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Abstract. In this paper, we study the motion of the free surface of a body
of fluid over a variable bottom, in a long wave asymptotic regime. We assume
that the bottom of the fluid region can be described by a stationary random
process β(x, ω) whose variations take place on short length scales and which
are decorrelated on the length scale of the long waves. This is a question
of homogenization theory in the scaling regime for the Boussinesq and KdV
equations.

The analysis is performed from the point of view of perturbation theory for
Hamiltonian PDEs with a small parameter, in the context of which we perform
a careful analysis of the distributional convergence of stationary mixing random
processes. We show in particular that the problem does not fully homogenize, and
that the random effects are as important as dispersive and nonlinear phenomena in
the scaling regime that is studied. Our principal result is the derivation of effective
equations for surface water waves in the long wave small amplitude regime, and
a consistency analysis of these equations, which are not necessarily Hamiltonian
PDEs. In this analysis we compute the effects of random modulation of solutions,
and give an explicit expression for the scattered component of the solution due to
waves interacting with the random bottom. We show that the resulting influence
of the random topography is expressed in terms of a canonical process, which is
equivalent to a white noise through Donsker’s invariance principle, with one free
parameter being the variance of the random process β. This work is a reappraisal
of the paper by Rosales & Papanicolaou [24] and its extension to general stationary
mixing processes.
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1. Introduction

The problem of surface water waves over an uneven bottom is a classical problem of
fluid mechanics, and it is relevant to coastal engineering and ocean wave dynamics. In
this paper, we investigate how the presence of bottom topography affects the equations
describing the limit of solutions in the long wave regime. We assume that the bottom is
modeled by a stationary random process which is mixing, whose variations and whose
correlation length manifest themselves on length scales that are short compared to the
scale of the surface waves. In a previous work [9], we addressed the long wave limit of
surface waves over a bottom which has periodic variations over short scales, in which
we proved that the problem fully homogenizes. That is to say, the free surface motion
can be described by a partial differential equation with constant effective coefficients,
where the dependency over short scales is manifested by coefficients which are ensemble
averages. Here in contrast, we show that random, realization-dependent effects are
retained in the description of the solution. The latter paper and the present one are
reappraisals and extensions of an earlier work by Rosales & Papanicolaou [24] who
address the problem through different methods.

Our approach uses a formulation in terms of perturbation theory for Hamiltonian
partial differential equations, coupled with a detailed analysis of stationary ergodic
processes which have mixing properties and which are considered as tempered
distributions. As a first result we give an appropriate form of the Boussinesq equation.
Secondly, following a series of changes of variables, we derive a system of coupled
KdV-like equations for the two components of the solution; these describe a wave
propagating predominantly to the right, and a ‘small’ scattered wave propagating
to the left. We then extract a limiting system of two effective equations through a
consistency analysis. Specifically, we solve the effective system, which is composed
of an equation similar to the KdV for the wave propagating to the right with a
random component to its velocity, and a scattered wave propagating to the left.
We give explicit formulas for the dominant contributions and the first corrections
to this solution, quantifying the effects of the random modulation of position and
amplitude. From these expressions, we compute a posteriori all the terms that have
been neglected in the effective system, and prove that they are indeed of higher
order. This evaluation relies on scale separation lemmas, which in turn follow from
Donsker’s invariance principle. Our analysis improves upon [24] in several ways. In
particular we identify the canonical limiting distributions which contribute to the
random asymptotic behavior of solutions, we quantify both random phase and random
amplitude variations of solutions, and in addition, we extend the long-wave analysis
over random topography to general stationary mixing processes.

The asymptotic system of equations that results from this analysis consists of
a KdV equation with an additional linear term, and a transport equation for the
scattered component driven by an inhomogeneous forcing term. The additional
nonzero linear term, which either stabilizes or destabilizes solutions depending upon
the sign of its coefficients, in turn depends on the statistics of the bottom variations.
The presence of this term is the consequence of a subtle calculation, and to our
knowledge, it has not been previously observed. In case these statistics are spatially
reversible, the relevant coefficient vanishes and the equation reduces to the usual KdV.

There has been a lot of interest in wave motion in basins with non constant
bathymetry, due to its hydrodynamic importance. Recent references to the theory
of linear waves include the papers of Nachbin (1995) [19], Sølna & Papanicolaou
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(2000) [26], Nachbin & Sølna (2003) [21] which discuss the theory of linear transport
in a random medium. The earlier work of Howe (1971) [15] and the paper of Rosales &
Papanicolaou (1983) [24] give an asymptotic analysis of nonlinear equations of water
waves. Nonlinear problems over variable topography are addressed in Nachbin (2003)
[20] and Artiles & Nachbin (2004) [2]. More recent contributions which take into
account the combined effect of randomness and nonlinearity include the series of papers
by Mei & Hancock (2003) [17] and Grataloup and Mei (2003) [14] on the modulational
scaling regime, and its extensions to the three dimensional case in Pihl, Mei & Hancock
(2002) [23]. This work focuses on the temporal behavior of ensemble averages of
solutions, giving the result that they satisfy a nonlinear Schrödinger equation with an
additional dissipative term. The analog of this picture in the long wave scaling regime
appears in Mei & Li (2004) [18], where the bottom is assumed random but varies on
the same spatial scale as the surface waves.

There is a history of rigorous analysis of the initial value problem and limiting
equations in the long wave asymptotic regime of the water wave problem. Most of this
work concerns the case of fluid domains with a flat bottom. The papers that address
the KdV limit include Kano & Nishida (1986) [16], Craig (1985) [7], Schneider &
Wayne (2000) [25], Wright (2005) [28] and Bona, Colin & Lannes (2005) [5]. A recent
paper which addresses specifically the Boussinesq scaling limit of the problem on a
rigorous basis, and categorizes the well-posed possible limits is Bona, Chen & Saut
(2002) [4]. There has been several papers giving a rigorous analysis of the initial value
problem of water waves over a variable bottom, including Yosihara (1983) [29] on the
two-dimensional problem and Alvarez-Samaniego & Lannes (2006) [1] on the two and
three-dimensional problems, and a recent paper by Chazel (2007) [6]. The paper [1]
considers the issue of convergence in various scaling regimes governed by long wave
models. These results are in the context of a deterministic problem, with a small
amplitude bottom perturbation, varying spatially on the same scale as the waves in
the surface. As far as we know, there are no current rigorous analytic results for the
KdV or Boussinesq scaling regimes in which the bottom variations occur on a short
length scale, and are averaged under the nonlinear evolution of water waves.

The paper is organized as follows. Section 2 describes the problem of water
waves in its Hamiltonian form, the Dirichlet-Neumann operator in the presence of a
variable bottom, and the spatial scaling regime appropriate for the long wave problem.
Section 3 presents the setting of stationary ergodic and mixing processes in which we
work, and gives the relevant scale separation lemmas. This is the key of the paper. It
furthermore gives an analysis of the natural regularization of characteristic coordinates
that are applied to the KdV scaling limit. The Boussinesq regime is presented in
Section 4, while the more detailed KdV regime is taken upon in Section 5. The main
issue of this analysis is that the scattering of waves by the bottom variations is strong
and it must be shown that the standard KdV Ansatz of unidirectional propagation
remains valid despite this. The consistency analysis of the resulting asymptotic system
of equation is the most detailed part of this paper. Finally, Section 6 presents some
remarks on the process of ensemble averaging.
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2. Hamiltonian formulation

2.1. Hamilton equations

The time-dependent fluid domain consists of the region S(β, η) = {(x, y) ∈ R
n−1×R :

−h+ β(x) < y < η(x, t)}, in which the fluid velocity is represented by the gradient of
a velocity potential,

u = ∇ϕ , ∆ϕ = 0. (2.1)

The dependent variable η(x, t) denotes the surface elevation, and β(x) denotes the
variation of the bottom of the fluid domain from its mean value. The bottom variations
are chosen from a statistical ensemble (Ω,M,P), which is indicated by the notation
β = β(x, ω). The details of the ensemble and the associated probabilistic properties
are described in Section 3.1.

On the bottom boundary {y = −h+β(x)}, the velocity potential obeys Neumann
boundary conditions

∇ϕ ·N(β) = 0 (2.2)

where N(β) = (1 + |∂xβ|2)−1/2(∂xβ,−1) is the exterior unit normal.
The top boundary conditions are the usual kinematic and Bernoulli conditions

imposed on {(x, y) : y = η(x, t)}, namely

∂tη = ∂yϕ− ∂xη · ∂xϕ, ∂tϕ = −gη − 1

2
|∇ϕ|2 . (2.3)

The asymptotic analysis in this paper is initiated from the point of view of the
perturbation theory of a Hamiltonian system with respect to a small parameter.
For this purpose we describe the water wave problem as a Hamiltonian system
with infinitely many degrees of freedom. In [30], Zakharov poses the equations of
evolution (2.1)(2.2)(2.3) in the form of a Hamiltonian system in the canonical variables
(η(x), ξ(x)) where one defines ξ(x) = ϕ(x, η(x)), the boundary values of the velocity
potential on the free surface. The evolution equations take the classical form

∂t

(

η
ξ

)

=

(

0 I
−I 0

) (

δηH
δξH

)

= J δH (2.4)

with the Hamiltonian functional given by the expression of the total energy

H =

∫ ∫ η(x)

−h+β(x)

1

2
|∇ϕ(x, y)|2 dydx+

∫

g

2
η2(x) dx

=

∫

1

2
ξ(x)G(β, η)ξ(x) dx +

∫

g

2
η2(x) dx . (2.5)

The Dirichlet-Neumann operator G(β, η) is the singular integral operator with
which one expresses the normal derivative of the velocity potential on the free surface.
It is a function of the boundary values ξ(x) and of the domain itself, as parameterized
by β(x) and η(x) ,which define respectively the lower and the upper boundaries of the
fluid domain S(β, η). That is, let ϕ(x, y) satisfy the boundary value problem

∆ϕ = 0 in S(β, η) , (2.6)

∇ϕ ·N(β) = 0 on the bottom boundary {y = −h+ β(x)} ,
ϕ(x, η(x)) = ξ(x) on the free surface {y = η(x)} .
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The Dirichlet-Neumann operator is expressed as follows

G(β, η)ξ(x) = ∇ϕ(x, η(x)) ·N(η)(1 + |∂xη|2)1/2, (2.7)

where N(η) is the exterior unit normal on the free surface. It is clearly a linear
operator in ξ and it is self-adjoint with this normalization. However it is nonlinear
with explicitly nonlocal behavior in β(x) and η(x). The form of this operator, and its
description in terms of β and η are given in the next section.

2.2. Description of G(β, η)

We now restrict consideration to the dimension n = 2. In the undisturbed case in
which the bottom is flat, the solution is formally given by a Fourier multiplier operator
in the x-variable. Using the notation that ∂x = iD;

ϕ(x, y) =

∫ ∫

eik(x−x′) cosh(k(y + h))

cosh(kh)
ξ(x′) dx′dk =

cosh((y + h)D)

cosh(hD)
ξ(x) . (2.8)

When the bottom topography is nontrivial, as represented by {y = −h + β(x)}, the
expression (2.8) is modified by adding a second term in order that the solution satisfies
the bottom boundary conditions

ϕ(x, y) =
cosh((y + h)D)

cosh(hD)
ξ(x) + sinh(yD)(L(β)ξ)(x) . (2.9)

The first term in (2.9) satisfies the homogeneous Neumann condition at y = −h while
the second term satisfies the homogeneous Dirichlet condition at y = 0. The operator
L(β) in the second term acts on the boundary data ξ(x) given on the free surface.
In [9] we analyzed L(β) in a nonperturbative case, where |β|C1 ∼ O(1). Here we are
restricted to a perturbative regime, where we describe the expansion of the operator
G(β, η) for small but arbitrary perturbations η(x) of the surface, and small bottom
variations β(x).

At order O(1) and O(η), one gets G(0) = D tanh(hD) + DL(β) and G(1) =
DηD −G(0)ηG(0). At higher order, one finds the same recursion formula for G(l) as
for the case of a flat bottom [10] except that the role of the operator G0 = D tanh(hD)
is now replaced by G(0).

Since we allow bottom perturbations to be of order O(ε), we will use a recursion
formula given in [9] for L(β) in powers of β.

L(β) = L1(β) + L2(β) + .... (2.10)

with the first terms being

L1(β) = − sech(hD)βsech(hD)D (2.11)

L2(β) = sech(hD)βD sinh(hD)L1

= − sech(hD)βD tanh(hD)βDsech(hD). (2.12)

General formulas are presented in [9] together with a Taylor expansion of the Dirichlet-
Neumann operator G(β, η) in powers of both β and η. In the analysis of the present
paper, we will need only the terms up to second order in β.



Long wave expansions for water waves over random topography 6

The Hamiltonian is thus expanded in powers of η and β in the form

H(η, ξ;β) =
1

2

∫

(ξD tanh(hD)ξ + gη2)dx

−1

2

∫

ξDsech(hD)βDsech(hD)ξdx

+
1

2

∫

ξ(DηD −D tanh(hD)ηD tanh(hD))ξdx

−1

2

∫

ξ(Dsech(hD)βD tanh(hD)βDsech(hD))ξdx

+O(β3ξ2) + O(ηβξ2) + O(η2ξ2) . (2.13)

By integration by parts,

H(η, ξ;β) =
1

2

∫

(ξD tanh(hD)ξ + gη2)dx − 1

2

∫

β|Dsech(hD)ξ|2dx

+
1

2

∫

ξ(DηD −D tanh(hD)ηD tanh(hD))ξdx

− 1

2

∫

(Dsech(hD)ξ)βD tanh(hD)βDsech(hD)ξdx

+ O(β3ξ2) + O(ηβξ2) + O(η2ξ2) , (2.14)

which is the starting point for our asymptotic expansion.

2.3. Spatial scaling and the scaled Hamiltonian

We consider the case in which the bottom varies on a short length scale, that is
β = β(x, ω) is a random process, of zero mean value that satisfies ergodicity and
mixing properties which will be detailed below.

The fundamental long wave scaling for the problem of surface water waves retains
a balance between linear dispersive and nonlinear effects in the dynamics of the surface
evolution. The scaling that anticipates this balance is through the transformation

X = εx, ξ(x) = εξ̃(X), η(x) = ε2η̃(X). (2.15)

As for the bottom, we assume its variations are of order O(ε), which are much larger
that the variations of the surface elevation, namely

β(x, ω) = εβ̃(x, ω). (2.16)

We assume that β̃ is bounded in C1 for almost every realization ω ∈ Ω.
In order to get the scaled Hamiltonian, we need to examine the asymptotic

expansion of the Dirichlet-Neumann operator G(β, η) in a multiple scale regime. We
recall how formally a pseudo-differential operator acts on a multiple scale function
f(x,X) where X = εx (see [11] for details). In particular let m(D) be a Fourier
multiplier operator acting on a function f , defined as

(m(D)f)(x) =
1

2π

∫

eik(x−y)m(k)f(y)dydk. (2.17)

When m(D) acts on a multiple scale function f(x,X) with X = εx, D is replaced by
Dx + εDX and

m(D)f(x,X) =
1

2π

∫

eik(x−y)
(

∞
∑

j=0

m(j)(k)

j!
εjDj

X

)

f(y,X)dydk
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= m(Dx)f + εm′(Dx)DXf + · · · (2.18)

Applying this to the scaled Hamiltonian, we get

H(η̃, ξ̃; β̃, ε) =
ε3

2

∫

(hξ̃D2
X ξ̃ + gη̃2)dX (2.19)

−ε
4

2

∫

β̃(x)|DXsech(εhDX)ξ̃|2dX +
ε5

2

∫

ξ̃(DX η̃DX ξ̃ −
h3

3
D4

X ξ̃)dX

−ε
5

2

∫

(DXsech(εhDX)ξ̃)
[

β̃(x)(Dx + εDX) tanh(h(Dx + εDX))β̃(x)DXsech(εhDX)ξ̃
]

dX

+o(ε5)

For simplicity of notation, we now drop the tildes over β, η, ξ. Expanding the operator
sech(εhDX) in the second term in (2.19) gives

∫

β(x) |DXsech(εhDX)ξ|2dX =

∫

β(
X

ε
)

∣

∣

∣

∣

DX(1 − 1

2
ε2h2D2

X)ξ

∣

∣

∣

∣

2

dX . (2.20)

The last term of (2.19) is a little more complicated but is calculated in the same
manner. Expanding (Dx + εDX) tanh(h(Dx + εDX)) we get

(Dx + εDX) tanh(h(Dx + εDX)) = Dx tanh(hDx) + O(ε) . (2.21)

Finally,
∫

DXsech(εhDX)ξ [β(x)(Dx + εDX) tanh(h(Dx + εDX))β(x)DX sech(εhDX)ξ] dX

=
∫

DXsech(εhDX)ξ[β(x)Dx tanh(hDx)β(x)]DX sech(εhDX)ξdX + O(ε)

=
∫

[β(x)Dx tanh(hDx)β(x)] |DXξ|2dX + O(ε) .
(2.22)

Putting all these terms together:

H(η, ξ;β, ε) =
ε3

2

∫

[(

h− εβ(x) − ε2β(x)Dx tanh(hDx)β(x)
)

|DXξ|2 + gη2

+ ε2

2 (ξDXηDXξ − h3

3 ξD
4
Xξ)

]

dX + o(ε5) .

(2.23)

3. Homogenization and scale separation

The purpose of this section is to understand the asymptotic behavior of integrals of
the form

∫ +∞

−∞
γ(
X

ε
)f(X) dX := Zε(γ, f) , (3.1)

where f(X) comes from expressions which involve the physical variables which depend
only upon large spatial scales, and where γ(x) = γ(x;ω) is a stationary ergodic process
taken from the statistical ensemble Ω from which our realizations of the bottom are
sampled. Principle examples of such integral expressions in the Hamiltonian for water
waves are

∫ +∞

−∞
β(
X

ε
;ω)|DXξ(X)|2 dX (3.2)
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as well as
∫ +∞

−∞

(

βDx tanh(hDx)β
)

(
X

ε
)|DXξ(X)|2 dX . (3.3)

In our previous work [9], expressions of this form are analyzed under the hypothesis
that β was a periodic function of x. In the present paper, we are concerned with the
case in which the bottom variations β(x, ω) are decorrelated over large spatial scales,
which is quantified with a mixing condition on Ω.

3.1. Stationary ergodic processes and mixing

We take our statistical ensemble of random bottom variations of the fluid domain
to be modeled by a stationary ergodic process which will possess some properties of
mixing. Mathematically, given a probability space (Ω,M,P) equipped with a group
of P–measure preserving translations {τy : y ∈ R}, and a function G : Ω → R, then a
stationary process γ is given by γ(x;ω) := G(τxω). The notation for the probability
of a set A ∈ M is P(A), and integrals of functions F over this probability space are
denoted by

∫

Ω

F dP = E(F ) . (3.4)

We further require that the measure be ergodic with respect to {τy}y∈R, meaning that
for any continuous function F : C(R) → R, then for P-almost every realization ω,

lim
T→∞

1

T

∫ T

0

F (τyω) dy = E(F ) . (3.5)

For our purposes, we would like to take Ω := C(R) the space of bounded
continuous functions, for which the one-parameter group of translations is just that,
(τyγ)(·) = γ(·+ y), for y ∈ R. However it turns out that our sample space C(R) must
be enlarged to a subset of the space of tempered distributions S ′, as the process of
taking limits invokes Donsker’s invariance principle, and the support of our limiting
measures is on distributions corresponding to one (or several) derivatives of Brownian
motion. The modeling of a random bottom will require properties of asymptotic
independence of typical realizations with respect to the probability measure (M,P),
specifically that the translations {τy}y∈R exhibit a mixing property with respect to it.
There are several notions of mixing in the literature [13]. For simplicity, we adopt the
notion of uniform strong mixing (called α–mixing), although weaker conditions would
also work in our setting. The stationary process defines a natural filtration on the
probability space given by the σ–algebras Mu

v = σ(γ(y, ω) : v ≤ y ≤ u). The notion
of α–mixing is that there is a bounded function α(y) for which α(y) → 0 as y → ∞
such that for any two sets A ∈ M∞

0 and B ∈ M0
−∞ then

|P(A ∩ τy(B)) − P(A)P(B)| < α(y) . (3.6)

Note that mixing implies the process is ergodic. So that Donsker’s invariance principle
will extend to this mixing process [22], we require that α(y) = O(1/y log(y)) for
y 7→ +∞ as well as

∫ ∞

0

α(y) dy < +∞ . (3.7)

The integral (3.3) involves a nonlocal expression in the bottom variations β(x),
implying that the random processes we are led to analyse will never be perfectly
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decorrelated under any finite translation. Indeed, the spatial decay of the kernel of
the operator D tanh(hD) implies a lower bound on α(y) of the form

α(y) > e−2hy ,

even for statistics of the actual realizations of the bottom variations β(x, ω) which are
fully decorrelated under sufficiently large finite translations |y| > R.

For the zero mean process γ, define the covariance function ργ to be

ργ(y) := E(γ(0;ω)γ(y;ω)) = E(γ(0;ω)τyγ(0;ω)) , (3.8)

which is an even function of y ([12] page 123, or [3], page 178). The variance σ2
γ is

given by the expression

σ2
γ := 2

∫ ∞

0

ργ(y) dy .

The integral exists because of the hypothesis of mixing of the underlying process. The
variance can take on any value in [0,+∞), and we are principally concerned with the
situation in which σγ > 0. To this end we note the following fact.

Lemma 3.1. When the process β(x, ω) = ∂xγ(x, ω), for γ(x) ∈ C1, a zero-mean,
stationary process with the above mixing properties, then

σβ = 0 .

Proof. By definition,

σ2
β = 2

∫ +∞

0

E(β(0)β(y))dy = 2

∫ +∞

0

E(β(x)β(x + y))dy (3.9)

= 2

∫ +∞

0

E(∂xγ(x)∂xγ(x+ y))dy = 2

∫ +∞

0

E(∂xγ(x)∂yγ(x+ y))dy

= 2

∫ +∞

0

∂yE(∂xγ(x)γ(x + y))dy .

Therefore by integrating,

σ2
β = −2E(∂xγ(x)γ(x)) + 2E(∂xγ(x)γ(x+ y))|y=+∞ = −E(∂xγ

2(x)) ,

because the process is mixing. Using the hypothesis of ergodicity,

E(∂xγ
2(x)) = lim

T→∞

1

T

∫ T

0

∂xγ
2(x) dx = lim

T→∞

1

T
(γ2(x))

∣

∣

∣

T

x=0
= 0 . (3.10)

Thus the most interesting processes are those which are not derived from derivatives of
another stationary process; this fact will be reflected in our analysis of the asymptotics
of the integrals (3.1) in the next section.
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3.2. Scale separation

The asymptotic analysis of Hamiltonians or partial differential equations which involve
random coefficients needs to establish a clear criterion with which to characterize
terms by their order parameter. In our present analysis, we view each term as a
tempered distribution in space and time, namely in S ′(R2). We consider a term
a(X, t; ε) to be of order O(εr) if for any Schwartz class test function ϕ(X, t) the
limit limε→0 ε

−r
∫

a(X, t; ε)ϕ(X, t) dXdt exists. In this context, the terms of a partial
differential equation with random coefficients represent random ensembles of tempered
distributions, say {a(X, t;ω, ε) : ω ∈ Ω} ⊆ S ′(R2), which we state to be of order
O(εr) if for any test function ϕ(X, t) ∈ S(R2) the probability measures dPε of
ε−r

∫

a(X, t; ε, ω)ϕ(X, t) dXdt converges weakly to some dP0. In this section we
discuss the behavior of such terms in the form

∫

γ(X
ε , t;ω)v(X, t)ϕ(X, t) dXdt

∫

γ1(
X
ε , t;ω)γ2(

X+ct
ε , t;ω)v(X, t)ϕ(X, t) dXdt

(3.11)

where γ is a stationary mixing process, v is a solution to one of the several differential
equations under discussion, and ϕ plays the rôle of a test function.

Lemma 3.2. For γ(x;ω) a stationary ergodic process and for f(X) ∈ L1(R), then
for P-a.e. realization ω,

∫ +∞

−∞
f(X)γ(

X

ε
;ω) dX = E(γ)

∫ +∞

−∞
f(X) dX + o(1) . (3.12)

Proof. For a Schwartz class function f we have

∫ +∞

−∞
f(X)γ(

X

ε
;ω)dX = ε

∫ +∞

−∞
f(X)

d

dX
(

∫ X
ε

0

γ(s;ω)ds)dX

= −
∫ +∞

−∞
Xf ′(X)

ε

X

∫ X
ε

0

γ(s;ω)dsdX. (3.13)

As ε→ 0, combining Birkhoff ergodic theorem

ε

X

∫ X
ε

0

γ(s;ω) ds→ E(γ) (3.14)

with the dominated convergence theorem leads to

∫ +∞

−∞
f(X)γ(

X

ε
;ω) dX → −E(γ)

∫ +∞

−∞
Xf ′(X)dX (3.15)

and finally (3.12). In fact it suffices that f ∈ L1(R) for the result to hold.

The immediate application of the lemma is to the integrals (3.2)(3.3), at least
to the order implied by Lemma 3.2 for their mean values. Under the assumption
that ξ(X) ∈ H1(R), the first of these vanishes up to order o(1) as E(β) = 0, at least
for P-a.e. realization ω. What is clear is that the fluctuations of (3.2) will play an
important rôle in the derivation of the appropriate Hamiltonian equations of motion.
The second integral (3.3) is less straightforward, as the mixing condition (3.7) is in
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competition with the integral operators represented by the Fourier multiplier operators
of the expression. We have that

∫

(

β(x)Dx tanh(hDx)β(x)
)∣

∣

x= X
ε

|DXξ(X)|2 dX

→ E(βDx tanh(hDx)β)

∫

|DXξ(X)|2 dX. (3.16)

There are two things to discuss with this statement. The first is that whenever
γ(x, ω) ∈ C1 is stationary with regard to some probability space (Ω,M,P), then
an order zero Fourier multiplier operator applied to γ(x) is also stationary. Indeed,
translation is respected

m(Dx)γ(x, τyω) =
1

2π

∫

eik(x−x′)m(k)γ(x′, τyω) dx′dk (3.17)

=
1

2π

∫

eik(x−x′)m(k)γ(x′ − y, ω) dx′dk

=
1

2π

∫

eik((x−y)−x′)m(k)γ(x′, ω) dx′dk

= m(Dx)γ(x− y, ω) . (3.18)

Furthermore, continuous functions of γ ∈ C1, such as g(γ) = (γm(Dx)γ)(0) are
measurable. By the ergodic theorem, for any bounded measurable F

lim
L→∞

1

L

∫ L

0

F (τxg(γ)) dx = E(F (g)) ,

and therefore the process τxg(γ) is ergodic. Secondly, the expectation values of
quadratic functions of γ may be computed from the covariance function ργ of the
stationary process. For example,

E(γm(Dx)γ) = lim
y→0

E(γ(x)m(Dx)γ(x− y))

= lim
y→0

E(m(−Dy)γ(x)γ(x − y)) = lim
y→0

m(−Dy)ργ(y)

= m(−Dy)ργ(0) . (3.19)

Using these two facts, (3.16) is verified as the principal contribution from integral
(3.3).

Lemma 3.3. [3] Suppose that β(x;ω) is a stationary ergodic process which is mixing,
with a rate α(y) which satisfies the condition (3.7). Assume that E(β) = 0 and that
σβ 6= 0. Define

Yε(β)(X) =

√
ε

σβ

∫ X
ε

0

β(y) dy . (3.20)

As ε tends to zero, we have, in the sense convergence in law that

Yε(β)(X) ⇀ B(X) , (3.21)

where Bω(X) = B(X) is a normalized Brownian motion.
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In particular, let f(X) ∈ S be a Schwartz class function, then

1

σβ
√
ε
Zε(β, f) :=

∫ +∞

−∞

1

σβ
√
ε
β(
X

ε
)f(X) dX (3.22)

=

∫ +∞

−∞
Y ′

ε (β)(X)f(X) dX =

∫ +∞

−∞
−∂Xf(X)B(X) dX + o(1) .

This is to say that under the mild condition of mixing given in (3.7), the integrals in
question converge to a canonical stationary process, for which only two parameters
are distinguished, the mean value E(β) and the variance σ2

β . This canonical process is
given by white noise,

∫ +∞

−∞
β(
X

ε
)f(X) dX =

∫ +∞

−∞

(

E(β) +
√
εσβ∂XB(X)

)

f(X) dX + o(
√
ε), (3.23)

where the equality is in the sense of convergence in law. The function f(X) in the
integrand must be sufficiently smooth for the latter quantities to have a mathematical
sense. In fact we consider the operation of multiplication by β( X

ε ) to be in the
distributional sense, which has for a limit the distribution

√
εσβ∂XB(X) ∈ S ′. This

is given a precise statement in the following lemma.

Lemma 3.4. As a distribution, multiplication by β(X/ε) has a canonical limit in S ′.
Indeed, for f ∈ S,

β(
X

ε
)f(X) = E(β)f(X) +

√
εσβ∂XB(X)f(X) + o(

√
ε) . (3.24)

Proof. Test the quantity above with a Schwartz class function ϕ(X);
∫

β(
X

ε
)f(X)ϕ(X) dX (3.25)

= E(β)

∫

(

f(X)ϕ(X)
)

dX −
√
εσβ

∫

B(X)∂X (fϕ) dX + o(
√
ε)

=

∫

(

E(β) +
√
εσβ∂XB(X)

)

f(X)ϕ(X) dX + o(
√
ε) .

This is to say that for each f , the random variable Zε(β, f) given in (3.22) is
asymptotically normally distributed. Given two functions f, g ∈ S, the covariance
function E(Zε(β, f)Zε(β, g)) can be computed in the limit as ε→ 0. Indeed

E(Zε(β, f)Zε(β, g)) = 1
ε

∫ ∫

ρβ(X−X′

ε )f(X)g(X ′) dXdX ′

=
∫ ∫

ρβ(x′)f(X)g(X − εx′) dXdx′

=
∫ ∫

ρβ(x′)f(X)
(

g(X)− εx′∂Xg(X) + ε2

2 x
′2∂2

Xg(X) + . . .
)

dXdx′.

Noting that the term at order ε vanishes because ρβ is an even function, we have

E(Zε(β, f)Zε(β, g)) =
∫

ρβ(x′) dx′
∫

f(X)g(X) dX

− ε2

2

∫

x′2ρβ(x′) dx′
∫

∂Xf(X)∂Xg(X) dX + . . .
(3.26)
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In the limit as ε→ 0, this quantity converges to

E(Z0(f)Z0(g)) = σ2
β

∫

f(X)g(X) dX , (3.27)

where Z0(f) = σβ
√
ε
∫

f(X)∂XB(X) dX . This expression is consistent with the
covariance of the white noise process being given by σ2

βδ(X −X ′).

In the case of a process β(x) for which σβ = 0, the limit process for Yε(X) is
of a different character. In particular, consider a stationary mixing process which
is the derivative of another stationary process. Indeed let γ(x) ∈ Cr+1(R), and set
β(x) = ∂r

xγ(x). Automatically E(β) = 0 and σβ = 0. In this situation we have a
different asymptotic result for the behavior of integrals such as in (3.1).

Lemma 3.5. Suppose that γ(x) ∈ Cr+1(R) is a stationary ergodic process which
satisfies the mixing condition (3.7), and set β(x) = ∂r

xγ(x). Then the process β(X/ε)
is asymptotic in the sense of distributions to higher derivatives of Brownian motion.
That is, for ϕ(X) ∈ S we have

∫

β(
X

ε
)ϕ(X) dX = εr+1/2σγ

∫

∂r+1
X B(X)ϕ(X) dX + o(εr+1/2) . (3.28)

Proof. Using ϕ(X) as a test function,
∫

β(
X

ε
)ϕ(X) dX =

∫

∂r
xγ(

X

ε
)ϕ(X) dx

= (−1)rεr

∫

γ(
X

ε
)∂r

Xϕ(X) dX

= (−1)r+1εr+1/2σγ

∫

Yε(γ)(X)∂r+1
X ϕ(X) dX

= εr+1/2σγ

∫

∂r+1
X B(X)ϕ(X) dX + o(εr+1/2) .

There are further technical results that we will use repeatedly in the analysis of
the equations in the KdV asymptotic regime, having to do with limits in the sense
of tempered distributions of products of scaled processes. In this context, consider
γ = (γ1, γ2) a vector of stationary processes which satisfy the mixing conditions
(3.6)(3.7). Consider their product γ1(X/ε)γ2((X + ct)/ε) for some nonzero constant
c as a tempered distribution in the limit ε → 0 . Define the covariance matrix of the
vector process by

C(γ) =

(

σ2
1 ρ12

ρ12 σ2
2

)

where

σ2
j = 2

∫ ∞

0

E(γj(0)γj(y)) dy, ρ12 = ρ21 =

∫ ∞

−∞
E(γ1(0)γ2(y)) dy . (3.29)
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Lemma 3.6. If the vector process γ = (γ1, γ2) is stationary and satisfies the mixing
conditions (3.6)(3.7), then the process

Yε(γ) =
√
ε
(

∫ X
ε

0

γ1(y) dy,

∫ X
ε

0

γ2(y) dy
)

(3.30)

converges to the two-dimensional Brownian motion B(X) = (B1(X), B2(X)) with
covariance matrix C(γ).

This result is analogous to Lemma 3.3 in the vector process case. From it, we
derive the next useful result on products of two mixing processes.

Lemma 3.7. Suppose that (β1(x), β2(x)) is a C1(R) vector stationary ergodic process
which satisfies the mixing condition (3.6)(3.7), and let c be a nonzero constant. The
new process formed by the product ε−1β1(X/ε)β2((X + ct)/ε) converges in the sense
of distributions on space-time to products of derivatives of a pair of Brownian motions
with covariance matrix C(β). More precisely, for a test function ϕ(X, t) ∈ S then

∫

β1(
X
ε )β2(

X+ct
ε )ϕ(X, t) dXdt

= ε
∫

∂XB1(X)∂XB2(X + ct)ϕ(X, t) dXdt+ o(ε),
(3.31)

where the covariance matrix of (B1(X), B2(X)) is given by C(β). In case βj = ∂
rj
x γj

for indices j = 1, 2, with γj ∈ Crj+1(R) (so that σβj = 0 if rj 6= 0) the new process
satisfies

∫

β1(
X
ε )β2(

X+ct
ε )ϕ(X, t) dXdt

= εr1+r2+1
∫

∂r1+1
X B1(X)∂r2+1

X B2(X + ct)ϕ(X, t)dXdt+ o(εr1+r2+1),
(3.32)

where (B1(X), B2(X)) are C(γ)-correlated.

Proof. Start with the case in which both σβj are nonzero, and write

∫

β1(
X
ε )β2(

X+ct
ε )ϕ(X, t) dXdt =

∫

β1(
X
ε )β2(

X′

ε )ϕ(X, X′−X
c ) dXdX′

c

= ε2
∫

∂X

(

∫ X
ε

0
β1(τ) dτ

)

∂X′

(

∫ X′

ε

0
β2(τ

′) dτ ′
)

ϕ(X, X′−X
c ) dXdX′

c

= ε
∫

(√
ε
∫ X

ε

0
β1(τ) dτ

)(√
ε
∫ X′

ε

0
β2(τ

′) dτ ′
)

∂X∂X′ϕ(X, X′−X
c ) dXdX′

c .

The latter expression is a continuous function of the processes Yε(β) = (Yε(β1), Yε(β2))
of equation (3.20), which itself converges in law to two-dimensional Brownian motion
with covariance matrix C(β) as described by Donsker’s invariance principle. Therefore
the asymptotic expression for (3.31) is given by

ε

∫

∂XB1(X)∂XB2(X + ct)ϕ(X, t) dXdt (3.33)

where B1(X) and B2(X) are two copies of Brownian motions with the correlation
matrix C(β). The general case reduces to the above particular case through
integrations by parts. Indeed

∫

β1(
X

ε
)β2(

X + ct

ε
)ϕ(X, t) dXdt

= εr1+r2

∫

∂r1

X γ1(
X

ε
)∂r2

X γ2(
X + ct

ε
)ϕ(X, t) dXdt
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= (−1)r1+r2
εr1+r2

cr2

∫

γ1(
X

ε
)γ2(

X + ct

ε
)∂r1

X ∂
r2

t ϕ(X, t) dXdt, (3.34)

which reduces the problem to the previous case.

There is another integral that needs to be evaluated in our further analysis. It
has the form

∫

X,t

∫ X+
√

ght

X

β
(X

ε
)β

(θ

ε
)ϕ(θ,X, t)dθdXdt. (3.35)

The next lemma shows that such integrals have probability measures whose weak
limits converge with order at least O(ε).

Lemma 3.8. Suppose that (β1(x), β2(x) is a C1(R vector stationary ergodic process
which satisfy the mixing conditions (3.6) and (3.7). For test functions ϕ(θ,X, t) ∈ S,

∫

dXdt

∫ X+
√

ght

X

[

β1

(X

ε
)β2

(θ

ε
) + β2

(X

ε
)β1

(θ

ε
)

]

ϕ(θ,X, t)dθ = O(ε). (3.36)

Proof. The integral is written as the sum of two terms, each one of the form

∫

dXdt
∫ X+

√
ght

X
βi

(

X
ε )βj

(

θ
ε )ϕ(θ,X, t)dθ

= ε
∫

dXdt
∫ X+

√
ght

X
∂X

(√
ε
∫ X

ε

0
βi(s)ds

)

∂θ

(√
ε
∫ θ

ε

0
βj(s)ds

)

ϕ(θ,X, t)dθ

= ε
∫

dXdt
∫ X+

√
ght

X

(√
ε
∫ X

ε

0 βi(s)ds
)(√

ε
∫ θ

ε

0 βj(s)ds
)

∂Xθϕ(θ,X, t)dθ

+ε
∫

dXdt
(√

ε
∫ X

ε

0 βi(s)ds
)[(√

ε
∫

X+
√

ght
ε

0 βj(s)ds
)

∂θϕ(X +
√
ght,X, t)

−
(√

ε
∫ X

ε

0
βj(s)ds

)

∂θϕ(X,X, t)
]

−ε
∫

dXdt
(√

ε
∫ X

ε

0
βi(s)ds

)[(√
ε
∫

X+
√

ght
ε

0
βj(s)ds

)

∂Xϕ(X +
√
ght,X, t)

−
(√

ε
∫ X

ε

0
βj(s)ds

)

∂Xϕ(X,X, t)
]

−ε
∫

dXdt
(√

ε
∫ X

ε

0
βi(s)ds

)[

1√
ε
βj(

X+
√

ght
ε )ϕ(X +

√
ght,X, t)

− 1√
ε
βj(

X
ε )ϕ(X,X, t)

]

(3.37)
with i, j ∈ {1, 2} and i 6= j. All of the terms have distributional limits which are at
least O(ε). Simple cases which illustrate the estimate are:

I : = ε
∫

dXdt
[(√

ε
∫ X

ε

0 β1(s)ds
)

1√
ε
β2(

X
ε ) +

(√
ε
∫ X

ε

0 β2(s)ds
)

1√
ε
β1(

X
ε )

]

ϕ(X,X, t)

= ε
2

∫

dXdt∂X

(√
ε
∫ X

ε

0 β1(s)ds
√
ε
∫ X

ε

0 β2(s)ds
)

ϕ(X,X, t)

= − ε
2

∫

dXdt
(√

ε
∫ X

ε

0
β1(s)ds

√
ε
∫ X

ε

0
β2(s)ds

)

∂Xϕ(X,X, t).

(3.38)
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II : = ε
∫

dXdt
(√

ε
∫ X

ε

0 βi(s)ds
)

1√
ε
βj(

X+
√

ght
ε )ϕ(X +

√
ght,X, t)

= −ε
∫

dXdt
(√

ε
∫ X

ε

0 βi(s)ds
)

1√
gh
∂t

(√
ε
∫

X+
√

ght
ε

0 βj(s)ds
)

ϕ(X +
√
ght,X, t)

= − ε√
gh

∫

dXdt
(√

ε
∫ X

ε

0 βi(s)ds
)(√

ε
∫

X+
√

ght
ε

0 βj(s)ds
)

∂tϕ(X +
√
ght,X, t).

In these expressions, notice that the factors that appear are continuous functionals
on path space. Therefore, as ε 7→ 0, they converge in law to functionals of Brownian
motions [3]. The other remaining terms are easy to estimate.

3.3. Random characteristic coordinates

Our method to derive the long-wave limit gives rise to a version of the KdV equation
which has coefficients which are realization dependent. That is, the approximation
process does not fully homogenize, and there are persistent, realization dependent
effects that are as important as the classical effects of dispersion and of nonlinear
interactions. The principal manifestation of this is the random overall wavespeed,
expressed in the limit as ε→ 0 as

c0(X,ω) =
√

gh
(

1 − ε3/2σβ

2h
∂XB(X) − ε2aKdV

)

. (3.39)

The constant aKdV is an adjustment to the characteristic velocity that is to be
determined by an asymptotic analysis. The normally expected procedure is to solve
the characteristic equations with this given wavespeed;

dX

dt
= c0(X,ω) , X(0) = Y , (3.40)

to obtain characteristic coordinates (Y, t) describing a net translational motion about
which the more subtle nonlinear dispersive evolution takes place. In the context of
a random bottom environment, however, the characteristic velocity field c0(X,ω) in
(3.39) has a component which is white noise, and when the flow of the characteristic
vector field (3.40) is required, (3.39) is too singular to be able to make sense of a
solution.

Our derivation of the KdV equation is nonetheless performed in characteristic
coordinates. To do this, our alternative strategy is to use a natural regularization of
the characteristic wavespeed given in (3.39) as an approximation, and to consider the
characteristic coordinates indicated by (3.40) to be the limit as ε → 0 of a sequence
of more regular flows. The regularized characteristic vector field that we use is

dX

dt
= cε(X,ω) :=

√

gh
(

1 − ε

2h
β(
X

ε
) − ε2aKdV

)

X(0) = Y.

We remark that as long as β(x, ω) ∈ C1(R) for P-a.e. realization ω, the characteristic
vector field cε(X,ω) is C1, and for a given realization ω it is uniformly so in ε.
Therefore the flows X(t) = Φε

t (Y, ω) exist for all ε, and lie in a bounded subset of
C1. The characteristics X(t) are themselves C1, and they are ordered by their initial
values; if Y1 < Y2 then for all t, X1 = Φε

t (Y1, ω) < X2 = Φε
t (Y2, ω). As ε→ 0 there will

normally not be a C1 limit of the flows, but by standard compactness arguments there
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are limits Φ0
t (Y, ω) in any Cα(R), 0 ≤ α < 1 which converge uniformly on compact

sets, and which preserve the ordered property of the characteristics. Each such limit
X = Φ0

t (Y, ω) can be taken to be a well-defined continuous and continuously invertible
transformation.

To understand the asymptotic behavior of the transformation to characteristic
coordinates, write

Φε
t (Y, ω) = X0(t) + εX1(t) + ε2X2(t) + . . . , (3.41)

where X0(0) = Y , and Xj(0) = 0 for j ≥ 1 provide the initial conditions for the flow.
Substituting this into the characteristic equation gives the result that

dX0(t)

dt
=

√

gh , X0(t) = Y + t
√

gh, (3.42)

dX1(t)

dt
= − 1

2

√

g

h
β(X0(t)/ε, ω)

= − 1

2

√

g

h
β((Y + t

√

gh)/ε, ω), (3.43)

thus, variations to the characteristics are given by

X1(t) = − ε

2h

∫ (Y +t
√

gh)/ε

Y/ε

β(s, ω) ds . (3.44)

The final term relevant to our considerations is

dX2(t)

dt
= −

√

gh aKdV (3.45)

which integrates simply to X2(t) = −
√
ghaKdV t. Studying the integral expressions

for X1(t) more closely, we find that

X1(t) = − ε

2h

(

∫ (Y +t
√

gh)/ε

0

β(s) ds−
∫ Y/ε

0

β(s) ds
)

, (3.46)

which converges in law to Brownian motion as ε → 0, according to our discussion in
Section 3.2. Hence

X1(t) = −
√
εσβ

2h

(

B(Y + t
√

gh) −B(Y )
)

+ o(
√
ε) . (3.47)

In particular, the term εX1(t) contributes at order ε3/2. Due to Brownian scaling and
to the property of independence of increments,

X1(t) = −
√
εσβ

2h
Bω(Y )(t

√

gh) = −
√
ε
(σβ

2h
4
√

gh
)

Bω(Y )(t) . (3.48)

We note that the realizations ω(Y ) of Brownian motion depend on the different initial
positions Y , and in particular that for distinct initial points Y1 and Y2 the selection of
realizations Bω(Y1)(t) and Bω(Y2)(t) of Brownian motion are independent, as long as
Y2−Y1 >

√
ght. Putting this information together, an expression for the characteristic

flow is given by

X(t, Y ; ε, ω) = Y + t
√

gh− ε2

2h

∫ (Y +t
√

gh)/ε

Y/ε

β(s, ω) ds
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−
√

gh aKdV ε
2t+ · · · . (3.49)

As ε tends to 0, the characteristics tend to the limiting distribution of paths given by

X(t, Y ;ω) = Y + t
√

gh− ε3/2σβ

2h
4
√

ghBω(Y )(t) − ε2
√

ghaKdV t+ · · · . (3.50)

Inverting the expression gives a formula for Y in terms of X and t;

Y (t,X ; ε, ω) = Φε
−t(X ;ω) = X − t

√

gh+
ε2

2h

∫ X/ε

(X−t
√

gh)/ε

β(s, ω) ds

+ ε2
√

ghaKdV t+ · · · . (3.51)

As ε tends to 0,

Y (t,X ;ω) = X − t
√

gh+
ε3/2σβ

2h
4
√

ghBω(X)(t) +
√

gh aKdV ε
2t+ · · · .

The Jacobian of the flow has the following asymptotic expansion

dX

dY
= 1 − ε

2h

[

β(
Y +

√
ght

ε
) − β(

Y

ε
)
]

= 1 + O(ε) . (3.52)

In the limit as ε tends to zero, the Jacobian (3.52), when multiplying a test function,
behaves asymptotically as

dX

dY
∼ 1 − ε3/2σβ

2h
4
√

gh∂XBω(Y )(t). (3.53)

4. Boussinesq regime

We now return to the expression (2.23) for the scaled Hamiltonian, in order to give
a formal derivation of the appropriate Boussinesq system in this regime. Recall that
β is a mean zero, stationary mixing process with correlation function ρβ. Using the
analysis of the previous section, we write the leading order contributions of the second
and fourth terms of (2.23) in the form

∫ +∞

−∞
β(
X

ε
, ω)|DXξ(X)|2 dX =

√
εσβ

∫

∂XBω(X)|DXξ(X)|2 + o(
√
ε) (4.1)

and
∫ +∞

−∞

(

βDx tanh(hDx)β
)

(
X

ε
)|DXξ(X)|2 dX = E(βDx tanh(hDx)β)

∫

|DXξ(X)|2 dX ,

(4.2)
where as in (3.19) we calculate that

E(βDx tanh(hDx)β) = (Dy tanh(hDy)ρβ)(0) := aβ . (4.3)

The constant aβ will contribute to an adjustment of the linear wavespeed in the
Boussinesq regime. The equalities in (4.1)(4.2) are to be taken in the sense of law of
the corresponding random processes.

We now include these expansions into the Hamiltonian, retaining terms up to
order O(ε5) and dropping those of higher order

H =
ε3

2

∫

(

(h− ε3/2σβ∂XB(X) − ε2aβ)|DXξ|2 + gη2
)

dX
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+
ε5

2

∫

(ξDXηDXξ −
h3

3
ξD4

Xξ)dX + o(ε5). (4.4)

We note the rôle of a stochastic effective depth played by

h0(X) = h− ε3/2σβ∂XB(X) − ε2aβ + o(ε2) (4.5)

which is a function of the long length scale variables alone. Since it is normally not
necessary to introduce characteristic coordinates in this derivation, a regularization
such as described in section 3.3 is not required, and the limiting effective depth h0(X)
is used directly in the averaged Hamiltonian.

Changing the variables (η, ξ) to (η, u = ∂Xξ), the Hamiltonian becomes

H1 =
ε3

2

∫

(

h0(X)u2 + gη2 − ε2(
h3

3
(∂Xu)

2 − ηu2)
)

dX. (4.6)

The symplectic structure has to be modified accordingly as in [8]. Consider the
transformation w → v = f(w), which transforms Hamilton’s equations

∂tw = JδwH(w) (4.7)

to the form
∂tv = J1δvH1(v) (4.8)

with a new symplectic structure

J1 = ∂wfJ(∂wf)> , (4.9)

where ∂wf is the Jacobian of the map f . In our case, w =

(

η
ξ

)

, v =
(

η
u

)

=

(

I 0
0 ∂X

)

w, and the matrix J = ε−3

(

0 I
−I 0

)

is transformed to J1 =

ε−3

(

0 −∂X

−∂X 0

)

, where the power of ε is due to the scaling transformations (2.15).

The evolution equations take the form

∂t

(

η
u

)

= J1

(

δηH1

δuH1

)

. (4.10)

In the end we find the Boussinesq system in the form

∂tη = − ∂X((h0(X) + ε2η)u) − ε2
h3

3
∂3

Xu ,

∂tu = − g∂Xη − ε2u∂Xu . (4.11)

While this form of Boussinesq system appears most naturally from a direct expansion
of the Hamiltonian of the problem of water waves, the resulting system of partial
differential equations is not well posed, and it is rarely used directly in modeling. In
the present setting, the situation is further aggravated by the fact that a coefficient in
the above system is singular, as it involves the second derivative of a Brownian motion.
Several routes to resolving these issues are possible, modifying the linear dispersion
relation for the Boussinesq system, and regularizing the coefficients as in section 3.3,
for example. However we will not pursue this direction of inquiry in the present paper,
preferring to make a more systematic study of the KdV scaling regime.
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5. The KdV regime

In the case of the Boussinesq derivation, the limit of certain integrals in the water
waves Hamiltonian will give rise to singular coefficients in the resulting equations of
motion.This is even more true in the case of the KdV regime; indeed the transformation
to characteristic coordinates will give rise to a modified symplectic structure which
involves a second derivative of Brownian motion, something that is not acceptable on
an analytic level. To get around this difficulty, we regularize the linear wavespeed
as described in section 3.3, a process which consists of retaining certain terms with
rapidly varying coefficients in the Hamiltonian, and only taking the limit after the long
wave equations are derived. We assume that σβ > 0, which implies that the resulting
realization dependent fluctuations are maximally significant in the limit, and we will
perform the smoothing procedure in a way which is consistent with this assumption.

5.1. Successive changes of variables

We start again from the expression (2.23) for the Hamiltonian. As in the derivation
of the Boussinesq system, we first change the variables (η, ξ) to (η, u = ∂Xξ), leading
to a transformed Hamiltonian Hε

1 defined by

Hε
1 =

ε3

2

∫

(

hε(X)u2 + gη2 − ε2(
h3

3
(∂Xu)

2 − ηu2)
)

dX (5.1)

and a modified symplectic structure J1 = ε−3

(

0 −∂X

−∂X 0

)

. The next change of

variables is defined by the transformation

η = 4

√

hε

4g
(r + s) , u = 4

√

g

4hε
(r − s) . (5.2)

The new symplectic structure resulting from this transformation is

J2 = ε−3







−∂X
1

4

∂Xhε

hε

−1

4

∂Xhε

hε
∂X






, (5.3)

whose off-diagonal terms quantify the scattering of solutions due to variations in the
topography. In this expression, we retain the regularized expression :

hε(X) = h− εβ(
X

ε
) − ε2aβ . (5.4)

The Hamiltonian is written as

Hε
2(r, s) =

ε3

2

∫

(

√

ghε(X)(r2 + s2) − ε2

3
h3

[(

∂X
4

√

g

4hε
r
)2

− 2
(

∂X
4

√

g

4hε
r
)(

∂X
4

√

g

4hε
s
)

+
(

∂X
4

√

g

4hε
s
)2]

+
ε2

2
4

√

g

4hε
(r3 − r2s− rs2 + s3)

)

dX + o(ε5 ) . (5.5)
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Notice that, except for the first term in the Hamiltonian, hε appears in terms that are
already of order ε5 and thus can be replaced there by the constant h in this asymptotic
calculation. Denoting by

c1 =
h3

3

√

g

4h
, c2 =

1

2
4

√

g

4h
,

we rewrite Hε
2 in the form:

Hε
2 =

ε3

2

∫

√

ghε(r
2 + s2) − c1ε

2
(

(∂Xr)
2 − 2(∂Xr)(∂Xs) + (∂Xs)

2
)

+ c2ε
2
(

r3 − r2s− rs2 + s3
)

dX + o(ε5 ) . (5.6)

Hamilton’s equations for (r, s) take the form

∂t

(

r
s

)

= J2

(

δrH
ε
2

δsH
ε
2

)

(5.7)

where δrH
ε
2 and δsH

ε
2 are computed as follows:

δrH
ε
2 = ε3

2

(√
ghε 2r + c1ε

2(2∂2
Xr − 2∂2

Xs) + c2ε
2(3r2 − 2rs− s2)

)

δsH
ε
2 = ε3

2

(√
ghε 2s− c1ε

2(2∂2
Xr − 2∂2

Xs) − c2ε
2(r2 + 2rs− 3s2)

)

.
(5.8)

Hamilton’s equations are explicitly

∂tr = −∂X

[√
ghεr + ε2

(

c1(∂
2
Xr − ∂2

Xs) + 1
2c2(3r

2 − 2rs− s2)
)]

+ 1
4

∂Xhε

hε

[√
ghεs+ ε2

(

c1(∂
2
Xs− ∂2

Xr) + 1
2c2(−r2 − 2rs+ 3s2)

)]
(5.9)

∂ts = ∂X

[√
ghεs+ ε2

(

c1(∂
2
Xs− ∂2

Xr) + 1
2c2(−r2 − 2rs+ 3s2)

)]

− 1
4

∂Xhε

hε

[√
ghεr + ε2

(

c1(∂
2
Xr − ∂2

Xs) + 1
2c2(3r

2 − 2rs− s2)
)]

.
(5.10)

In the action of J2δH
ε
2 , there are products of hε and its derivatives, and each factor

tends to a distribution (see Lemma 3.2) in the limit ε→ 0. The product is nevertheless
well defined because of the form it takes:

∫

∂Xhε hε
−1/2f(X) dX = 2

∫

∂Xh
1/2
ε f(X) dX .

We perform an additional change of scale of s relative to r defined by
(

r
s1

)

=

(

1 0

0 ε−3/2

) (

r
s

)

, (5.11)

which puts forward r(X, t) as the main component of the solution which is anticipated
to be traveling principally to the right, with a relatively small scattered component
s1(X, t) propagating principally to the left. The transformation leads to a modified
symplectic structure

J3 =
1

ε3







−∂X
1

4ε3/2

∂Xhε

hε

− 1

4ε3/2

∂Xhε

hε

1

ε3
∂X






(5.12)
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and a final Hamiltonian

Hε
3 (r, s1) = ε3

2

∫ √
ghε(r

2 + ε3s21) − c1ε
2
(

(∂Xr)
2 − 2ε

3
2 (∂Xr)(∂Xs1) + ε3(∂Xs1)

2
)

+c2ε
2
(

r3 − ε
3
2 r2s1 − ε3rs21 + ε

9
2 s31

)

dX + o(ε5 ).

(5.13)
The equations stemming from the Hamiltonian (5.13) and the above symplectic
structure are

∂tr = −∂X

[√
ghεr + ε2(c1∂

2
Xr + 3

2c2r
2)

+ε2(−ε 3
2 c1∂

2
Xs1 − ε

3
2 c2rs1 − 1

2ε
3c2s

2
1)

]

− 1
4

∂xβ( X
ε )

hε

[

ε3/2
√
ghεs1 + ε2(c1(−∂2

Xr + ε3/2∂2
Xs1)

+c2(− 1
2r

2 − ε3/2rs1 + 3
2ε

3s21))
]

(5.14)

∂ts1 = ∂X

[√
ghεs1 + ε2(c1(−ε−

3
2 ∂2

Xr + ∂2
Xs1)

+c2(− 1
2ε

− 3
2 r2 − rs1 + 3

2ε
3
2 s21))

]

+ 1
4

∂xβ( X
ε )

hε

[

ε−
3
2

√
ghεr + ε

1
2 (c1(∂

2
Xr − ε

3
2 ∂2

Xs1)

+c2(
3
2r

2 − ε
3
2 rs1 − 1

2ε
3s21))

]

.

(5.15)

It is ambiguous at this point precisely which terms of the above system of partial
differential equations play a rôle in the asymptotic description of solutions in the limit
as ε tends to zero. The transformation (5.11) is not homogeneous in the perturbation
parameter ε, and because of fluctuations there are numerous cancellations that occur
in the remaining terms, not all of them having an influence on the asymptotic regime
(see Lemmas 3.2 and 3.5 for example). We will show in the subsequent analysis of
Section 5.3 that the asymptotic behavior of solutions of equations (5.14)(5.15) as ε→ 0
is governed by the following coupled system of equations, with an appropriate choice
of the parameters aKdV and b.

∂tr = − ∂X

[

cε(X)r + ε2(c1∂
2
Xr +

3

2
c2r

2)
]

+ ε2br (5.16)

∂ts1 =
√

gh∂Xs1 +
1

4

√

g

h
ε−3/2∂xβ(

X

ε
)r, (5.17)

where the regularized velocity is cε(X) =
√
gh(1 − ε

2hβ(X/ε) − ε2aKdV ). There are
two free parameters in this system of equations, namely, aKdV and b. They will be
determined by the consistency analysis of Section 5.3 as fixed points of the solution
process and the asymptotic analysis. In the end we find that

aKdV =
1

2h
aβ +

1

4h2
E(β2) +

3c1

8h3
√
gh

E((∂xβ)2) (5.18)

b = − 7c1
64h3

E((∂xβ)3). (5.19)
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5.2. Solution procedure for the random KdV equations

In this section we describe a reduction procedure for the system of equations (5.16)-
(5.17) that expresses the solution component r(X, t) in terms of a solution q(Y, τ)
of a deterministic equation similar to the KdV equation, under a random change of
variables (Y 7→ X(t, Y )) and a scaling τ = ε2t to the KdV time. The scattered
component s1(X, t) is an expression involving integrations along characteristics. The
solution depends upon the two parameters aKdV and b. We retain the regularized
form of the characteristic velocity cε(X), only taking the limit as ε→ 0 in expressions
for the solution.

Substitute r = ∂XR into (5.16); the resulting equation for R is

∂tR = −cε(X)∂XR− ε2(c1∂
3
XR +

3

2
c2(∂XR)2) + ε2bR. (5.20)

Transform to characteristic coordinates as in Section 3.3,

dX

dt
= cε(X) , X(0) = Y . (5.21)

We denote the flow byX = Φε
t (Y ), which is a regularized realization dependent change

of variables. Define Q(Y, τ) = R(X, t) so that Q satisfies

∂τQ = −c1∂3
Y Q− 3

2
c2(∂Y Q)2 + bQ . (5.22)

To solve the initial value problem, set q(Y, 0) = r(Y, 0) = r0(Y ), and solve the
deterministic equation

∂τq = −c1∂3
Y q − 3c2q∂Y q + bq (5.23)

for q(Y, τ) = ∂Y Q(Y, τ). If b = 0, equation (5.23) is the classical KdV equation.
Additionally, for each realization β(x, ω) the regularized ODE (5.21) defining the flow
has a solution given by X = X(t, Y ; ε, ω). With these two ingredients, the solution
r(X, t) of equation (5.16) is given by

r(X, t) = ∂XQ(Y (t,X ; ε, ω), ε2t) = ∂Y Q(Y (t,X ; ε, ω), ε2t)∂XY (t,X ; ε, ω) (5.24)

where ∂Y X(t, Y ; ε, ω) is the Jacobian of the flow (5.21) as described in section 3.3, and
∂XY (t,X ; ε, ω) is its inverse. This is an expression of the solution of the regularized
equation.

The equation (5.17) describes the scattered component of the KdV system above,
whose solution is expressed by integration of a forcing term which is given in terms of
r(X, t) along left-moving characteristics . Explicitly,

s1(X, t) = s01(X +
√
ght)

+ ε− 3
2

4

√

g
h

∫ t

0 ∂xβ
(X+

√
gh(t−t′)
ε

)

r(X +
√
gh(t− t′), t′) dt′

= s01(X +
√
ght) + ε− 3

2

4h

∫ X+
√

ght

X
∂xβ

(

θ
ε

)

r
(

θ, t+ X−θ√
gh

)

dθ.

(5.25)

The small parameter ε is still present in the regularization; to complete the description
we consider the limit of the expressions (5.24)(5.25) as ε tends to zero. The solution
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of (5.22) is smooth, and admits a Taylor expansion in its arguments. The inverse
Jacobian has an asymptotic expression as well. Therefore, one writes

r(X, t) = ∂XQ(Y (X, t;ω), ε2t) = ∂Y Q(Y (X, t;ω), t)∂XY (X, t;ω)

= q(X −
√
ght, ε2t)

(

1 + ε
2h (β(X

ε ) − β(X−
√

ght
ε )

)

+∂Xq(X −
√
ght, ε2t) ε2

2h

∫ X
ε

(X−
√

ght)/ε
β(t′) dt′ + · · ·

= q(X −√
ght, ε2t)

+∂X

(

q(X −
√
ght, ε2t)

(

ε2

2h

∫ X
ε

(X−
√

ght)/ε
β(t′) dt′

))

+ O(ε2).

(5.26)

Proposition 5.1. In the limit as ε tends to zero, the expression (5.26) for the solution
of (5.16) is asymptotic as a distribution to

r(X, t) = q(X −
√
ght, ε2t)

+
ε3/2σβ

2h
4
√
gh∂X

(

q(X −
√
ght, ε2t)Bω(X)(t)

)

+ o(ε3/2).
(5.27)

The expression for (5.25) for the solution s1 is asymptotic as a distribution to

s1(X, t) = s01(X +
√
ght)

− 1
4hσβ

∫ X+
√

ght

X

B(θ)
d2

dθ2
q(2θ −X −

√

ght, ε2(t+
X − θ√
gh

))dθ

+ 1
4hσβ

(

∂XB(X +
√
ght)q(X +

√
ght, 0) − ∂XB(X)q(X −√

ght, ε2t)
)

− 1
2hσβ

(

B(X +
√
ght)∂Xq(X +

√
ght, 0) −B(X)∂Xq(X −

√
ght, ε2t)

)

.

(5.28)

Proof. The expression for the limit of r1 follows directly from the application of Lemma
3.5. It is an expression which exhibits both randomness in its amplitude, as well as
in location as per the random characteristic coordinates in which it is expressed. For
the calculation for the limit of s1, we substitute the expression (5.26) in (5.25) :

s1(X, t) = s01(X +
√
ght)

+
ε−

3
2

4h

∫ X+
√

ght

X

∂xβ
(θ

ε

)

q
(

2θ −X −
√

ght, ε2(t+
X − θ√
gh

)
)

dθ

+
ε1/2

8h2

∫ X+
√

ght

X

∂xβ
(θ

ε

)

[

∫ θ
ε

2θ−X−
√

ght
ε

β(s)ds

×∂Xq
(

2θ −X −
√
ght, ε2(t+ X−θ√

gh
)
)

]

dθ

+
ε−

1
2

8h2

∫ X+
√

ght

X

(

∂x
β2

2

(θ

ε

)

− ∂xβ
(θ

ε

)

β
(2θ −X −

√
ght

ε

)

)

×q
(

2θ −X −
√
ght, ε2(t+ X−θ√

gh
)
)

dθ.

(5.29)

Except for the first term s01 that remains unchanged, all the terms appearing in the
limiting expression (5.28) come from the first integral in the expression of s1, where
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we performed several integrations by parts and use the fact that ∂tq(X, ε
2t) is O(ε2).

By more integration by parts, using the fact that ∂x = ε∂X we can show that the third
term (third and fourth lines) in the expression (5.29) is O(ε1/2). Let us turn to the last
term (fifth and sixth lines) of (5.29). For the term containing ∂xβ

2(θ/ε), integration
by parts will produce an additional ε and the term will eventually be of order O(ε1/2).

To estimate the term containing the product ∂xβ
(

θ
ε

)

β
(

2θ−X−
√

ght
ε

)

, the integration
by parts moves the derivative ∂x to all other terms. The only contribution that will

not produce an ε is when the derivative acts on β
(

2θ−X−
√

ght
ε

)

. For this term, we
write

∂xβ
(2θ −X −

√
ght

ε

)

= − ε√
gh
∂tβ

(2θ −X −
√
ght

ε

)

. (5.30)

After some simple manipulations, this term is again O(ε1/2).

5.3. Consistency of the resulting system of equations

In this subsection, we complete the cycle of a self-consistency analysis for equations
(5.16) and (5.17), out of which the two so-far undetermined constants aKdV and
b are selected. It is clear that not all terms in equations (5.14) and (5.15) are
of equal importance in the limit as ε → 0. Recall the criterion as presented in
section 3, which states that a term a(X, t; ε, ω) is of order O(εr) if for any space-time
test function ϕ(X, t) ∈ S the measures Pε induced by ε−r

∫

a(X, t; ε, ω)ϕ(X, t) dXdt
converge weakly to a limit P0 as ε tends to zero. In the present case, the analysis
consists of (i) the derivation of an expression for the solutions of (5.16)(5.17) which
are stated in (5.25) and (5.26), and depend upon the two parameters aKdV and b;
(ii) the examination of the terms in (5.14), including in particular those which do not
appear in (5.16) (respectively, all the terms in (5.15), in particular those that do not
appear in (5.17)). Using the expressions (5.25)(5.26) we then show that, except terms
which appear in (5.16) (respectively (5.17)), they are asymptotically of order o(ε2)
(respectively, of order o(1)). Both the system (5.16)(5.17) and the solution expressions
(5.25) (5.26) depend upon parameters aKdV and b. (iii) The demonstration that these
constants can be chosen so that there is a fixed point of this analysis. Namely, the
solution depending upon the constants aKdV and b has asymptotic behavior which
satisfies the equations (5.16)-(5.17) with the same choice of constants.

Let us denote the terms in (5.14) by

Ir = ε2∂X

(

− ε3/2c1∂
2
Xs1 − ε3/2c2rs1 − 1

2ε
3c2s

2
1

)

IIr = − 1
4

∂xβ( X
ε )

hε
ε3/2

√
ghεs1

IIIr = − 1
4

∂xβ( X
ε )

hε
ε2c1(−∂2

Xr + ε3/2∂2
Xs1)

IVr = − 1
4

∂xβ( X
ε )

hε
ε2c2(− 1

2r
2 − ε3/2rs1 + 3

2ε
3s21).

(5.31)



Long wave expansions for water waves over random topography 26

Similarly, we denote the terms in (5.15) by

Is = ε2∂X

(

c1(−ε−3/2∂2
Xr + ∂2

Xs1) + c2(− 1
2ε

−3/2r2 − rs1 + 3
2ε

3/2s21)
)

IIs = 1
4

∂xβ( X
ε )

hε
ε−3/2

√
ghεr

IIIs = 1
4

∂xβ( X
ε )

hε
ε1/2c1(∂

2
Xr − ε3/2∂2

Xs1)

IVs = 1
4

∂xβ( X
ε )

hε
ε1/2c2(

3
2r

2 − ε3/2rs1 − 1
2ε

3s21).

(5.32)

The purpose is to evaluate the asymptotic behavior of each of these terms as ε→ 0.

Lemma 5.2. The term IIr has the asymptotic behavior

IIr =
1

8h

√

g

h
ε2E(β2)∂Xr(X, t) + o(ε2). (5.33)

Lemma 5.3. The term IIs has the behavior

IIs =
ε−3/2

4

√

g

h
∂xβ(

X

ε
)r + o(1), (5.34)

and this expression has an asymptotic limit as ε→ 0 which is

1

4

√

g

h
σβ∂

2
XB(X,ω)q(X −

√

ght, τ). (5.35)

Lemma 5.4.

IIIr =
3c1
8h2

ε2E((∂xβ)2)∂Xr −
7c1
64h3

ε2E((∂xβ)3)r + o(ε2), (5.36)

IIIs = ε−3/2IIIr = O(ε1/2). (5.37)

Lemma 5.5. The remaining terms have the following asymptotic behavior

Ir = o(ε2) , IVr = o(ε2) (5.38)

and
Is = o(1) , IVs = o(1). (5.39)

Lemma 5.6. Finally the linear term −∂X(
√
ghεr) in the equation (5.16) has the

asymptotic behavior

−∂X(
√

ghεr) = −
√

gh∂X

[(

1 − ε

2h
β(
X

ε
) − ε2

2h
(aβ +

1

4h
E(β2))

)

r
]

+ o(ε2). (5.40)

The proofs of these lemmas are the content of Section 5.4. Using these asymptotic
results in system (5.14)(5.15), and retaining only the leading terms, it reduces to
(5.16)(5.17), with possibly different parameter values. When the parameters are
chosen appropriately, the asymptotic behavior of the equations matches that of the
solutions and the consistency procedure is closed.
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Theorem 5.7. The result of the consistency analysis is that the free parameters in
equations (5.16)(5.17) are

aKdV =
1

2h
aβ +

1

4h2
E(β2) +

3c1

8h3
√
gh

E((∂xβ)2), (5.41)

b = − 7c1
64h3

E((∂xβ)3). (5.42)

The parameter aKdV represents an adjustment at O(ε2) to the overall wavespeed,
while the sign of b governs the stability of solutions. In many cases, b vanishes.

Proposition 5.8. If the statistics of the ensemble (Ω,M,P) are reversible in x, then
b = 0.

By reversible, we mean that the inversion x → −x preserves the probability
measure P, implying that E((∂xβ)3) = 0.

5.4. Proofs of the above lemmas

In the analysis of the numerous integrals that go in to this consistency result, it is
convenient to use the bracket notation as shorthand for integrations;

〈f, g〉 :=

∫ ∫

R
2
f(X, t)g(X, t)dXdt .

Proof of Lemma 5.2: We first rewrite IIr as

IIr =

√
g

2
ε3/2∂X(

√

hε)s1 =

√
g

2
ε3/2∂X(

√

hε − E(
√

hε))s1. (5.43)

For any test function ϕ(X, t), we compute 〈ϕ, IIr〉 by substituting the expression (5.25)
for s1. This gives two terms, the first being

ε3/2

√
g

2
〈ϕ, ∂X (

√

hε − E(
√

hε))s
0
1〉 = −

√
g

2
ε3/2〈(

√

hε − E(
√

hε)), ∂X(s01ϕ)〉. (5.44)

Since
E(

√

hε) =
√
h+ O(ε2),

and because

√

hε −E(
√

hε) =
√
h
(

1− ε

2h
β(
X

ε
)−

√
h(1+O(ε2))

)

= − ε

2
√
h
β(
X

ε
)+O(ε2), (5.45)

the first term in 〈ϕ, IIr〉 is of order o(ε2). The second term in the expression of 〈ϕ, IIr〉
is

A :=

√
g

8h
〈ϕ, ∂X(

√

hε − E(
√

hε))

∫ X+
√

ght

X

∂xβ
(θ

ε

)

r
(

θ, t+
X − θ√
gh

)

dθ〉. (5.46)
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By integration by parts,

A = −
√

g

8h 〈∂Xϕ, (
√
hε − E(

√
hε))

∫ X+
√

ght

X
∂xβ

(

θ
ε

)

r
(

θ, t+ X−θ√
gh

)

dθ〉

−
√

g

8h 〈ϕ,
(√

hε − E(
√
hε)

)

1√
gh

∫ X+
√

ght

X
∂xβ

(

θ
ε

)

∂tr
(

θ, t+ X−θ√
gh

)

dθ〉

−
√

g

8h 〈ϕ,
(√

hε − E(
√
hε)

)

[

∂xβ(X+
√

ght
ε )r0(X +

√
ght) − ∂xβ(X

ε )r(X, t)
]

〉

= −
√

g

8h 〈(∂X − 1√
gh
∂t)ϕ, (

√
hε − E(

√
hε))

∫ X+
√

ght

X
∂xβ

(

θ
ε

)

r
(

θ, t+ X−θ√
gh

)

dθ〉

+
√

g

8h 〈ϕ,
(√

hε − E(
√
hε)

)

∂xβ(X
ε )r(X, t)〉

≡ A1 +A2.
(5.47)

Analyze the second term first,

A2 = − 1

32h

√

g

h
ε〈ϕ, ∂x(β2) r〉. (5.48)

Replacing r by its expression (5.26),

A2 = − 1
64h2

√

g
hε 〈ϕ, ∂x(β2)

[

ε2∂Xq
∫ X

ε
X−

√
ght

ε

β(t′) dt′

+εq
(

β(X
ε ) − β(X−

√
ght

ε )
)

]

〉 + O(ε
5
2 ).

(5.49)

By integration by parts, the first term of A2 is o(ε2). The second to the last term of
A2 can be rewritten as

− 1

64h2

√

g

h
ε2 〈ϕ, ∂x(

2

3
β3) q〉 (5.50)

which again by integration by parts contributes to o(ε2). The last term of A2

contributes only o(ε2) due to Lemma 3.7. Now turn to A1.

A1 = − 1
16h

√

g
hε

2〈(∂X − 1√
gh
∂t)ϕ, β(X

ε )
∫ X+

√
ght

X β
(

θ
ε

)

d
dθr

(

θ, t+ X−θ√
gh

)

dθ〉

+ 1
16h

√

g
hε

2〈(∂X − 1√
gh
∂t)ϕ, β(X

ε )
[

β(X+
√

ght
ε )r0(X +

√
ght) − β(X

ε )r(X, t)
]

〉

+o(ε2).
(5.51)

The first term in the second line of A1 is o(ε2) due to Lemma 3.7. The last term of
A1 is

− ε2

16h

√

g
hE(β2) 〈(∂X − 1√

gh
∂t)ϕ, q 〉 + o(ε2)

= ε2

8h

√

g
hE(β2) 〈ϕ, ∂Xq 〉 + o(ε2),

(5.52)

leading to a contribution to IIr of

ε2

8h

√

g

h
E(β2)∂Xr(X, t) + o(ε2). (5.53)

We now turn to the first term of A1 which we denote A3, and write it as

A3 = − ε2

16h

√

g
h〈(∂X − 1√

gh
∂t)ϕ, β(X

ε )
∫ X+

√
ght

X β
(

θ
ε

)

(∂X − 1√
gh
∂t)r(θ, t + X−θ√

gh

)

dθ〉.
(5.54)
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We express (∂X − 1√
gh
∂t)r in terms of q as

(∂X − 1√
gh
∂t)r(X, t) = 2∂Xq +

1

2h
q
(

∂xβ(
X

ε
) − ∂xβ(

X −
√
ght

ε
)
)

+ O(ε). (5.55)

Substitution of the above in A3 gives rise to three terms, (i), (ii), and (iii) which have
the form (after we have dropped the constants):

(i) = ε2〈(∂X − 1√
gh
∂t)ϕ, β(X

ε )
∫ X+

√
ght

X
β( θ

ε )∂Xq(2θ −X −√
ght, ε2(t+ X−θ√

gh
)
)

dθ〉

(ii) = ε2〈(∂X − 1√
gh
∂t)ϕ, β(X

ε )
∫ X+

√
ght

X
1
2∂x(β2( θ

ε ))q(2θ −X −
√
ght, ε2(t+ X−θ√

gh
)
)

dθ〉

(iii) = ε2〈(∂X − 1√
gh
∂t)ϕ,

β(X
ε )

∫ X+
√

ght

X β( θ
ε )∂xβ( 2θ−X−

√
ght

ε )q(2θ −X −
√
ght, ε2(t+ X−θ√

gh
))dθ〉.

The term (i) is of the form

〈
∫ X+

√
ght

X

β(
X

ε
)β(

θ

ε
)ψ(θ,X, t)dθ〉. (5.56)

Applying Lemma 3.8, we show that this term is O(ε3) , and thus does not contribute
to the limit of IIr. By integration by parts, the term (ii) is O(ε3). Finally, for term

(iii), we write ∂xβ( 2θ−X−
√

ght
ε ) = − ε√

gh
d
dtβ( 2θ−X−

√
ght

ε ), leading to (iii) being again

of order O(ε3).

Proof of Lemma 5.3: Using that hε = h− εβ(X
ε ) + O(ε2)

IIs =
1

4
∂xβ(

X

ε
)

√

g

h
ε−3/2

(

1 +
ε

2h
β(
X

ε
)
)

r. (5.57)

Since r(X, t) = q(X −√
ght, ε2t) + O(ε), the second term of (5.57) is

ε−1/2

16h

√

g

h
∂xβ

2(
X

ε
)
(

q(X −
√

ght, ε2t) + O(ε)
)

= O(ε1/2) (5.58)

due to Lemma 3.5. Compute the limit as ε → 0 of IIs. Substituting the expression
(5.26) for r, we get, for any test function ϕ(x, t)

〈ϕ, ε− 3
2

4

√

g
h∂xβ(X

ε )r〉 = ε− 3
2

4

√

g
h 〈ϕ, ∂xβ(X

ε )q〉

+ ε− 1
2

4

√

g
h 〈ϕ, ∂xβ(X

ε )∂Xq
ε
2h

∫ X
ε

X−
√

ght
ε

β(t′) dt′〉

+ ε− 3
2

4

√

g
h 〈ϕ, ∂xβ(X

ε ) ε
2hq

(

β(X
ε ) − β(X−

√
gh

ε )
)

〉.
(5.59)

The first term of the RHS of (5.59) tends to the first term of (5.35) by application of
Lemma 3.5. The second term of (5.59) is rewritten, by integration by parts, as

− ε
1
2

8h

√

g
h 〈∂X(ϕ∂Xq), ∂xβ(X

ε ) ε
2h

∫ X
ε

(X−
√

ght)/ε
β(t′) dt′〉 − ε

1
2

8h

√

g
h 〈ϕ, β2(X

ε )∂Xq〉

+ ε
1
2

8h

√

g
h 〈ϕ, β(X

ε )β(X−
√

ght
ε )∂Xq〉.
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Clearly all terms are o(1). The third term of (5.59) is rewritten

ε− 1
2

8h

√

g
h〈ϕ, ∂xβ

2(X
ε )q〉 + ε− 1

2

8h

√

g
h 〈ϕ, ∂xβ(X

ε )∂xβ(X−
√

ght
ε )q〉, (5.60)

which is o(1) by application of Lemmas 3.5 and 3.7.

Proof of Lemma 5.4: Decompose IIIr as the sum of the two terms

C =
c1
4
ε2
∂xβ(X

ε )

hε
∂2

Xr, (5.61)

D = −c1
4
ε2+3/2 ∂xβ(X

ε )

hε
∂2

Xs1. (5.62)

We compute ∂2
Xr from (5.26) and do not write terms that will clearly give a

contribution of o(ε2). We get

〈ϕ,C〉 =
c1
8h
ε2〈ϕ, ∂xβ

hε
(3∂Xq∂xβ + ε−1q∂2

xβ)〉 + o(ε2). (5.63)

The first term in (5.63), denoted C1 is

〈ϕ,C1〉 =
3c1
8h2

ε2E((∂xβ)2)〈ϕ, ∂Xq(X −
√

ght, ε2t)〉. (5.64)

We substitute ∂Xq in terms of r in C1 using (5.26) and we write

∂Xq = ∂Xr −
q

2h

(

∂xβ(
X

ε
) − ∂xβ(

X −
√
ght

ε
)
)

+ O(ε). (5.65)

We then conclude that C1 can be written as a functional of r as

〈ϕ,C1〉 =
3c1
8h2

ε2E((∂xβ)2)〈ϕ, ∂Xr〉. (5.66)

The second term in C, denoted by C2 is

〈ϕ,C2〉 =
c1

16h
ε〈ϕ, 1

hε
∂x(∂xβ)2q〉

=
c1

16h2
ε〈 ϕ, ∂x(∂xβ)2(1 +

ε

h
β) q〉 + O(ε3)

=
c1

16h3
〈ϕ, ε2∂x(∂xβ)2βq〉 + o(ε2)

= − c1
16h3

ε2E
(

(∂xβ)3
)

〈ϕ, q〉 + o(ε2). (5.67)

We conclude that the term C of IIIr is

C =
3c1
8h2

ε2E((∂xβ)2)∂Xr −
c1

16h3
ε2E

(

(∂xβ)3
)

r + o(ε2). (5.68)

We compute the term D of IIIr given in (5.62). For this, we compute ∂2
Xs1 in terms
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of r and get:

∂2
Xs1(X, t) = ∂2

Xs
0
1(X +

√
ght) + 1

4hε
− 3

2

[

1
ε∂

2
xβ(X+

√
ght

ε )r0(X +
√
ght)

+∂xβ(X+
√

ght
ε )∂Xr0(X +

√
ght) − 1

ε∂
2
xβ(X

ε )r(X, t) − ∂xβ(X
ε )∂Xr(X, t)

+ 1√
gh
∂xβ(X+

√
ght

ε )∂tr(X +
√
ght, 0) − 1√

gh
∂xβ(X

ε )∂tr(X, t)

+ 1
gh

∫ X+
√

ght

X ∂xβ
(

θ
ε

)

∂ttr
(

θ, t+ X−θ√
gh

)

dθ
]

.

(5.69)
All terms containing the process β or its derivatives at two different points X/ε and
(X +

√
ght)/ε will not contribute because of Lemma 3.7. The term containing s01 will

be o(ε2). The remaining terms that need attention are

c1ε2

16h 〈ϕ, ∂xβ
hε

[

ε−1∂2
xβ r(X, t) + ∂xβ(∂Xr(X, t) + 1√

gh
∂tr(X, t))

]

〉

− c1ε2

16
1

gh2 〈ϕ, ∂xβ
hε

∫ X+
√

ght

X
∂xβ

(

θ
ε

)

∂ttr
(

θ, t+ X−θ√
gh

)

dθ〉.
(5.70)

Noting that ∂Xr + 1√
gh
∂tr = O(ε), we have that

c1ε
2

16h
〈ϕ, ∂xβ

hε

(

∂xβ(∂Xr(X, t) +
1√
gh
∂tr(X, t))

)

〉 = O(ε3). (5.71)

The first term in (5.70) has the form

c1ε
32h2 〈ϕ, (1 + ε

hβ(X
ε ))∂x((∂xβ)2)r〉 + o(ε2)

= c1ε
32h2 〈ϕ, ∂x((∂xβ)2 − E((∂xβ)2))r〉 − c1ε2

32h3 〈ϕ,E((∂xβ)3)r〉 + o(ε2).
(5.72)

Integrating by parts the first term of (5.72), we get two contributions; when the
derivative acts on ϕ, it is o(ε2) using Lemma 3.5 and the fact that r = q + O(ε).
When the derivative acts on r, we get:

− c1ε
2

32h2
〈 ϕ,

(

(∂xβ)2 − E((∂xβ)2)
)

∂Xr 〉. (5.73)

Here we replace ∂Xr by its expression in terms of q:

∂Xr = ∂Xq +
1

2h
q
(

∂xβ(
X

ε
) − ∂xβ(

X −√
ght

ε
)
)

+ O(ε). (5.74)

The resulting contribution for (5.73) is

− c1ε
2

32h2
〈 ϕ,

(

(∂xβ)2 − E((∂xβ)2)
)

∂Xr 〉 = − c1ε
2

64h3
〈 ϕ,E((∂xβ)3)r 〉 + o(ε2). (5.75)

The last term to consider is the fourth term of (5.70) where the derivatives with respect
to t can be moved outside the integral using the fact that

∫ X+
√

ght

X ∂xβ
(

θ
ε

)

∂ttr
(

θ, t+ X−θ√
gh

)

dθ = ∂tt

∫ X+
√

ght

X ∂xβ
(

θ
ε

)

r
(

θ, t+ X−θ√
gh

)

dθ

−
√
gh∂xβ(X+

√
ght

ε )∂tr(X +
√
ght, 0) − gh∂xβ(X+

√
ght

ε )∂Xr(X +
√
ght, 0)

− gh
ε ∂xxβ(X+

√
ght

ε )r(X +
√
ght, 0).

(5.76)
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Using Lemma 3.7 again,

− c1ε2

16
1

gh2 〈ϕ, ∂xβ
hε

∫ X+
√

ght

X ∂xβ
(

θ
ε

)

∂ttr
(

θ, t+ X−θ√
gh

)

dθ〉

= − c1ε2

16
1

gh2 〈∂ttϕ,
∂xβ
hε

∫ X+
√

ght

X ∂xβ
(

θ
ε

)

r
(

θ, t+ X−θ√
gh

)

dθ〉 + o(ε2).

(5.77)

Using the derivative in the first factor of ∂xβ appearing in the above expression and
integrating by parts leads to the appearance of an additional ε, making the expression
O(ε3). We have obtained that

D = −3c1ε
2

64h3
E((∂xβ)3)r + o(ε2). (5.78)

Adding the expression for C and D , we have shown that (5.36) describes the
asymptotic behavior of IIIr.

Proof of Lemma 5.5: Following the criterion of Section 3, these terms are integrated
against test functions ϕ , and derivatives can be moved to ϕ by integration by parts.

Proof of Lemma 5.6. The regularized depth hε is defined as hε(X) = h−εβ(X
ε )− ε2aβ .

Thus the regularized linear wave speed is

√

ghε =
√

gh
(

1 − ε

2h
β − ε2

aβ

2h
− ε2

β2

8h2

)

+ o(ε2). (5.79)

The term 〈ϕ, ∂X (β2r)〉 is calculated as

〈ϕ, ∂X (β2r)〉 = 〈ϕ,E(β2)∂Xr〉 − 〈∂Xϕ, (β
2 − E(β2))r〉. (5.80)

Using that r = q + O(ε), we get that the second term in (5.80) is O(
√
ε).

6. Remarks on the expectation of solutions

It is normal to calculate E(r(X, t, ω)) = p(X, t) as a basic prediction of the solution
r(X, t, ω) itself. We remark that r(X, t, ω) is a realization dependent function where
the randomness manifests itself on the same level as dispersive and nonlinear effects.
In the paper [21] on apparent diffusion, the authors present an analysis of the
function p(X, t) in the case of the linear water wave problem with bottom given by
{y = −h +

√
εβ(X/ε)}. In the fully nonlinear regime of the present paper, diffusion

is weaker, and occurs only on time scales larger than those of O(1) in KdV time τ , as
the following calculation shows.

In the sense of weak limits of probability measures, as ε→ 0,

r(X, t) = q(Y, τ), (6.1)

where

Y = X −
√

ght+
ε3/2

2h
(gh)1/4σβBω(t) + ε2aKdV t, and τ = ε2t. (6.2)
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Compute the expectation of the main component of the solution r :

E(r(X, t)) =

∫ ∞

−∞
q(X −

√

ght+
ε3/2

2h
σβ(gh)1/4u+ ε2aKdV t, τ)dµBω(t)(u)

=
1

σβ

√
2πt

∫ ∞

−∞
q(X −

√

ght+
ε

3
2

2h
σβ(gh)

1
4u+ ε2aKdV t, τ)e

− u2

2tσβ
2

du.

(6.3)

Assuming that maxτ |q(., τ)|L1 <∞, we have for fixed t,

max
X

E(r(X, t)) ≤ max
X′

1

σβ

√
2πt

∫ ∞

−∞
|q(X ′ +

ε
3
2

2h
σβ(gh)

1
4 u, τ)|du

≤ 2hε−
3
2

σβ

√
2πt

(gh)−
1
4

∫ ∞

−∞
|q(v, τ)|dv. (6.4)

This time decay of order ε−3/2t−1/2 = (ετ)−1/2 shows that the diffusion coefficient
is of order O(ε), meaning that diffusion effects occur at an order higher that the one
considered for the derivation of the KdV equation. To observe diffusion created by
random effect at the order of the relevant terms for the KdV would require a scaling
for the bottom variations of the form −h +

√
εβ(x, ω), which is a ‘rougher’ bottom

that the one considered in this paper. This is the natural scaling that was considered
in the linear analysis of [21]. However, such a hypothesis also affects the nonlinear
and dispersive nature of solutions and indeed it will introduce additional terms in
the nonlinear coupled system of equations for (r, s) that would have to be taken into
account. This is beyond the scope of the present paper and is planned as the focus of
a subsequent study.
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