|∇u|2L2 + |u|σ̃L2)ds
)

≤ H(u0) + Cε

∫ T

0

E(H(1l[0,τR∧T ]u(s))2)ds + C(ε, γ, T, H(u0), β(λ)|u0|
σ̃
L2). (3.7)

We have used Lemma 3.1, (3.2) and (3.5) in the last inequality. This is not yet sufficient
to conclude (3.1) ; we need to compute E(H(u(τ))2) for a stopping time τ < τR. We first
assume that λ = +1 and σ < 2/d. Since, from (3.3),

H(u(τ))2 ≤ CH(u0)
2 + C

∣

∣

∣
2ε

∫ t

0

1l[0,τ ]
(

∫

Rd

∇u(s) · xū(s)dx
)

dW (s)
∣

∣

∣

2

+C(ε2, γ)
(

∫ τ

0

(|xu(s)|2L2 + |∇u(s)|2L2)ds
)2

+ Cγ2(

∫ τ

0

|u|2σ+2
L2σ+2ds)2a.s.,

we get by taking the expectation and using (3.2) and Lemma 3.1,

E(H(u(τ))2)

≤ CH(u0)
2 + ε2CE

∫ T

0

(
∣

∣1l[0,τ ]

∫

Rd

∇u(s) · xū(s)dx
∣

∣

2
)ds

+C(ε2, γ)E
(

(

∫ τ

0

(|xu(s)|2L2 + |∇u(s)|2L2)ds
)2
)

+ Cγ2
E

(

(

∫ τ

0

|u|2σ+2
L2σ+2ds

)2
)

≤ CH(u0)
2 + ε2C

∫ T

0

E(1l[0,τ ]|xu(s)|2L2|∇u(s)|2L2)ds

+C(ε, γ)T 1/2

∫ T

0

E(1l[0,τ ](|xu(s)|2L2 + |∇u(s)|2L2)2)ds

+C(γ)T 1/2

∫ T

0

E(1l[0,τ ]|∇u(s)|4L2)ds + Cγ2T 1/2|u0|
2σ̃
L2

≤ CH(u0)
2 + C(ε, γ, T, |u0|L2)

+C(ε, γ, T )

∫ T

0

E(1l[0,τ ]H(u(s))2)ds.
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Hence, we get, for some constant C = C(ε, γ, T, |u0|L2) independent of R,

E(H(u(t ∧ τ))2) ≤ C(H(u0)
2 + 1)eCT , ∀t ∈ [0, T ]. (3.8)

Now we go back to (3.7), and combining with (3.2) and (3.8)

E

(

sup
t∈[0,τR∧T ]

H(u(t))
)

≤ C(ε, γ, T, |u0|Σ),

which completes the proof in the case λ = 1. Now, if λ = −1, it suffices to remark that
H(u) ≥ 0 in this case and using that by (3.3) and the Itô Formula,

d(H2(u)) = 2H(u)dH(u) + 4ε2
(

Im

∫

Rd

∇u · xūdx
)2

dt,

we easily get

H2(u(τ)) ≤ H2(u0) − 4ε

∫ τ

0

H(u(s))Im
(

∫

Rd

∇u.xūdx
)

dW (s)

+4ε2

∫ τ

0

H(u(s))|xu(s)|2L2ds − 2γ

∫ τ

0

H(u(s))(|xu(s)|2L2 + |∇u(s)|2L2)ds

+Cε2

∫ τ

0

(|xu(s)|4L2 + |∇u(s)|4L2)ds,

and we conclude as above. �

Remark 3.1. In the defocusing case, i.e., λ = −1, we conclude from this proof that the
solution exists globally in time. Moreover, it follows from (3.3) and Lemma 3.1 that for
any t ∈ [0, T ]

E
(

|u(t)|2Σ
)

≤ 2E(H(u0)) + E(|u0|
2
L2) + 2(2ε2 − γ)

∫ t

0

E
(

|u(s)|2Σ
)

ds.

Thus we obtain
E
(

|u(t)|2Σ
)

≤
(

2E(H(u0)) + E(|u0|
2
L2)
)

e2(2ε2−γ)t,

namely, the squared Σ-norm of the solution decreases exponentially if ε2 < γ/2 and is
majorized by a function increasing exponentially if ε2 ≥ γ/2.

Remark 3.2. In the critical case σ = 2/d, from the Gagliardo-Nirenberg inequality, it

follows that if u ∈ Σ and |u|
4/d
L2 < 1/(2Cd) then the estimate |u|2Σ ≤ 2C(|u0|L2)H(u) holds.

Combining this with Lemma 3.1, we conclude Theorem 3 (ii) as above.

4. Stochastic virial identity and Blow-up

In this section, we derive an identity on the evolution of the “variance” of the solutions
of the nonlinear Schrödinger equation (1.3), which is a generalization of the formula in the
deterministic case (see [9] for example). Using this variance idendity, we prove Theorem
4. We mainly treat the case γ = 0 with d = 1 or d = 2. At the end of the section, we
give a remark on the case γ > 0 and d = 1.
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The variance is defined by

I(v) =

∫

Rd

|x|2|v(x)|2dx, for v ∈ Σ.

Its evolution involves the momentum

G(v) = Im

∫

Rd

xv̄∇vdx, for v ∈ Σ.

The following proposition describes the evolution of I and G.

Proposition 1. Let γ = 0 and λ = ±1. Assume that u0 ∈ Σ and σ > 0 if d = 1 or

u0 ∈ Σ2 and 1/2 ≤ σ ≤ 1 if d = 2. Then for any stopping time τ such that τ < τ ∗(u0)
a.s., we have

G(u(τ)) = G(u0) + 4

∫ τ

0

H(u(s))ds − 4

∫ τ

0

|xu(s)|2L2ds

+
λ(2 − σd)

σ + 1

∫ τ

0

|u(s)|2σ+2
L2σ+2ds − 2

∫ τ

0

|xu(s)|2L2dW (s), a.s., (4.1)

and

I(u(τ)) = I(u0) + 4

∫ τ

0

G(u(s))ds, a.s., (4.2)

where H(u) is the energy defined by (1.4).

Proposition 1 is obtained thanks to an application of the Itô Formula, using equation
(1.3). The computations could be rigorously justified by using the arguments in Section
6.1 of [13]. Again, the assumption u0 ∈ Σ2 is necessary for this justification, since we
need the convergence of the sequence of regurarized solutions to u in C([0, τ); Σ).

The following corollary is obtained by combining the above proposition with (3.3).

Corollary 4.1. Under the same assumption as in Proposition 1, we have a.s.

I(u(τ)) = I(u0) + 4G(u0)τ + 8H(u0)τ
2

−32εIm

∫ τ

0

∫ s

0

∫ s1

0

∫

Rd

∇u(s2) · xū(s2)dxdW (s2)ds1ds

+32ε2

∫ τ

0

∫ s

0

∫ s1

0

I(u(s2))ds2ds1ds − 8ε

∫ τ

0

∫ s

0

I(u(s1))dW (s1)ds (4.3)

−16

∫ τ

0

∫ s

0

I(u(s1))ds1ds +
4λ(2 − σd)

σ + 1

∫ τ

0

∫ s

0

|u(s1)|
2σ+2
L2σ+2ds1ds.

We shall now show that, in the critical and supercritical cases, certain initial data
with negative energy yield solutions which form a singularity in finite time, with positive
probability. In the deterministic case, such kind of statement can be found in [7, 8], where
the author used a suitable transformation linked to Mehler’s formula.
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Proof of Theorem 4. Assume that the conclusion of Theorem 4 does not hold; then,
t̄ < τ∗(u0) a.s. and we can take τ = t̄ as a stopping time in Corollary 4.1. In that case,
(4.3) can be simplified as follows:

I(u(t̄)) = I(u0) + 4G(u0)t̄ + 8H(u0)t̄
2

−16εIm

∫ t̄

0

(t̄ − s)2

∫

Rd

∇u(s) · xū(s)dxdW (s)

−8ε

∫ t̄

0

(t̄ − s)I(u(s))dW (s) +
4λ(2 − σd)

σ + 1

∫ t̄

0

(t̄ − s)|u(s)|2σ+2
L2σ+2ds

+16ε2

∫ t̄

0

(t̄ − s)2I(u(s))ds − 16

∫ t̄

0

(t̄ − s)I(u(s))ds, a.s. (4.4)

Note that by the assumption ε2t̄ ≤ 1, the sum of the two last terms in the right hand side
above is nonpositive. Since σ ≥ 2/d, we are led to

I(u(t̄)) ≤ I(u0) + 4G(u0)t̄ + 8H(u0)t̄
2 + ε

∫ t̄

0

g(t̄, s)dW (s), a.s.,

where

g(t̄, s) = −16(t̄ − s)2Im

∫

Rd

∇u(s) · xū(s)dx − 8(t̄ − s)I(u(s)).

We remark that
∫ t̄

0
g2(t̄, s)ds < +∞, a.s. Now, since I(u(t̄)) ≥ 0 a.s., we have

∫ t̄

0

g(t̄, s)dW (s) > δ > 0, a.s.,

and on the other hand,

M(u) =
(

∫ u

0

g(t̄, s)dW (s)
)

0≤u≤t̄

is a local martingale starting at 0, which is clearly in contradiction with the above in-
equality.

It is clear that there always exists u0 ∈ Σ and t̄ with ε2t̄ ≤ 1 satisfying the assumptions
of Theorem 4: it suffices to choose v ∈ Σ with H(v) < 0 (always possible if σ > 2/d) and
to consider u0 = av, with a > 0 sufficiently large. �

Remark 4.1. As mentioned in the introduction, it is proved in [13] that for any sufficiently
regular u0 with u0 6= 0, blow-up occurs with positive probability for the corresponding
solution, in the attractive supercritical case. Such a result would hold here if we were
able to solve the following controlability problem : given u0 ∈ Σ2, and T > 0, find
h ∈ C([0, T ]; R) such that the solution of

{

i∂tv + ∆v − |x|2v + |v|2σv = |x|2h(t)v
v(0) = u0

(4.5)
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satisfies

I(v(T )) + G(v(T ))t̄ + 8H(v(T ))t̄2 < 0,

for some t̄ with ε2t̄ ≤ 1. However, we do not know whether this controlability problem
has a solution.

Remark 4.2. We may easily adapt as above the arguments of M. Tsutsumi [20] for the
case γ > 0. More precisely, assume d = 1, σ > 2, λ = 1, and for some t̄ > 0 and some b
with

b ≤ min{2(γ − ε2),
2γ(σ + 2)

σ − 2
},

the initial data u0 satisfies

I(u0) +
4

2γ − b
(1 − e−(2γ−b)t̄)G(u0) < 0; and H(u0) ≤ 0,

then collapse occurs with positive probability before the time t̄. Note that in the condition
above, b need not be positive, so that for any value of γ and ε > 0, it is possible to find
an initial data satisfying the above conditions: indeed, it suffices to consider u0(x) =
κ exp(−ax2) choosing first a, and then κ, sufficiently large.

Remark 4.3. In the defocusing case λ = −1, the presence of the last term in (4.4)
does not allow us to conclude to the expansion of the condensate, that is the growth of
E(I(u(t))). However, the term due to the noise in (4.4) is nonnegative, so that one may
think as in [1] that the presence of the noise will act in favor of the expansion of the
condensate.

5. Conclusion and Discussion

As a conclusion, we have considered the dynamics of a 1D or 2D BEC under random
fluctuation of the trap potential, described by equation (1.1). We have given a precise
mathematical meaning to the solutions, and in order to obtain the local in time existence
of those solutions, we have used a compactness method. Even if this method is rather
classical in SPDEs, to our knowledge, it is the first time that it is used with the aim of
obtaining non-necessarily global solutions. We have also investigated rigorously the oc-
curence of collapse under attractive nonlinear interactions. Based on the moment method
and numerical computations it was conjectured in [1] that the blow up could be prevented
or delayed by such a time-only-dependent noise. We rigorously proved that the collapse
cannot be totally prevented , although we have no quantitative result about the delay of
collapse due to the noise. In the defocusing case, all solutions are proved to be global,
and we have obtained exponential decay of the mean square width only if the damping
is sufficiently large compared to the amplitude of the noise (see Remark 3.1), which is in
adequation with the results of [1] if γ = 0.
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6. Appendix

In this section we will give a proof of Lemmas 2.1, 2.2 and 2.7. We recall that un
satisfies the equation (2.1) and W is real valued.

Proof of Lemma 2.1. We first prove that un satisfies

E

(

sup
t∈[0,τR

n ∧T ]

Hn(un(t))

)

≤ C(T, |u0|Σ, R), (6.1)

where

Hn(v) =
1

2
|∇v|2L2 +

1

2
|xv|2L2 −

∫

Rd

Gn(v(x))dx, G′
n = gn.

For any t ∈ [0, T ], an application of the Itô formula to the regularized energy (the com-
putations may be justified as in [12]) gives after a few computations

Hn(un) = Hn(u0) +

∫ t

0

〈H ′
n(un),−iεx2θnun(s)〉dW (s)

+2ε2

∫ t

0

{
∫

Rd

(

1

4
|∇θn|

2|x|2 + θnx · ∇θn + θ2
n

)

|x|2|un(s)|
2dx

}

ds

−γ

∫ t

0

(

|∇un(s)|
2
L2 + |xun(s)|

2
L2 + Re

∫

Rd

gn(un(s))ūn(s)dx

)

ds

≤ Hn(u0) − ε

∫ t

0

〈H ′
n(un), ix

2θnun(s)〉dW (s)

+Cε2

∫ t

0

|xun(s)|
2
L2ds + |λ|γ

∫ t

0

|un(s)|
2σ+2
L2σ+2ds.

Here we remark that if t ≤ T ∧ τRn ,

1

2
|un(t)|

2
Σ −

|λ|

2σ + 2
R2σ+2 ≤ Hn(un(t)) ≤

1

2
|un(t)|

2
Σ +

|λ|

2σ + 2
R2σ+2.

Taking the expectation of the supremum of Hn(un) on [0, T ∧ τRn ], and using the mar-
tingale inequality of Theorem 3.14 in [10]), we easily get

E

(

sup
t∈[0,T∧τR

n ]

Hn(un(t))
)

≤ Hn(u0) + CT 1/2(1 + T 1/2)E
(

sup
t∈[0,T∧τR

n ]

|un(t)|
2
Σ

)

+|λ|γTR2σ+2

≤ Hn(u0) + CT 1/2(1 + T 1/2)E
(

sup
t∈[0,T∧τR

n ]

Hn(un(t))
)

+CT 1/2(1 + T 1/2)
|λ|

σ + 1
R2σ+2 + |λ|γTR2σ+2.

22



Taking T small enough, and then reiterating the argument on [T ∧ τRn , 2T ∧ τRn ],
[2T ∧ τRn , 3T ∧ τRn ], etc., we obtain (6.1) for any T > 0, which immediately leads to

E

(

sup
t∈[0,τR

n ∧T ]

|un(t)|
2
Σ

)

≤ C(T, |u0|Σ, R).

�

Proof of Lemma 2.2. It follows easily from the Itô fomula that

|un(t)|
2
L2 = |u0|

2
L2 − 2γ|un(t)|

2
L2 a.s.,

for any t ∈ [0, T ], hence

E(|un(t)|
2l
C([0,T ];L2)) ≤ |u0|

2l
L2, l ∈ N. (6.2)

We now use the integral form of the equation (2.1) satisfied by un to get an estimate
on its modulus of continuity. Let τ1, τ2 ≥ 0 with τRn ≥ τ2 > τ1. Integrating from τ1 to τ2,

un(τ2) − un(τ1) = i

∫ τ2

τ1

(∆un(s) − |x|2un(s))ds −
ε2

2

∫ τ2

τ1

θ2
n|x|

4un(s)ds

+iλ

∫ τ2

τ1

|un(s)|
2σun(s)ds − iε

∫ τ2

τ1

|x|2θnun(s)dW (s). (6.3)

The terms of the right hand side of (6.3) except the last term are in C1([0, T ∧ τRn ]; Σ−4).
In fact, by (6.2),

E

(

sup
t∈[0,T∧τR

n ]

∣

∣

∣

∣

(

∆ − |x|2 −
ε2

2
θ2
n|x|

4

)

un

∣

∣

∣

∣

2

Σ−4

)

≤ CE(|un|
2
C([0,T∧τR

n ];L2)) ≤ C,

where C does not depend on n.
Concerning the third term, we obtain, using the embedding Σ−4 ⊂ H−1 ⊂ L(2σ+2)/(2σ+1) ,

E

(

sup
0≤τ1≤τ2≤τR

n

∣

∣

∣

∣

∫ τ2

τ1

|un(s)|
2σun(s)ds

∣

∣

∣

∣

2

Σ−4

|τ1 − τ2|
−2

)

≤ C(R)E

(

sup
s∈[0,τR

n ]

|un(s)|
2
Σ

)

,

which is bounded independently of n, by Lemma 2.1.
Therefore, it suffices to verify that the forth term of the right hand side of (6.3) is of

α-Hölder class, i.e., for α > 0,

E

(

sup
0≤τ1≤τ2≤τR

n

∣

∣

∣

∣

∫ τ2

τ1

iε|x|2θnun(s)dW (s)

∣

∣

∣

∣

2

Σ−4

|τ1 − τ2|
−2α

)

≤ C,
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where C does not depend on n. It follows from the Bürkholder-Davis-Gundy inequality,

E

(

∣

∣

∣

∣

∫ τ2

τ1

|x|2θnun(s)dW (s)

∣

∣

∣

∣

4

Σ−4

)

≤ CE

(

(
∫ τ2

τ1

∣

∣|x|2θnun(s)
∣

∣

2

Σ−4 ds

)2
)

≤ CE

(

sup
s∈[0,τR

n ]

||x|2θnun(s)|
4
Σ−4

)

|τ2 − τ1|
2

≤ C|u0|
4
L2|τ2 − τ1|

2.

We have used (6.2) in the last inequality. Applying then the Kolmogorov criterion, we
get that the forth term in (6.3) is a.s. in Cα([0, T ∧ τRn ]; Σ−4) for α < 1/4. �

Proof of Lemma 2.7. We recall that d = 2. By Lemma 2 in [6], for any N ∈ N, there
exists a constant C(N) > 0 such that for any v ∈ Σ2 with |v|Σ ≤ N ,

|v|L∞ ≤ C(N)

(

1 +
√

log(1 + |v|2Σ2)

)

. (6.4)

Let F (v) = |v|2Σ2. We apply the Itô formula to 1+ log(1+ |un|
2
Σ2). Then, for any stopping

time τ with τ ≤ τ̂Nn ∧ T a.s., we have

1 + log(1 + |un(τ)|2Σ2)

≤ 1 + log(1 + |u0|
2
Σ2) − ε

∫ τ

0

1

1 + |un(s)|
2
Σ2

〈F ′(un), iθn|x|
2un(s)〉dW (s)

+C(ε)T + C

∫ τ

0

1

1 + |un(s)|2Σ2

|un(s)|
2σ
L∞|un(s)|

2
Σ2ds

≤ 1 + log(1 + |u0|
2
Σ2) − ε

∫ τ

0

1

1 + |un(s)|2Σ2

〈F ′(un), iθn|x|
2un(s)〉dW (s)

+C(ε)T + C(N)

∫ τ

0

(1 + log(1 + |un(s)|
2
Σ2))ds.

In the first inequality we have estimated the nonlinear part in such a way as

|∆gn(un)|L2 ≤ C|un|
2σ
L∞|un|

2
Σ2, σ ≥ 1/2,

where the constant C is independent of n. The last inequality follows from σ ≤ 1 and
(6.4).
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Taking the expectation of the supremum of 1 + log(1 + |un(t)|
2
Σ2) on [0, τ̂Nn ∧ T ], and

using a martingale inequality as in the proof of Lemma 2.1,

E

(

sup
t∈[0,τ̂N

n ∧T ]

(1 + log(1 + |un(t)|
2
Σ2))

)

≤ 1 + log(1 + |u0|
2
Σ2) + εE

(

sup
t∈[0,τ̂N

n ∧T ]

∣

∣

∣

∣

∫ t

0

1

1 + |un(s)|
2
Σ2

〈F ′(un), iθn|x|
2un(s)〉dW (s)

∣

∣

∣

∣

)

+C(ε)T + C(N)TE

(

sup
t∈[0,τ̂N

n ∧T ]

(1 + log(1 + |un(t)|
2
Σ2))

)

≤ C(|u0|Σ2) + εCE







(

∫ τ̂N
n ∧T

0

(

|un(s)|
2
Σ2

1 + |un(s)|2Σ2

)2

ds

)1/2






+C(ε)T + C(N)TE

(

sup
t∈[0,τ̂N

n ∧T ]

(1 + log(1 + |un(t)|
2
Σ2))

)

≤ C(|u0|Σ2) + C(ε)T 1/2(1 + T 1/2) + C(N)TE

(

sup
t∈[0,τ̂N

n ∧T ]

(1 + log(1 + |un(t)|
2
Σ2))

)

.

Hence, we have, for sufficiently small T > 0,

E

(

sup
t∈[0,τ̂N

n ∧T ]

(1 + log(1 + |un(t)|
2
Σ2))

)

≤ C(T, |u0|Σ2, N).

Reiterating the argument on [τ̂Nn ∧ T, τ̂Nn ∧ 2T ], [τ̂Nn ∧ 2T, τ̂Nn ∧ 3T ], etc., we complete the
proof of (2.10). �
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mations,” Probab. Theory Relat. Fields 105 (1996) 143–158.
19. Y.-G. Oh, ”Cauchy problem and Ehrenfest’s law of nonlinear Schrödinger equations with potentials,”

J. Differential Equations 81 (1989) 255–274.
20. M. Tsutsumi, ”Nonexistence of global solutions to the Cauchy problem for the damped nonlinear

Schrödinger equations,” Academic Press, 1975. SIAM. J. Math. Anal. 15 (1984) 357–366.
21. K.Yajima and G.P. Zhang, ”Smoothing property for Schrödinger equations with potential su-

perquadratic at infinity,” Commun. Math. Phys. 221 (2001) 573–590.
22. K.Yajima and G.P. Zhang, ”Local smoothing property and Strichartz inequality for Schrödinger

equations with potentials superquadratic at infinity,” J. Diff. Eqs. 202 (2004) 81–110.

26


