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1. The PAT direct problem 

➡  The increase in the temperature of the tissue causes the tissue to expand in volume, 
however slightly.


➡  This mechanical expansion produces an acoustic wave that propagates outward in all 
directions from the sight of energy absorption at the velocity of sound in biologic 
tissue, approximately 1.5 mm per microsecond.


 
The term “photoacoustic” applies to this phenomenon when the stimulating radiation is 
optical, while “thermoacoustic” is the more general term and refers to all radiating 
sources, including optical.

➡ Biologic tissue is irradiated by an 
energy source that is absorbed by 
the body. The source of energy is 
non-specific, but typically consists 
of visible light, near infrared, radio 
waves or microwaves.


➡  The absorbed energy is converted 
to heat, w h ic h ra i s e s t he 
temperature of the t issue, 
typically by less than 0.001 
degree Celsius.
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http://en.wikipedia.org/wiki/Acoustic_wave
http://en.wikipedia.org/wiki/Visible_light
http://en.wikipedia.org/wiki/Near_infrared
http://en.wikipedia.org/wiki/Radio_waves
http://en.wikipedia.org/wiki/Microwaves
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Combine the  advantages of non 
invasive techniques 

➡ Optics = contrast, sensitivity : 

functional and quantitative 
information 


➡ Acoustics = high resolution  
thanks to the small acoustic 
wave   diffusion  


Morphological and functional 
information with the same 
device 

Clinical image showing breast tumor: 
(a) mammography, (b) ultrasonic and 
(c) photoacoustic images. High 
contrast of the PA image implies 
advanced angiogenesis indicative of a 
malignant tumor 
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Thermoacoustic images 
of biologic tissue (lamb 
k i d n e y ) ( C , D ) i n 
compar i so n to MRI 
images of the same 
kidney (A,B).



1.2. Experimental device (LMA- Fresnel Institute Marseille) 

!



Source : Anabela Da Silva 
(Fresnel Institute)  



Rotations of the sample are performed : the red curve corresponds to 
0°and so on. At 41 µs we get the optical fiber signal since  all signals are 
superposed. At 28.7 µs we observe a more important signal due to the 
fictitious tumor in the phantom.  We may estimate the distance between 
the tumor and the lightened edge (red curve) : (4.09-2.87). 10-5 . 1540 = 
0.018788 m (sound speed 1540 ms-1). The measured value is 18.27 mm. 
Others signals are due to interfaces. 



1.1 Modeling optical effect

EM wave propagation through biological tissues: Visible wavelength range 
(PAT):


 Biological tissues are not transparent to visible light: 

o There is a strong absorption, except in the red and near infrared regions;

o Even though one chooses to study the tissue in the latter wavelength 
range, the light undergo strong scattering. The physical problem then 
reduces to the modelling of light propagation in absorbing and 
scattering media.


The Radiation Transfer Equation (RTE) allows for modelling in a general setting 
(mesoscopic scale) the propagation of the luminance L(r,t,s) [expressed in 
W.m-2.sr -1], representing the power measured at a position r, at a time t, in 
the direction of observation s, in a diffusive medium.
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Under the assumptions that the studied media 


o are far more scattering than absorbing (µs(r) >>µa(r)), and


o thick compared to the mean free path,


assumptions which are quite reasonable in many cases,  the RTE reduces to:

✓  µa absorption coefficient : this coefficient shows a good contrast between different kinds 
of soft tissues (healthy or not, etc.).  Note that µa=0 outside Ω.  

µa ∈ [µamin, µamax], µamin>0.


✓  D : diffusion coefficient                      where µs is the reduced scattering coefficient 
with µs∈ [µsmin, µsmax], µsmin>0.  

µs:=(1-g) µs', with µs’ the scattering coefficient and g is the anisotropy factor (g=0 
outside Ω.)  In general, µa << µs, so that     

D = [3(µa + µs)
�1]

D ⇡ (3µs)
�1
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where the   fluence  rate I  is the mean value of the luminance 
intensity L  
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⌫

@I

@t
(t, x) + µa(x)I(t, x)� div(DrI)(t, x) = S(t, x), (t, x) 2 [0, T ]⇥ ⌦

I(0, x) = 0, x 2 ⌦,
(2.1)

where ⌫ is the speed of light, S is the incident light source, µa is the absorption

coe�cient, D is the di↵usion coe�cient, and T > 0 is the duration of the acquisition
process.

Here, ⌦ stands for the part of the body where the di↵usion approximation is
relevant. Usually, this domain does not include the tissues next to the surface of the
body, since the photons first have a quasi ballistic behavior, which is not consistent
with the di↵usion approximation. Yet, the scatter sites of the early propagation
act as isotropic sources for the di↵usion equation (see Figure 2). As a consequence,
when the incident light comes from a source point (optical fiber) located at the
surface of the body, we can assume that the di↵usion approximation holds in the
entire body, provided that the source term S in equation (2.1) is correctly chosen.
Indeed, in the set up of Figure 2, if the real source S

real

has an amplitude S0

real

and
is located at x = 0, we can define S with an amplitude S0 = aS0

real

and located at
a depth of 1

µ0
t
, where a and µ0

t are, respectively, the transport albedo and the total

interaction coe�cient

16. Although they are not precisely known, a model based on
reasonable values of these two quantities (for the first layers of the skin) should be
precise enough for our purpose.

From now on, we make the assumption that the di↵usion approximation holds in
the entire body, which means that ⌦ stands now for the body. In order to complete
this light transport model, we need to find appropriate boundary conditions for
Equation (2.1).

Following 22, we start from the Robin condition

I(t, x) = AD
@I

@⌫
(t, x), a.e.(t, x) 2 [0, T ]⇥ @⌦,

where A is related to the internal reflection and can be deduced from the Fres-
nel reflection coe�cients and ⌫ denotes the outward pointing normal vector. This
condition expresses that no photon current goes back into the body from the exter-
nal medium, and can be satisfied with null Dirichlet conditions on an extrapolated
boundary at 2AD from @⌦ (as in Figure 2)16. We will still denote by ⌦ this enlarged
set so that the boundary condition writes

I(t, x) = 0, a.e. (t, x) 2 [0, T ]⇥ @⌦,

The fluence I is now assumed to vanish outside ⌦.

2.2. Pressure wave

Photoacoustic tomography is a mixed medical imaging technique, meaning that the
out-coming signal is not of the same kind as the incoming energy. This is due to

‣ ν  is the light speed  

‣ S is the   source 

‣ D is the diffusion coefficient 

‣ μa is the absorption coefficient 

I =

Z

B(0,1)
L(r, t, s) ds
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𝛀   is the part of the object where the diffusion approximation is 
relevant. Usually, the tissues close to the surface are not included. 
However, we may use the approximation in the whole oject if the 
source is chosen in a appropriate way. Then the usual Robin condition 
is replaced by a Dirichlet boundary condition exending the domain  𝛀

Boundary conditions

12
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1.2 Modeling thermal and acoustic effects 

‣ T is the temperature 

‣ p0 is the pressure 

‣ α pressure  coefficient expansion 

‣ K thermal conductivity

‣ ρ density 

‣ 𝛾  specific heat ratio 

‣ vs  is the sound speed  

@

@t

✓
T � � � 1

�↵
p0

◆
� K

⇢CP
�T =

H

⇢CP

H = µaI
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Thermal conductivity  K set to 0 ⇒  𝛾  =  1    

Time scale for launching a sound wave may be far shorter than that for 
thermal conduction : Zero thermal conduction assumption

@

@t

✓
T � � � 1

�↵
p0

◆
� K

⇢CP
�T =

H

⇢CP

@T

@t
=

µaI

⇢CP

@2p0
@t2

� div
�
v2srp0

�
=

µa

⇢CP

@I

@t
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Final pression equation (acoustic wave)
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Fig. 2. The incident light is scattered at di↵erent sites along the x axis.

the thermo-acoustic e↵ect

19,30: the incident light is absorbed by the tissue, and the
resulting thermal expansion generates a pressure wave p0 governed by the system

8
><

>:

@2p0

@t2
(t, x)� div(v2srp0)(t, x) = 1

⌦

(x)�(x)µa(x)
@I

@t
(t, x), (t, x) 2 [0, T ]⇥ B,

p0(0, x) =
@p0

@t
(0, x) = 0, x 2 B

where the notation 1
⌦

stands for the characteristic function of the domain ⌦, defined
for almost every x 2 B by

1
⌦

(x) =

⇢
1 if x 2 ⌦
0 otherwise.

Here, the Grueneisen coe�cient �, coupling the energy absorption to the ther-
mal expansion, is assumed to be known. So is the speed of sound vs, satisfy-
ing vs 2 [vmin

s , vmax

s ], with vmin

s > 0.
The domain B is the place where the wave propagates. Obviously, it includes ⌦

and it has to be bounded in view of numerical simulations. The ball B is chosen
large enough in such a way that p0 vanishes on @B during the recording process. The
size of B depends consequently on the location of the recording equipment and the

B

‣ vs  is the sound speed 

‣     is the indicatrix function of 𝛀

‣  𝜞 is the Grüneisen coefficient

‣ μa  is the absorption coefficient

‣      is a large ball
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Fig. 2. The incident light is scattered at di↵erent sites along the x axis.

the thermo-acoustic e↵ect

19,30: the incident light is absorbed by the tissue, and the
resulting thermal expansion generates a pressure wave p0 governed by the system

8
><

>:

@2p0

@t2
(t, x)� div(v2srp0)(t, x) = 1

⌦

(x)�(x)µa(x)
@I

@t
(t, x), (t, x) 2 [0, T ]⇥ B,

p0(0, x) =
@p0

@t
(0, x) = 0, x 2 B

where the notation 1
⌦

stands for the characteristic function of the domain ⌦, defined
for almost every x 2 B by

1
⌦

(x) =

⇢
1 if x 2 ⌦
0 otherwise.

Here, the Grueneisen coe�cient �, coupling the energy absorption to the ther-
mal expansion, is assumed to be known. So is the speed of sound vs, satisfy-
ing vs 2 [vmin

s , vmax

s ], with vmin

s > 0.
The domain B is the place where the wave propagates. Obviously, it includes ⌦

and it has to be bounded in view of numerical simulations. The ball B is chosen
large enough in such a way that p0 vanishes on @B during the recording process. The
size of B depends consequently on the location of the recording equipment and the
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duration T of the acquisition. In other words, the reflected wave coming from @B
doesn’t have time to reach the acquisition equipment before time T .

Without any loss of generality, and without loss of information, it is more con-
venient to work with the new state p defined by

p(t, x) =

Z t

0

p0(s, x)ds.

This latter satisfies
8
>>>><

>>>>:

@2p

@t2
(t, x)� div(v2srp)(t, x) = 1

⌦

(x)�(x)µa(x)I(t, x), (t, x) 2 [0, T ]⇥ B,

p(t, x) = 0, (t, x) 2 [0, T ]⇥ @B,

p(0, x) =
@p

@t
(0, x) = 0, x 2 B.

2.3. The direct problem

The e↵ectiveness of photoacoustic tomography relies on the relation between in-
homogeneities of the biological tissues and variations of the coe�cients µa and D.
Depending on the frequency range of the illumination (usually in the red or near
infrared region), the gray level mapping of the absorptivity can achieve useful func-
tional and structural imaging through, for instance, quantification of oxygen satu-
ration or hemoglobin content26,33.

These considerations suggest to define µ := (µa, D) as the control variable
that we want to identify. Let µmin

a < µmax

a and Dmin < Dmax denote positive real
numbers. The minimal (natural) assumptions on µa and D are

µa 2 [µmin

a , µmax

a ] and D 2 [Dmin, Dmax] a.e. in B, (2.2)

so that these maps lie in L1(B).
We recall that ⌦ and B are two bounded open sets of Rd (d � 2), with C1-

boundaries, satisfying ⌦ ⇢⇢ B. The set ⌦ being the (extrapolated) body, we may
assume that µa and D are known on B \ ⌦.

Introduce the set Q and its boundary ⌃ defined by

Q = (0, T )⇥ ⌦ and ⌃ = (0, T )⇥ @⌦.

Since there are two variables to reconstruct, we might need at least two sets
of data. This idea has been explored in a slightly di↵erent context in 9. Following
this work, we assume that the experiment is repeated with di↵erent light sources,
denoted by (Sk)1ks with s � 2 and each Sk in L1(Q).

Provided that the frequency of the sources Sk doesn’t change, the coe�cients µa

and D remain the same. However, the fluence rate I and the acoustic signal p may
change with k. Then, we may define Ik and pk, for k 2 {1, . . . , s} as the solutions
of the two state equations



1.3  The full direct problem 
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According to Leibniz rule, this latter satisfies

8
>>>><

>>>>:

@2p

@t2
(t, x)� div(v2srp)(t, x) = 1

⌦

(x)�(x)µa(x)I(t, x), (t, x) 2 [0, T ]⇥ B,

p(t, x) = 0, (t, x) 2 [0, T ]⇥ @B,

p(0, x) =
@p

@t
(0, x) = 0, x 2 B.

2.3. The direct problem

The e↵ectiveness of photoacoustic tomography relies on the relation between in-
homogeneities of the biological tissues and variations of the coe�cients µa and D.
Depending on the frequency range of the illumination (usually in the red or near
infrared region), the gray level mapping of the absorptivity can achieve useful func-
tional and structural imaging through, for instance, quantification of oxygen satu-
ration or hemoglobin content32,40.

These considerations suggest to define µ := (µa, D) as the control variable
that we want to identify. Let µmin

a < µmax

a and Dmin < Dmax denote positive real
numbers. The minimal (natural) assumptions on µa and D are

µa 2 [µmin

a , µmax

a ] and D 2 [Dmin, Dmax] a.e. in B, (2.2)

so that these maps lie in L1(B). We recall that ⌦ and B are two bounded open
sets of Rd (d � 2), with C1-boundaries, satisfying ⌦ ⇢ B. The set ⌦ being the
(extrapolated) body, we may assume that µa and D are known on B \ ⌦.

Introduce the set Q and its boundary ⌃ defined by

Q = (0, T )⇥ ⌦ and ⌃ = (0, T )⇥ @⌦.

Since there are two variables to reconstruct, we might need at least two sets of
data. This idea has been explored in a slightly di↵erent context in 14. Following
this work, we assume that the experiment is repeated with di↵erent light sources,
denoted by (Sk)1ks with s � 2 and each Sk in L1(Q).

Provided that the frequency of the sources Sk doesn’t change, the coe�cients µa

and D remain the same. However, the fluence rate I and the acoustic signal p may
change with k. Then, we may define Ik and pk, for k 2 {1, . . . , s} as the solutions
of the two state equations

8
>>>><

>>>>:

@2p

@t2
(t, x)� div(v2sr)(t, x) = 1

⌦

(x)�(x)µa(x)I(t, x), (t, x) 2 (0, T )⇥ B,

p(t, x) = 0, (t, x) 2 (0, T )⇥ @B,

p(0, x) =
@p

@t
(0, x) = 0, x 2 B,

(1.3)

and
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8
>>>><

>>>>:

1

⌫

@I

@t
(t, x) + µa(x)I(t, x)� div(DrI)(t, x) = S(t, x), (t, x) 2 (0, T )⇥ ⌦,

I(0, x) = 0, x 2 ⌦,
I(t, x) = 0 (t, x) 2 B\⌦
I(t, x) = 0, (t, x) 2 ⌃.

(1.4)

The photoacoustic tomography model is completely described by the coupling
of equations (1.4) and (1.3), in which Ik is extended to 0 on B \⌦. We first mention
that this system is well-posed, in other terms that (1.3)-(1.4) has a unique solution
under standard assumptions. The following theorem is standard and its proof can
be found for example in 20.

Theorem 1.1. Let ⌦ be a bounded connected open set of Rd
with C1

boundary,

� 2 L1(B), vs 2 L1(B, [vmin

s , vmax

s ]). Assume that the assumptions (2.2) hold.

Then,

(1) Equation (1.4) has a unique solution Ik such that

Ik 2 C0(0, T ;L2(⌦)) \ L2(0, T ;H1

0

(⌦)),
@Ik
@t

2 L2(0, T ;H�1(⌦)).

(2) Equation (1.3) has a unique solution pk such that

pk 2 C(0, T ;H1

0

(B)) \ C1(0, T ;L2(B)).

Remark 1.1. Even if they are reasonable in this setting, the assumptions made
earlier on the variables µa, D and vs are not sharp, neither are the regularity results
stated here. Nevertheless, our purpose does not require stronger statements.

The last step to complete the description of the direct model is the formalization
of data acquisition. In PAT, ultrasonic transducers are placed in a neighborhood of
the body and record the resulting pressure wave p0 for all times in [0, T ]. Let us
denote by ! the set of the locations of these transducers, which can be either finite,
discrete or (ideally) some hypersurface of Rd. Assume for example that

! =
N[

i=1

{xi},

where each point xi belongs to B\⌦. Unfortunately, this choice of acquisition set
do not allow to apply some classic techniques of optimal control, such as Stokes’
theorem. To overcome this di�culty, we propose to thicken the set ! into a union
of non empty open sets of Rd. Namely, we replace in the sequel the set ! by the set
!" defined for " > 0 by

!" =
[

x2!

B(x, "), (1.5)
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Fig. 2. The dots are !, the blue (light gray) balls are !".

where B(x, ") denotes the open ball with radius " centered at x. It is illustrated
on Figure 2.

We thus make the assumption that the pressure p0k is known on [0, T ]⇥!". Still

defining the state variables pk as

Z t

0

p0k(t, x) dx, the PAT data are given by

{pk(t, x)|1  k  s, t 2 [0, T ], x 2 !"} .

Actually, we don’t have access to such an information (we only record p0k on !).
Nevertheless, once the space discretization step is set to �x, " can be set to �x

2

, so
that the thickened data have the same discrete counterpart as the actual data.

Next Section is devoted to the sensitivity analysis of these state equations.

µ := (µa, D), µa 2 [µmin

a , µmax

a ], D 2 [Dmin, Dmax], S 2 L1(Q)

1.4. Sensitivity analysis

In this section, we will omit the indices k when we refer to pk and Ik, the solutions
of (1.3)-(1.4), for the sake of clarity. Define Uad, the set of admissible controls
µ = (µa, D) as

Uad =
�
(µa, D)2 [L1(B)]2 | µa 2 [µmin

a , µmax
a ] andD 2 [Dmin, Dmax] a.e. inB

 
. (1.6)

Using Theorem 1.1, we define the maps

I : Uad �! C0(0, T ;L2(⌦)) \ L2(0, T ;H1

0

(⌦))

(µa, D) 7�! I(µa, D)
(1.7)

Diapo 1616
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8
>>>><

>>>>:

@2pk
@t2

(t, x)� div(v2srpk)(t, x) = 1
⌦

(x)�(x)µa(x)Ik(t, x), (t, x) 2 (0, T )⇥ B,

pk(t, x) = 0, (t, x) 2 (0, T )⇥ @B,

pk(0, x) =
@pk
@t

(0, x) = 0, x 2 B,
(2.3)

and

8
>>>><

>>>>:

1

⌫

@Ik
@t

(t, x) + µa(x)Ik(t, x)� div(DrIk)(t, x) = Sk(t, x), (t, x) 2 (0, T )⇥ ⌦,

Ik(0, x) = 0, x 2 ⌦,
Ik(t, x) = 0 x 2 B\⌦
Ik(t, x) = 0, (t, x) 2 ⌃.

(2.4)
The photoacoustic tomography model is completely described by the coupling

of equations (2.4) and (2.3), in which Ik is extended to 0 on B \⌦. We first mention
that this system is well-posed, in other terms that (2.3)-(2.4) has a unique solution
under standard assumptions. The following theorem is standard and its proof can
be found for example in 15.

Theorem 2.1. Let ⌦ be a bounded connected open set of Rd
with C1

boundary,

� 2 L1(B), vs 2 L1(B, [vmin

s , vmax

s ]). Assume that the assumptions (2.2) hold.

Then,

(1) Equation (2.4) has a unique solution Ik such that

Ik 2 C0(0, T ;L2(⌦)) \ L2(0, T ;H1

0

(⌦)),
@Ik
@t

2 L2(0, T ;H�1(⌦)).

(2) Equation (2.3) has a unique solution pk such that

pk 2 C(0, T ;H1

0

(B)) \ C1(0, T ;L2(B)).

Remark 2.1. Even if they are reasonable in this setting, the assumptions made
earlier on the variables µa, D and vs are not sharp, neither are the regularity results
stated here. Nevertheless, our purpose does not require stronger statements.

The last step to complete the description of the direct model is the formalization
of data acquisition. In PAT, ultrasonic transducers are placed in a neighborhood of
the body and record the resulting pressure wave p0 for all times in [0, T ]. Let us
denote by ! the set of the locations of these transducers, which can be either finite,
discrete or (ideally) some hypersurface of Rd. Assume for example that

! =
N[

i=1

{xi},

Case  of many sources  Sk
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duration T of the acquisition. In other words, the reflected wave coming from @B
doesn’t have time to reach the acquisition equipment before time T .

Without any loss of generality, and without loss of information, it is more con-
venient to work with the new state p defined by

p(t, x) =

Z t

0

p0(s, x)ds.

This latter satisfies
8
>>>><

>>>>:

@2p

@t2
(t, x)� div(v2srp)(t, x) = 1

⌦

(x)�(x)µa(x)I(t, x), (t, x) 2 [0, T ]⇥ B,

p(t, x) = 0, (t, x) 2 [0, T ]⇥ @B,

p(0, x) =
@p

@t
(0, x) = 0, x 2 B.

2.3. The direct problem

The e↵ectiveness of photoacoustic tomography relies on the relation between in-
homogeneities of the biological tissues and variations of the coe�cients µa and D.
Depending on the frequency range of the illumination (usually in the red or near
infrared region), the gray level mapping of the absorptivity can achieve useful func-
tional and structural imaging through, for instance, quantification of oxygen satu-
ration or hemoglobin content26,33.

These considerations suggest to define µ := (µa, D) as the control variable
that we want to identify. Let µmin

a < µmax

a and Dmin < Dmax denote positive real
numbers. The minimal (natural) assumptions on µa and D are

µa 2 [µmin

a , µmax

a ] and D 2 [Dmin, Dmax] a.e. in B, (2.2)

so that these maps lie in L1(B).
We recall that ⌦ and B are two bounded open sets of Rd (d � 2), with C1-

boundaries, satisfying ⌦ ⇢⇢ B. The set ⌦ being the (extrapolated) body, we may
assume that µa and D are known on B \ ⌦.

Introduce the set Q and its boundary ⌃ defined by

Q = (0, T )⇥ ⌦ and ⌃ = (0, T )⇥ @⌦.

Since there are two variables to reconstruct, we might need at least two sets
of data. This idea has been explored in a slightly di↵erent context in 9. Following
this work, we assume that the experiment is repeated with di↵erent light sources,
denoted by (Sk)1ks with s � 2 and each Sk in L1(Q).

Provided that the frequency of the sources Sk doesn’t change, the coe�cients µa

and D remain the same. However, the fluence rate I and the acoustic signal p may
change with k. Then, we may define Ik and pk, for k 2 {1, . . . , s} as the solutions
of the two state equations
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>>>>:

1

⌫

@I

@t
(t, x) + µa(x)I(t, x)� div(DrI)(t, x) = S(t, x), (t, x) 2 (0, T )⇥ ⌦,

I(0, x) = 0, x 2 ⌦,
I(t, x) = 0 (t, x) 2 B\⌦
I(t, x) = 0, (t, x) 2 ⌃.

(1.4)

The photoacoustic tomography model is completely described by the coupling
of equations (1.4) and (1.3), in which Ik is extended to 0 on B \⌦. We first mention
that this system is well-posed, in other terms that (1.3)-(1.4) has a unique solution
under standard assumptions. The following theorem is standard and its proof can
be found for example in 20.

Theorem 1.1. Let ⌦ be a bounded connected open set of Rd
with C1

boundary,

� 2 L1(B), vs 2 L1(B, [vmin

s , vmax

s ]). Assume that the assumptions (2.2) hold.

Then,

(1) Equation (1.4) has a unique solution Ik such that

Ik 2 C0(0, T ;L2(⌦)) \ L2(0, T ;H1

0

(⌦)),
@Ik
@t

2 L2(0, T ;H�1(⌦)).

(2) Equation (1.3) has a unique solution pk such that

pk 2 C(0, T ;H1

0

(B)) \ C1(0, T ;L2(B)).

Remark 1.1. Even if they are reasonable in this setting, the assumptions made
earlier on the variables µa, D and vs are not sharp, neither are the regularity results
stated here. Nevertheless, our purpose does not require stronger statements.

The last step to complete the description of the direct model is the formalization
of data acquisition. In PAT, ultrasonic transducers are placed in a neighborhood of
the body and record the resulting pressure wave p0 for all times in [0, T ]. Let us
denote by ! the set of the locations of these transducers, which can be either finite,
discrete or (ideally) some hypersurface of Rd. Assume for example that

! =
N[

i=1

{xi},

where each point xi belongs to B\⌦. Unfortunately, this choice of acquisition set
do not allow to apply some classic techniques of optimal control, such as Stokes’
theorem. To overcome this di�culty, we propose to thicken the set ! into a union
of non empty open sets of Rd. Namely, we replace in the sequel the set ! by the set
!" defined for " > 0 by

!" =
[

x2!

B(x, "), (1.5)

The speed of light is very large so that the light effect may be 
considered as instantaneous.  So, assume

I = I

0(x)�0(t)

July 17, 2015 15:42 WSPC/INSTRUCTION FILE copieX

6 M. Bergounioux, X. Bonnefond, T. Haberkorn & Y. Privat

8
<

:

µa(x)I
0(x)� div(DrI0)(x) = S(x), x 2 ⌦,

I0((x) = 0 x 2 B\⌦
I0((x) = 0, on @⌦

(1.4)

The photoacoustic tomography model is completely described by the coupling
of equations (1.4) and (1.3), in which Ik is extended to 0 on B \⌦. We first mention
that this system is well-posed, in other terms that (1.3)-(1.4) has a unique solution
under standard assumptions. The following theorem is standard and its proof can
be found for example in 20.

Theorem 1.1. Let ⌦ be a bounded connected open set of Rd
with C1

boundary,

� 2 L1(B), vs 2 L1(B, [vmin

s , vmax

s ]). Assume that the assumptions (2.2) hold.

Then,

(1) Equation (1.4) has a unique solution Ik such that

Ik 2 C0(0, T ;L2(⌦)) \ L2(0, T ;H1

0

(⌦)),
@Ik
@t

2 L2(0, T ;H�1(⌦)).

(2) Equation (1.3) has a unique solution pk such that

pk 2 C(0, T ;H1

0

(B)) \ C1(0, T ;L2(B)).

Remark 1.1. Even if they are reasonable in this setting, the assumptions made
earlier on the variables µa, D and vs are not sharp, neither are the regularity results
stated here. Nevertheless, our purpose does not require stronger statements.

The last step to complete the description of the direct model is the formalization
of data acquisition. In PAT, ultrasonic transducers are placed in a neighborhood of
the body and record the resulting pressure wave p0 for all times in [0, T ]. Let us
denote by ! the set of the locations of these transducers, which can be either finite,
discrete or (ideally) some hypersurface of Rd. Assume for example that

! =
N[

i=1

{xi},

where each point xi belongs to B\⌦. Unfortunately, this choice of acquisition set
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where B(x, ") denotes the open ball with radius " centered at x. It is illustrated
on Figure 2.
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8
>>>><

>>>>:

@

2
p

@t

2
� div(v2rp) = u0(x)

@j

@t

in (0, T )⇥ B

p(0, ·) = @p

@t

(0, ·) =0 in B

p = 0 in (0, T )⇥ @B,

u0  (= H) is the energy deposition function 

8
>>>><

>>>>:

@2p

@t2
� div(v2rp) = Cv2µa1⌦

@I

@t
in (0, T )⇥ B

p(0, ·) = @p

@t
(0, ·) =0 in B

p = 0 in (0, T )⇥ @B,

This is the usual simplified model for TAT (RF source)
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Now, the absorbed electromagnetic power r(x, t) is related to the absorption coefficient ψ = ψ(x)
by the equation r(x, τ) = I(x, τ)ψ(x), in which I(x, τ) is the radiation intensity. Finally, due to
the high magnitude of the speed of light, one can assume that I(x, t) takes the separated form
I(x) = J(x)j(t). Equation (4) then reads

(

∂2

∂t2
− c2∆

)

p =
βc2Jψ

cp

∂j

∂t
.

The function f(x) :=
βc2(x)J(x)ψ(x)

cp
is referred to as the energy deposition function. Finally, we

can assume that the pressure increment, together with its time derivative, is zero at the initial
time (right before illumination). We are then led to consider the following system:

(TAT )

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂2

∂t2
(x, t)− c2(x)∆p(x, t) = f(x)

∂j

∂t
(t),

p(x, 0) = 0,

∂p

∂t
(x, 0) = 0.

To simplify the problem, it is usually assumed that the sound speed c is constant (normalized to
1). An alternative formulation of the above linear direct problem is an integral formulation. Recall
that the direct problem consists in determining p(x, t) for all (x, t) ∈ R3 ×R+ from the knowledge
of f and j. It is well known (see e.g. [19]) that the solution is given by

p(x, t) =

(

dj

dt
!
(

tRf
)

)

(x, t). (5)

Here, the convolution operation ! is defined by

(

g ! h
)

(x, t) =

∫ t

0
g(t− s)h(x, s) ds

and the operator R, referred to as the spherical Radon transform, is defined by

(Rf)(x, t) :=
1

4π

∫

S2

f(x+ tω) dω.

In TAT, one is rather confronted to the inverse problem:

Recover the energy deposition function f(x) from measurements of p(x, t) for x over a
surface S outside the illuminated fluid.

We now show that additional approximations give rise to an integral formulation of the latter
inverse problem, under the assumption that the intensity profile j(t) is nearly a Dirac centered at
the origin. Assuming that j has support in [0, T ] (see Figure 2 (left)), one may write, for every
smooth function h(x, t),

d

dt

(

j ! h
)

(x, t) =

(

dj

dt
! h

)

(x, t).

If j ≈ δ, then
dj

dt
! h ≈

dh

dt
, so that

(

dj

dt
!
(

tRf
)

)

(x, t) ≈
d

dt
(tRf). Consequently, Equation (5)

can be approximated by

p(x, t) =
d

dt
(tRf). (6)

We see that, after integrating and dividing by t, measurements of p(x, t) on S ×R+ give access to
approximate values of (Rf)(x, t) on the same domain.
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Figure 2: Physical principle of Thermo-acoustic Tomography: intensity time profile of the EM
pulse (left) and scheme showing the pressure wave generation and propagation (right).

However, this integral formulation is purely linear and cannot be genelarized to non-linear
models. From the numerical point of view, the integral formulation leads to the so-called filtered
back-projection method.

3 Variational techniques for the inverse problem

The integral formulation of the problem leads to a linear inverse problem of standard form, that
is:

Recover f from an approximate knowledge g of Rf , where R is a compact linear
operator (modelling the data acquisition process) from a norm space into another.

In TAT, R is the spherical Radon transform. As already mentionned, there are several methods
to solve the inverse problem using exact or approximate formulas to estimate the inverse of R.

A classical approach to solve (ill posed) inverse problems is the least-square formulation using
a regularization process (a penalization term for example) to get the well posedness. The general
formulation stands

min ∥L(g)−A(f)∥+ αH(f) ,

where g is the data and f the function to recover. We describe A, L operators thereafter and H
is a regularizing operator. The functional framework has to be made precise as well. In the sequel
we focus on two approaches:

• The first one is the regularization by mollification which is inspired by the integral formulation
: here A = R (the spherical Radon transform) and the operator L is a linear operator that
provides a preprocessing transformation for the data g.

We call regularization by mollification a set of reconstruction methodologies deriving from
the idea that the original ill-posed problem of reconstructing the unknown object f should
be replaced by that of recovering a smooth version of it. In this approach, the target object
is no longer f but φ ∗ f , where φ is a convolution kernel and ∗ denotes the convolution
operation.

This idea has been developed in two different ways, independently. One of them, which
bears the name of approximate inverse, was introduced by Louis and Maaß [26, 27, 28]. In
the context of TAT, it was developed by Altmeier, Schuster and Scherzer [19]. The other
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An optimal control problem in photoacoustic tomography 3

Radon transform.
In all generality, the study of such problems leads to a coupled system, consti-

tuted by one equation driving the behavior of the acoustic pressure and another
one depending on the nature of the problem (PAT or TAT). In many works on the
TAT problem, some physical approximations permit to rewrite the direct problem
as a single partial di↵erential equation (see the references mentioned below). More
precisely, it writes: given the sound speed c(x) and measured data yobs on S ⇢ Rn

(n = 2, 3), find the initial value uo(x) of the pressure y(t, x) where y is the solution
to the problem

8
>>>>>>><

>>>>>>>:

@2y

@t2
(t, x)� c2(x)�y(t, x) = 0, (t, x) 2 [0, T ]⇥ Rn,

y(0, x) = uo(x), x 2 Rn,

@y

@t
(0, x) = 0, x 2 Rn,
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We also mention 15 where a coupled system is introduced to model the TAT problem.
The initial value uo is the TAT image. This problem is known to be highly ill-posed.
In the sequel, we will propose a relevant model for the PAT problem.

In most reconstruction methods in PAT (or TAT), additional assumptions are
performed such as conditions on the support of the function to be recovered and/or
the observation surface, or a constant sound speed. Notice that a nice overview of
the state of the art for the thermo-acoustic inverse problem has been done in 26.

One currently has a choice between three main types of reconstruction proce-
dures for closed observation surfaces, namely the filtered backprojection formulae,
eigenfunction expansion methods and time reversal methods.

• The filtered backprojection approach is the most popular17,22,23,24,29,41.
However, it is not clear that backprojection-type formulae could be written
for any closed observation surface S. In 23, inversion formulae are provided
assuming odd dimensions and constant sound speed. Indeed, in this case the
Huygens’ principle holds. Roughly speaking, it asserts that for any initial
source with a compact support, the wave leaves any bounded domain in a
finite time. This is no longer true if the spatial dimension is even and/or the
sound speed is not constant. All known formulae of filtered backprojection
type assume constant sound speed and thus are not available for acousti-
cally inhomogeneous media. In addition, the only closed bounded surface
S for which such formulae are known is a sphere. Let us also mention 34

where a reconstruction algorithm in this vein (using the Radon transform)
is proposed.

• Expansion series are useful in the case where the Huyghens principle is
valid. This approach was extended to the constant speed and arbitrary
closed observation surface and modified by the use of the eigenfunctions of

Usual methods

OK if S is closed and infinite (great) number of measures
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Radon transform.
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the Laplacian with Dirichlet conditions on S10. It theoretically works for
any closed surface and for variable sound speeds38. One can also refer to
28,36.

• The time reversal method (see for example 25,26) can be used to approximate
the initial pressure when the sound speed inside the object is variable. It
works for arbitrary geometries of the closed observation surface S. Ammari
et al.

3,5 have performed sharp analysis of these problems both from the
modeling and numerical point of view.

We also mention as possible additional techniques those based on finite elements
discretization42.

In this paper we propose to investigate the PAT model and the related inverse
problem with an alternative formulation. We use an optimal control approach. In-
deed, in our model the function to be recovered is the control function while the
pressure is the state function which satisfies a wave equation.

This article is organized as follows: Section 2 is devoted to the description of
the mathematical model driving the behaviors of the light transport and the wave
pressure. It leads to the introduction of a coupled system of two partial di↵erential
equations, respectively of hyperbolic and parabolic type, in Section 2.3. The inverse
problem mentioned above is interpreted as an optimal control problem in Section
3.1 and an existence result is provided. Section 3.2 is devoted to the di↵erentiability
analysis of the cost function and the computation of its gradient. Necessary first
order optimality conditions are then derived in Section 3.3. We end the paper by
giving leads for numerical experimentation.

In the sequel, if E ⇢ Rn Ls(E) is the space of measurable functions f on E such
that

R
E
|f |s < +1, s 2 [1,+1), L1(E) is the space of essentially bounded func-

tions on E and L1(E, [a, b]) is the set of essentially bounded functions with values
in [a, b] (where a, b 2 L1(E)). For s, q 2 N[ {+1}, W s,q(E) is the Sobolev-space
of Lq function s times di↵erentiable in the distributional sense whose derivatives
are in Lq(E) (see 1,13). Note that W 0,2(E) = L2(E) and W 1,2(E) = H1(E). The
space of functions in H1(E) whose trace vanishes on @E is denoted H1

0

(E). For
s, q 2 N [ {+1}, the set of Cs functionals from [0, T ] to E is denoted Cs(0, T ;E).
The space of functions of bounded variation is denoted BV (E) (see 13).

2. The Photo Acoustic model

2.1. Light transport

In the PAT set-up, the tissues to investigate are illuminated with a laser source
in the near infrared frequency range. As they propagate in the body, the parti-
cles are subject to absorption and di↵usion, and are governed by the Boltzmann
equation11. However, this equation requires the knowledge (in the direct problem)
or the reconstruction (in the inverse problem) of a phase function representing the
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where each point xi belongs to B\⌦. Unfortunately, this choice of acquisition set
do not allow to apply some classic techniques of optimal control, such as Stokes’
theorem. To overcome this di�culty, we propose to thicken the set ! into a union
of non empty open sets of Rd. Namely, we replace in the sequel the set ! by the set
!" defined for " > 0 by

!" =
[

x2!

B(x, "), (2.5)

where B(x, ") denotes the open ball with radius " centered at x. It is illustrated
on Figure 3.

Fig. 3. The dots are !, the blue (light gray) balls are !".

We thus make the assumption that the pressure p0k is known on [0, T ]⇥!". Still

defining the state variables pk as

Z t

0

p0k(t, x) dx, the PAT data are given by

{pk(t, x)|1  k  s, t 2 [0, T ], x 2 !"} .

Actually, we don’t have access to such an information (we only record p0k on !).
Nevertheless, once the space discretization step is set to �x, " can be set to �x

2

, so
that the thickened data have the same discrete counterpart as the actual data.

Next Section is devoted to the sensitivity analysis of these state equations.

2.4. Sensitivity analysis

In this section, we will omit the indices k when we refer to pk and Ik, the solutions
of (2.3)-(2.4), for the sake of clarity. Define Uad, the set of admissible controls
µ = (µa, D) as

Uad =
�
(µa, D)2 [L1(B)]2 | µa 2 [µmin

a , µmax
a ] andD 2 [Dmin, Dmax] a.e. inB

 
. (2.6)

1.5  Sensitivity analysis 
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We thus make the assumption that the pressure p0k is known on [0, T ]⇥!". Still

defining the state variables pk as

Z t

0

p0k(t, x) dx, the PAT data are given by

{pk(t, x)|1  k  s, t 2 [0, T ], x 2 !"} .

Actually, we don’t have access to such an information (we only record p0k on !).
Nevertheless, once the space discretization step is set to �x, " can be set to �x

2

, so
that the thickened data have the same discrete counterpart as the actual data.

Next Section is devoted to the sensitivity analysis of these state equations.

µ := (µa, D), µa 2 [µmin

a , µmax

a ], D 2 [Dmin, Dmax], S 2 L1(Q)

1.4. Sensitivity analysis

In this section, we will omit the indices k when we refer to pk and Ik, the solutions
of (1.3)-(1.4), for the sake of clarity. Define Uad, the set of admissible controls
µ = (µa, D) as

Uad =
�
µ = (µa, D)2 [L1(B)]2 | µa 2 [µmin

a , µmax
a ] andD 2 [Dmin, Dmax] a.e. inB

 
.

Using Theorem 1.1, we define the maps

I : Uad �! C0(0, T ;L2(⌦)) \ L2(0, T ;H1

0

(⌦))

µ 7�! I[µ]
(1.6)

where I[µ] satisfies (1.4) and

p : Uad �! C0(0, T ;H1

0

(B))
µ 7�! p[µ],

(1.7)
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1.4. Sensitivity analysis

In this section, we will omit the indices k when we refer to pk and Ik, the solutions
of (1.3)-(1.4), for the sake of clarity. Define Uad, the set of admissible controls
µ = (µa, D) as

Uad =
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µ = (µa, D)2 [L1(B)]2 | µa 2 [µmin
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a ] andD 2 [Dmin, Dmax] a.e. inB

 
.

Using Theorem 1.1, we define the maps

I : Uad �! C0(0, T ;L2(⌦)) \ L2(0, T ;H1

0

(⌦))

µ 7�! I[µ]
(1.6)

where I[µ] satisfies (1.4) and

p : Uad �! C0(0, T ;H1

0

(B))
µ 7�! p[µ],

(1.7)

The operator p is continuous from Uad endowed with the weak

(for µa) - strong (for D) L2
topology to L2

(B) (with the strong topology).
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µ := (µa, D), µa 2 [µmin

a , µmax

a ], D 2 [Dmin, Dmax], S 2 L1(Q)

1.4. Sensitivity analysis

In this section, we will omit the indices k when we refer to pk and Ik, the solutions
of (??)-(??), for the sake of clarity. Define Uad, the set of admissible controls µ =
(µa, D) as

Uad =
�
µ = (µa, D)2 [L1(B)]2 | µa 2 [µmin

a , µmax
a ] andD 2 [Dmin, Dmax] a.e. inB

 
.

Using Theorem ??, we define the maps

I : Uad �! C0(0, T ;L2(⌦)) \ L2(0, T ;H1

0

(⌦))

µ 7�! I[µ]
(1.6)

where I[µ] satisfies (??) and

p : Uad �! C0(0, T ;H1

0

(B))
µ 7�! p[µ]

(1.7)

24
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Recover µa and D  from measurements of p(x, t) for x over a 
surface ω outside the illuminated fluid. 

This is an ill posed problem


2. The inverse problem  

Formulation as an optimal control problem 
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! instead of !", for the sake of simplicity. The asymptotic behavior of the solutions
as " ! 0 will be investigated in a forthcoming work.

Physically, it seems relevant to minimize a least square functional with respect
to µa and D. We choose to add a penalization term in order to ensure the existence
of an optimal control.

Let us define the functional J by

J(µ) = F(µ) + f(µ), (2.1)

for every µ = (µa, D) 2 Uad, where f(µ) stands for a regularizing term and F is a
least square functional with respect to the measured pressure data. We set

Fk(µ) =
1

2

Z

[0,T ]⇥!

(pk(t, x)� pobsk (t, x))2dx dt

where pobsk is the measured pressure (observed state) on ! when the source signal
is Sk. Fix ↵ � 0 and � � 0. Assuming that we perform s experiments, we define

F(µ) =
sX

k=1

Fk(µ) =
sX

k=1

1

2

Z

[0,T ]⇥!

(pk(t, x)� pobsk (t, x))2dx dt

and

f(µ) =

8
<

:
↵

Z

⌦

(Bµa)
2(x)dx+ �TV (D) if D 2 BV (⌦)

+1 otherwise.

Here BV (⌦) denotes the space of functions of bounded variation2,13, TV (D) stands
for the total variation of D, and B : L2(⌦) ! L2(⌦) is an invertible linear operator.

Remark 2.1. The operator B is usually the L2(⌦) identity operator. However one
can decide to focus on specific frequencies of µa and B can be chosen as a pass-band
filter. Following16, B can be chosen as a mollifier operator for example.

The choice of the total variation as a regularization term is a technical choice
that fits the physical meaning. Indeed, strong L2 convergence of the D part of
minimizing sequences is needed to use Theorem 1.2 and obtain an existence result.
The TV term seems to be the weakest one that provides such a convergence while
respecting the physical requirements since discontinuities (and contours) are pre-
served.

The original inverse problem to perform parameter identification can be viewed
as the following optimal control problem

(P) min
µ2Uad

J(µ),

where the admissible set Uad is defined by (1.6).
Notice that the values of the coe�cients µa and D on B \ ⌦ are already known

and that Uad is a closed convex subset of L2(B)⇥ L2(B).
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Fig. 2. The dots are !, the blue (light gray) balls are !".

We thus make the assumption that the pressure p0k is known on [0, T ]⇥!". Still

defining the state variables pk as

Z t
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p0k(t, x) dx, the PAT data are given by
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Actually, we don’t have access to such an information (we only record p0k on !).
Nevertheless, once the space discretization step is set to �x, " can be set to �x

2

, so
that the thickened data have the same discrete counterpart as the actual data.

Next Section is devoted to the sensitivity analysis of these state equations.

µ := (µa, D), µa 2 [µmin

a , µmax

a ], D 2 [Dmin, Dmax], S 2 L1(Q)
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a ] andD 2 [Dmin, Dmax] a.e. inB

 
.

Using Theorem 1.1, we define the maps

I : Uad �! C0(0, T ;L2(⌦)) \ L2(0, T ;H1

0

(⌦))

(µa, D) 7�! I(µa, D)
(1.6)

where I(µa, D) satisfies (1.4) and
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0

(B))
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2.1 The cost functional
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! instead of !", for the sake of simplicity. The asymptotic behavior of the solutions
as " ! 0 will be investigated in a forthcoming work.

Physically, it seems relevant to minimize a least square functional with respect
to µa and D. We choose to add a penalization term in order to ensure the existence
of an optimal control.

Let us define the functional J by

J(µ) = F(µ) + f(µ), (2.1)

for every µ = (µa, D) 2 Uad, where f(µ) stands for a regularizing term and F is a
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Fk(µ) =
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and

f(µ) =
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⌦

(Bµa)
2(x)dx+ �TV (D) if D 2 BV (⌦)

+1 otherwise.

Here BV (⌦) denotes the space of functions of bounded variation2,13, TV (D) stands
for the total variation of D, and B : L2(⌦) ! L2(⌦) is an invertible linear operator.

Remark 2.1. The operator B is usually the L2(⌦) identity operator. However one
can decide to focus on specific frequencies of µa and B can be chosen as a pass-band
filter. Following16, B can be chosen as a mollifier operator for example.

The choice of the total variation as a regularization term is a technical choice
that fits the physical meaning. Indeed, strong L2 convergence of the D part of
minimizing sequences is needed to use Theorem 1.2 and obtain an existence result.
The TV term seems to be the weakest one that provides such a convergence while
respecting the physical requirements since discontinuities (and contours) are pre-
served.

The original inverse problem to perform parameter identification can be viewed
as the following optimal control problem

(P) min
µ2Uad

J(µ),

where the admissible set Uad is defined by (1.6).
Notice that the values of the coe�cients µa and D on B \ ⌦ are already known

and that Uad is a closed convex subset of L2(B)⇥ L2(B).

 ω is not closed, and codimension 1 or 2 

• Fitting data term  
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8
>>>><

>>>>:

@2pk
@t2

(t, x)� div(v2srpk)(t, x) = 1
⌦

(x)�(x)µa(x)Ik(t, x), (t, x) 2 (0, T )⇥ B,

pk(t, x) = 0, (t, x) 2 (0, T )⇥ @B,

pk(0, x) =
@pk
@t

(0, x) = 0, x 2 B,
(2.3)

and

8
>>>><

>>>>:

1

⌫

@Ik
@t

(t, x) + µa(x)Ik(t, x)� div(DrIk)(t, x) = Sk(t, x), (t, x) 2 (0, T )⇥ ⌦,

Ik(0, x) = 0, x 2 ⌦,
Ik(t, x) = 0 x 2 B\⌦
Ik(t, x) = 0, (t, x) 2 ⌃.

(2.4)
The photoacoustic tomography model is completely described by the coupling

of equations (2.4) and (2.3), in which Ik is extended to 0 on B \⌦. We first mention
that this system is well-posed, in other terms that (2.3)-(2.4) has a unique solution
under standard assumptions. The following theorem is standard and its proof can
be found for example in 15.

Theorem 2.1. Let ⌦ be a bounded connected open set of Rd
with C1

boundary,

� 2 L1(B), vs 2 L1(B, [vmin

s , vmax

s ]). Assume that the assumptions (2.2) hold.

Then,

(1) Equation (2.4) has a unique solution Ik such that

Ik 2 C0(0, T ;L2(⌦)) \ L2(0, T ;H1

0

(⌦)),
@Ik
@t

2 L2(0, T ;H�1(⌦)).

(2) Equation (2.3) has a unique solution pk such that

pk 2 C(0, T ;H1

0

(B)) \ C1(0, T ;L2(B)).

Remark 2.1. Even if they are reasonable in this setting, the assumptions made
earlier on the variables µa, D and vs are not sharp, neither are the regularity results
stated here. Nevertheless, our purpose does not require stronger statements.

The last step to complete the description of the direct model is the formalization
of data acquisition. In PAT, ultrasonic transducers are placed in a neighborhood of
the body and record the resulting pressure wave p0 for all times in [0, T ]. Let us
denote by ! the set of the locations of these transducers, which can be either finite,
discrete or (ideally) some hypersurface of Rd. Assume for example that

! =
N[

i=1

{xi},
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where each point xi belongs to B\⌦. Unfortunately, this choice of acquisition set
do not allow to apply some classic techniques of optimal control, such as Stokes’
theorem. To overcome this di�culty, we propose to thicken the set ! into a union
of non empty open sets of Rd. Namely, we replace in the sequel the set ! by the set
!" defined for " > 0 by

!" =
[

x2!

B(x, "), (2.5)

where B(x, ") denotes the open ball with radius " centered at x. It is illustrated
on Figure 3.

Fig. 3. The dots are !, the blue (light gray) balls are !".

We thus make the assumption that the pressure p0k is known on [0, T ]⇥!". Still

defining the state variables pk as

Z t

0

p0k(t, x) dx, the PAT data are given by

{pk(t, x)|1  k  s, t 2 [0, T ], x 2 !"} .

Actually, we don’t have access to such an information (we only record p0k on !).
Nevertheless, once the space discretization step is set to �x, " can be set to �x

2

, so
that the thickened data have the same discrete counterpart as the actual data.

Next Section is devoted to the sensitivity analysis of these state equations.

2.4. Sensitivity analysis

In this section, we will omit the indices k when we refer to pk and Ik, the solutions
of (2.3)-(2.4), for the sake of clarity. Define Uad, the set of admissible controls
µ = (µa, D) as

Uad =
�
(µa, D)2 [L1(B)]2 | µa 2 [µmin

a , µmax
a ] andD 2 [Dmin, Dmax] a.e. inB

 
. (2.6)
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Next Section is devoted to the sensitivity analysis of these state equations.

2.4. Sensitivity analysis

In this section, we will omit the indices k when we refer to pk and Ik, the solutions
of (2.3)-(2.4), for the sake of clarity. Define Uad, the set of admissible controls
µ = (µa, D) as

Uad =
�
(µa, D)2 [L1(B)]2 | µa 2 [µmin

a , µmax
a ] andD 2 [Dmin, Dmax] a.e. inB

 
. (2.6)

S
"

=
[

x2S
B(x, ")S
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! instead of !", for the sake of simplicity. The asymptotic behavior of the solutions
as " ! 0 will be investigated in a forthcoming work.

Physically, it seems relevant to minimize a least square functional with respect
to µa and D. We choose to add a penalization term in order to ensure the existence
of an optimal control.

Let us define the functional J by

J(µ) = F(µ) + f(µ), (2.1)

for every µ = (µa, D) 2 Uad, where f(µ) stands for a regularizing term and F is a
least square functional with respect to the measured pressure data. We set

F(µ) =
1

2

Z

[0,T ]⇥!

(p[µ](t, x)� pobs(t, x))2dx dt

where pobsk is the measured pressure (observed state) on ! when the source signal
is Sk. Fix ↵ � 0 and � � 0. Assuming that we perform s experiments, we define

F(µ) =
sX

k=1

Fk(µ) =
sX

k=1

1

2

Z

[0,T ]⇥!

(pk(t, x)� pobsk (t, x))2dx dt

and

f(µ) =

8
<

:
↵

Z

⌦

(Bµa)
2(x)dx+ �TV (D) if D 2 BV (⌦)

+1 otherwise.

Here BV (⌦) denotes the space of functions of bounded variation2,13, TV (D) stands
for the total variation of D, and B : L2(⌦) ! L2(⌦) is an invertible linear operator.

Remark 2.1. The operator B is usually the L2(⌦) identity operator. However one
can decide to focus on specific frequencies of µa and B can be chosen as a pass-band
filter. Following16, B can be chosen as a mollifier operator for example.

The choice of the total variation as a regularization term is a technical choice
that fits the physical meaning. Indeed, strong L2 convergence of the D part of
minimizing sequences is needed to use Theorem 1.2 and obtain an existence result.
The TV term seems to be the weakest one that provides such a convergence while
respecting the physical requirements since discontinuities (and contours) are pre-
served.

The original inverse problem to perform parameter identification can be viewed
as the following optimal control problem

(P) min
µ2Uad

J(µ),

where the admissible set Uad is defined by (??).
Notice that the values of the coe�cients µa and D on B \ ⌦ are already known

and that Uad is a closed convex subset of L2(B)⇥ L2(B).



27
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Theorem 2.1. Assume that ↵ � 0 and � > 0.
Then, Problem (P) has at least a solution µ̄ = (µ̄a, D̄).

Proof. Let (µn
a , D

n)n2N be a minimizing sequence. Since (µn
a)n2N is bounded

in L1(⌦) (and in L2(⌦)), it weakly converges (up to a subsequence) to some µ̄a

in L2(⌦) as n ! +1.
The sequence (Dn)n2N is bounded in L1 as well, so it is bounded in L1. From the
boundedness of (TV (Dn))n2N, we deduce that (Dn) is bounded in BV and weakly
converges up to a subsequence to some D̄ in BV (⌦) as n ! +1. The space BV (⌦)
being compactly embedded in L1(⌦), the sequence (Dn)n2N strongly converges to D̄
for the L1-topology. Since the sequence (Dn)n2N is uniformly bounded in L1(⌦),
we get the strong convergence of (Dn)n2N to D̄ for the L2-topology.

Using Theorem 1.2, we conclude that the sequence (pnk )n2N defined by pnk =
pk(µn

a , D
n) strongly converges (up to a subsequence) to p̄k = pk(µ̄a, D̄) in L2([0, T ]⇥

B), for every k 2 {1, . . . , s} as n ! +1. The lower semicontinuity of every Fk with
respect to the L2-convergence and the lower semicontinuity of f with respect to
the L1-convergence implies that the pair (µ̄a, D̄) is a solution of Problem (P).

Remark 2.2. We are not able to prove uniqueness by now. As already mentioned,
it seems necessary to get more that one data set, that is s � 2 14. Moreover, we
will have to assume ↵ > 0. Notice that, in 4,7, the authors get a unique solution by
reducing the model.

2.2. Computation of the cost functional derivative

In order to write the necessary first order optimality conditions for Problem (P), we
first compute the derivative of F with respect to the control variable µ = (µa, D).

Since F =
sX

k=1

Fk, it su�ces to compute the derivative of Fk. For the sake of clarity

and readability, we will omit the index k in the sequel.
In order to write the optimality conditions in the most simple way, let us notice

that L1(B) ⇢ L2(B) so that we can endow Uad with the usual hilbertian structure
of L2(B).

Let µ 2 Uad and ⇠ = (⇠µa , ⇠D) 2 L2(⌦) ⇥ L2(⌦) be an admissible perturbation
of µ. In the sequel, if µ 2 Uad 7! g(µ) is a Gâteaux-di↵erentiable functional at µ in
direction ⇠, we will indi↵erently denote by hdg(µ), ⇠i or ġ(µ) the Gâteaux derivative
of g at µ in direction ⇠, that is

ġ(µ) = hdg(µ), ⇠i = lim
t&0

g(µ+ t⇠)� g(µ)

t
.

A calculus of variation standard analysis permits to show, applying shrewdly the
implicit function theorem, that the functional F is di↵erentiable at µ in direction ⇠.

Idea of the proof


• choose a minimizing sequence


• a priori estimates and convergences


•  use the lower semi-continuity of the functional J


•        is closed
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! instead of !", for the sake of simplicity. The asymptotic behavior of the solutions
as " ! 0 will be investigated in a forthcoming work.

Physically, it seems relevant to minimize a least square functional with respect
to µa and D. We choose to add a penalization term in order to ensure the existence
of an optimal control.

Let us define the functional J by

J(µ) = F(µ) + f(µ), (2.1)

for every µ = (µa, D) 2 Uad, where f(µ) stands for a regularizing term and F is a
least square functional with respect to the measured pressure data. We set

F(µ) =
1

2

Z

[0,T ]⇥!

(p(t, x)� pobs(t, x))2dx dt

where pobsk is the measured pressure (observed state) on ! when the source signal
is Sk. Fix ↵ � 0 and � � 0. Assuming that we perform s experiments, we define

F(µ) =
sX

k=1

Fk(µ) =
sX

k=1

1

2

Z

[0,T ]⇥!

(pk(t, x)� pobsk (t, x))2dx dt

and

f(µ) =

8
<

:
↵

Z

⌦

(Bµa)
2(x)dx+ �TV (D) if D 2 BV (⌦)

+1 otherwise.

Here BV (⌦) denotes the space of functions of bounded variation2,13, TV (D) stands
for the total variation of D, and B : L2(⌦) ! L2(⌦) is an invertible linear operator.

Remark 2.1. The operator B is usually the L2(⌦) identity operator. However one
can decide to focus on specific frequencies of µa and B can be chosen as a pass-band
filter. Following16, B can be chosen as a mollifier operator for example.

The choice of the total variation as a regularization term is a technical choice
that fits the physical meaning. Indeed, strong L2 convergence of the D part of
minimizing sequences is needed to use Theorem 1.2 and obtain an existence result.
The TV term seems to be the weakest one that provides such a convergence while
respecting the physical requirements since discontinuities (and contours) are pre-
served.

The original inverse problem to perform parameter identification can be viewed
as the following optimal control problem

(P) min
µ2Uad

J(µ),

where the admissible set Uad is defined by (??).
Notice that the values of the coe�cients µa and D on B \ ⌦ are already known

and that Uad is a closed convex subset of L2(B)⇥ L2(B).

Uniqueness is an open problem (at least 2 measurements) 
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to µa and D. We choose to add a penalization term in order to ensure the existence
of an optimal control.

Let us define the functional J by

J(µ) = F(µ) + f(µ), (2.1)

for every µ = (µa, D) 2 Uad, where f(µ) stands for a regularizing term and F is a
least square functional with respect to the measured pressure data. We set
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1

2
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where pobsk is the measured pressure (observed state) on ! when the source signal
is Sk. Fix ↵ � 0 and � � 0. Assuming that we perform s experiments, we define

F(µ) =
sX

k=1

Fk(µ) =
sX

k=1

1

2

Z

[0,T ]⇥!

(pk(t, x)� pobsk (t, x))2dx dt

and

f(µ) =

8
<

:
↵

Z

⌦

(Bµa)
2(x)dx+ �TV (D) if D 2 BV (⌦)

+1 otherwise.

Here BV (⌦) denotes the space of functions of bounded variation2,13, TV (D) stands
for the total variation of D, and B : L2(⌦) ! L2(⌦) is an invertible linear operator.

Remark 2.1. The operator B is usually the L2(⌦) identity operator. However one
can decide to focus on specific frequencies of µa and B can be chosen as a pass-band
filter. Following16, B can be chosen as a mollifier operator for example.

The choice of the total variation as a regularization term is a technical choice
that fits the physical meaning. Indeed, strong L2 convergence of the D part of
minimizing sequences is needed to use Theorem 1.2 and obtain an existence result.
The TV term seems to be the weakest one that provides such a convergence while
respecting the physical requirements since discontinuities (and contours) are pre-
served.

The original inverse problem to perform parameter identification can be viewed
as the following optimal control problem

(P) min
µ2Uad

J(µ),

where the admissible set Uad is defined by (1.6).
Notice that the values of the coe�cients µa and D on B \ ⌦ are already known

and that Uad is a closed convex subset of L2(B)⇥ L2(B).

• Regularization term  
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and

f(µ) =

8
<

:
↵

Z

⌦

(Bµa)
2(x)dx+ �TV (D) if D 2 BV (⌦)

+1 otherwise.

Here BV (⌦) denotes the space of functions of bounded variation2,13, TV (D) stands
for the total variation of D, and B : L2(⌦) ! L2(⌦) is an invertible linear operator.

Remark 2.1. The operator B is usually the L2(⌦) identity operator. However one
can decide to focus on specific frequencies of µa and B can be chosen as a pass-band
filter. Following16, B can be chosen as a mollifier operator for example.

The choice of the total variation as a regularization term is a technical choice
that fits the physical meaning. Indeed, strong L2 convergence of the D part of
minimizing sequences is needed to use Theorem 1.2 and obtain an existence result.
The TV term seems to be the weakest one that provides such a convergence while
respecting the physical requirements since discontinuities (and contours) are pre-
served.

The original inverse problem to perform parameter identification can be viewed
as the following optimal control problem

(P) min
µ2Uad

J(µ),

where the admissible set Uad is defined by (??).
Notice that the values of the coe�cients µa and D on B \ ⌦ are already known

and that Uad is a closed convex subset of L2(B)⇥ L2(B).

B may a pass band filter or mollifier operator, or the identity. 

The TV term seems to be the weakest one that provides an 
existence result while respecting the physical  requirements 
since discontinuities (and contours) are preserved.  

28



2.3 « Basic » example : the classical TAT case

Set                                    and 
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the thermo-acoustic e↵ect

24,37: the incident light is absorbed by the tissue, and the
resulting thermal expansion generates a pressure wave p0 governed by the system

8
><

>:

@2p

@t2
(t, x)� div(v2srp)(t, x) = 1

⌦

(x)�(x)
@H

@t
(t, x), (t, x) 2 [0, T ]⇥ B,

p(0, x) =
@p

@t
(0, x) = 0, x 2 B

H = µaI

u(t, x) = 1
⌦

(x)�(x)H(t, x)

where the notation 1
⌦

stands for the characteristic function of the domain ⌦,
defined for almost every x 2 B by

1
⌦

(x) =

⇢
1 if x 2 ⌦
0 otherwise.

Here, the Grueneisen coe�cient �, coupling the energy absorption to the ther-
mal expansion, is assumed to be known. So is the speed of sound vs, satisfy-
ing vs 2 [vmin

s , vmax

s ], with vmin

s > 0.
The domain B is the place where the wave propagates. Obviously, it includes ⌦

and it has to be bounded in view of numerical simulations. The ball B is chosen
large enough in such a way that p0 vanishes on @B during the recording process. The
size of B depends consequently on the location of the recording equipment and the
duration T of the acquisition. In other words, the reflected wave coming from @B
doesn’t have time to reach the acquisition equipment before time T .

Remark 2.1. Actually, the source term of the wave equation should
be �(x)@

2T
@t2 (t, x), where T is solution of some heat equation

@T

@t
(t, x)�K�T (t, x) = µa(x)I(t, x),

(see 33 for example). Nevertheless, in most applications, the illumination is so short
that no thermal conduction can occur during the thermoacoustic coupling, so that
the constant K can be considered to vanish, leading to Equation (2.2). Most of
well known works on photoacoustic tomography make the further assumption that
the illumination approaches a Dirac pulse, so that the thermoacoustic coupling be-
comes instantaneous and that the fluence rate I does not depend on time anymore.
Yet, it is possible to achieve photoacoustic imaging with a continuous-wave laser
illlumination (see e.g. 31), though there is a loss of resolution. This is the reason
why we didn’t make the assumption of a laser pulse illumination. The e↵ect of the
thermal conduction should be discussed in a future work.
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Without any loss of generality, and without loss of information, it is more con-
venient to work with the new state p defined by

p(t, x) =

Z t

0

p0(s, x)ds.

According to Leibniz rule, this latter satisfies
8
>>>><

>>>>:

@2p

@t2
(t, x)� div(v2srp)(t, x) = 1

⌦

(x)�(x)µa(x)I(t, x), (t, x) 2 [0, T ]⇥ B,

p(t, x) = 0, (t, x) 2 [0, T ]⇥ @B,

p(0, x) =
@p

@t
(0, x) = 0, x 2 B.

2.3. The direct problem

The e↵ectiveness of photoacoustic tomography relies on the relation between in-
homogeneities of the biological tissues and variations of the coe�cients µa and D.
Depending on the frequency range of the illumination (usually in the red or near
infrared region), the gray level mapping of the absorptivity can achieve useful func-
tional and structural imaging through, for instance, quantification of oxygen satu-
ration or hemoglobin content32,40.

These considerations suggest to define µ := (µa, D) as the control variable
that we want to identify. Let µmin

a < µmax

a and Dmin < Dmax denote positive real
numbers. The minimal (natural) assumptions on µa and D are

µa 2 [µmin

a , µmax

a ] and D 2 [Dmin, Dmax] a.e. in B, (2.2)

so that these maps lie in L1(B). We recall that ⌦ and B are two bounded open
sets of Rd (d � 2), with C1-boundaries, satisfying ⌦ ⇢ B. The set ⌦ being the
(extrapolated) body, we may assume that µa and D are known on B \ ⌦.

Introduce the set Q and its boundary ⌃ defined by

Q = (0, T )⇥ ⌦ and ⌃ = (0, T )⇥ @⌦.

Since there are two variables to reconstruct, we might need at least two sets of
data. This idea has been explored in a slightly di↵erent context in 14. Following
this work, we assume that the experiment is repeated with di↵erent light sources,
denoted by (Sk)1ks with s � 2 and each Sk in L1(Q).

Provided that the frequency of the sources Sk doesn’t change, the coe�cients µa

and D remain the same. However, the fluence rate I and the acoustic signal p may
change with k. Then, we may define Ik and pk, for k 2 {1, . . . , s} as the solutions
of the two state equations

8
>>>><

>>>>:

@2p

@t2
(t, x)� div(v2sr)(t, x) = 1

⌦

(x)�(x)µa(x)I(x), (t, x) 2 (0, T )⇥ B,

p(t, x) = 0, (t, x) 2 (0, T )⇥ @B,

p(0, x) =
@p

@t
(0, x) = 0, x 2 B,

(1.3)
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the thermo-acoustic e↵ect

24,37: the incident light is absorbed by the tissue, and the
resulting thermal expansion generates a pressure wave p0 governed by the system

8
><

>:

@2p0

@t2
(t, x)� div(v2srp0)(t, x) = 1

⌦

(x)�(x)
@H

@t
(t, x), (t, x) 2 [0, T ]⇥ B,

p0(0, x) =
@p0

@t
(0, x) = 0, x 2 B

H = µaI

u(t, x) = 1
⌦

(x)�(x)H(t, x)

where the notation 1
⌦

stands for the characteristic function of the domain ⌦,
defined for almost every x 2 B by

1
⌦

(x) =

⇢
1 if x 2 ⌦
0 otherwise.

Here, the Grueneisen coe�cient �, coupling the energy absorption to the ther-
mal expansion, is assumed to be known. So is the speed of sound vs, satisfy-
ing vs 2 [vmin

s , vmax

s ], with vmin

s > 0.
The domain B is the place where the wave propagates. Obviously, it includes ⌦

and it has to be bounded in view of numerical simulations. The ball B is chosen
large enough in such a way that p0 vanishes on @B during the recording process. The
size of B depends consequently on the location of the recording equipment and the
duration T of the acquisition. In other words, the reflected wave coming from @B
doesn’t have time to reach the acquisition equipment before time T .

Remark 2.1. Actually, the source term of the wave equation should
be �(x)@

2T
@t2 (t, x), where T is solution of some heat equation

@T

@t
(t, x)�K�T (t, x) = µa(x)I(t, x),

(see 33 for example). Nevertheless, in most applications, the illumination is so short
that no thermal conduction can occur during the thermoacoustic coupling, so that
the constant K can be considered to vanish, leading to Equation (2.2). Most of
well known works on photoacoustic tomography make the further assumption that
the illumination approaches a Dirac pulse, so that the thermoacoustic coupling be-
comes instantaneous and that the fluence rate I does not depend on time anymore.
Yet, it is possible to achieve photoacoustic imaging with a continuous-wave laser
illlumination (see e.g. 31), though there is a loss of resolution. This is the reason
why we didn’t make the assumption of a laser pulse illumination. The e↵ect of the
thermal conduction should be discussed in a future work.
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3. Numerical experiments

The approach we use leads to an optimality system that can be solved numerically.
However, the solving of this coupled optimal control problem raises some issues like
the non di↵erentiability of the BV regularization and the di↵erence of speed scale
(sound versus light) of the two equations. There are many numerical di�culties that
we do not detail by now.

• One of them is related to the non di↵erentiability of the BV regularization term.
One can use dedicated algorithms as Chambolle’s projection algorithm18 for
example. However, we need to study precisely how such a projection algorithm
can be combined with the solving of the adjoint system. Another way could be
to simply use a di↵erentiable approximation of the total variation as TV (D) ⇡p
krDk2 + ", where " > 0 is small.

• The second numerical delicate issue is the coupled state (and adjoint state) sys-
tem solving. The full coupled system has di↵erent time-scales. Indeed, the wave
equation has a characteristic time related to the speed of sound while the one of
the fluence is related to the speed of light. As discussed before, if the light source
is a short pulse (with respect to the speed of sound), then we can modify the
fluence equation by replacing it with the stationary one (dropping the @t term).
This would then replace the source term in the wave equation by a Dirac. Such a
modification would only simplify the derivation of the necessary condition as well
as the numerical implementation. On the other hand, when considering a long
lasting light source, we need to solve the 2 concurrent unstationary equations.
Since this doesn’t solve the time-scale di↵erence problem, an idea is to use an
asymptotic development to capture the main features of the RTE solution and
plug it into the wave equation.This implies that we have to consider appropri-
ate methods (multiscale, asymptotic methods or adaptative meshes) to perform
competitive numerical computations. In addition, this has to be compared with
existing methods.

Those interesting issues will be addressed in a forthcoming paper.
To illustrate the control approach and show that it is a relevant alternative

method to the classical ones (that we mentioned in the introduction), we briefly
present numerical experiments to compute a simple TAT model. Shortly speaking,
we assume that the fluence equation is not useful any longer and consider equation
(1.1) as a good model for TAT (as usual in TAT papers). More precisely we want
to recover the source u which drives the following equation

8
>>><

>>>:

✓
@2p

@t2
� div(v2srp)

◆
(t, x) = u(t, x), (t, x) 2 [0, T ]⇥ B,

p(t, x) = 0, (t, x) 2 [0, T ]⇥ @B,

p(0, x) = 0,
@p

@t
(0, x) = 0, x 2 B

(3.1)

p = p[u]
29
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from measurements pobs on the boundary of ⌦ where ⌦ is the 0-centered ball of
radius 1/

p
2 (so as to be outside the square containing the phantom). We consider

the case where the observation surface is not closed (half a sphere) and the sound
speed v is not constant.
We consider a 2D problem. Though we should deal with the 3D problem, the 2D
- one is still interesting, since it covers the case where detectors are lineic34. With
the previous notations, we assume that k = 1 (only one source), B is a mollifier16

and � = 0 (total variation not included). The control problem writes

J(u) =
1

2
kp[u]� pobsk2L2

([0,T ]⇥!)

+
↵

2
kuk2L2

([0,T ]⇥⌦)

min
u2Uad

J(u)

(P")

8
><

>:

min
1

2
kp(u)� pobsk2L2

([0,T ]⇥!)

+
↵

2
kuk2L2

([0,T ]⇥⌦)

u 2 L2([0, T ]⇥ B),
(3.2)

where p(u) is the solution to (3.1) and u is supported in ⌦ ⇢ B. This uncoupled
system gives rise to the same kind of optimality system as the coupled system, except
that there is only a slight modification of adjoint equation (2.9) and necessary
condition (2.11) to consider. Moreover, we do not introduce bounds on u so no
projection has to be performed.

The tests have been done using Shepp-Logan phantom. As our purpose is to
illustrate the relevance of our approach we do not focus on code and/or optimization
methods so that we do not report CPU time for example. The known speed of sound
is supposed to be 1 outside the Shepp-Logan phantom and in [0.95, 1.05] inside. This
choice of variation of speed represents the real variations between soft tissues and
water (where the body to be reconstructed would be submerged).

Other methods than the optimal control approach could be used to solve this
reconstruction problem. Most of those methods have originally been devised so as
to deal with constant sound speed and a closed domain of observation and later
on have been adapted to less stringent assumptions. For example, the time-reversal
method36,38 has been adapted to variable speed of sound and open observation
domain. A method based on the eigenvalues of the Laplacian has been extended to
deal with open observation domain29.

We chose to solve the optimality system by means of the conjugate gradient
algorithm. The forward and backward problems are solved by means of a leapfrog
discretization scheme on a staggered grid. In order to avoid handling large grids (due
to the size of B), we use an appropriate PML (Perfectly Matched Layer) technique12.

All the computations are performed on a standard computer using the Scilab

software. We use the algorithm on the 512 by 512 pixels Shepp-Logan phantom,
given on Figure 3.

There exists a unique solution    characterized by  ū

In this case u      p[u] is linear and J is strictly convex.  

8u 2 Uad (J 0(ū), u� ū)L2 � 0
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Since this doesn’t solve the time-scale di↵erence problem, an idea is to use an
asymptotic development to capture the main features of the RTE solution and
plug it into the wave equation.This implies that we have to consider appropri-
ate methods (multiscale, asymptotic methods or adaptative meshes) to perform
competitive numerical computations. In addition, this has to be compared with
existing methods.

Those interesting issues will be addressed in a forthcoming paper.
To illustrate the control approach and show that it is a relevant alternative

method to the classical ones (that we mentioned in the introduction), we briefly
present numerical experiments to compute a simple TAT model. Shortly speaking,
we assume that the fluence equation is not useful any longer and consider equation
(1.1) as a good model for TAT (as usual in TAT papers). More precisely we want
to recover the source u which drives the following equation

8
>>><

>>>:

✓
@2p

@t2
� div(v2srp)

◆
(t, x) = u(t, x), (t, x) 2 [0, T ]⇥ B,

p(t, x) = 0, (t, x) 2 [0, T ]⇥ @B,

p(0, x) = 0,
@p

@t
(0, x) = 0, x 2 B

(3.1)

from measurements pobs on the boundary of ⌦ where ⌦ is the 0-centered ball of
radius 1/

p
2 (so as to be outside the square containing the phantom). We consider

the case where the observation surface is not closed (half a sphere) and the sound
speed v is not constant.
We consider a 2D problem. Though we should deal with the 3D problem, the 2D
- one is still interesting, since it covers the case where detectors are lineic34. With
the previous notations, we assume that k = 1 (only one source), B is a mollifier16

and � = 0 (total variation not included). The control problem writes

J(u) =
1

2

��p[u]� pobs
��2
L2

([0,T ]⇥!)

+
↵

2
kuk2L2

([0,T ]⇥⌦)

min
u2Uad

J(u)

(P")

8
><

>:

min
1

2
kp(u)� pobsk2L2

([0,T ]⇥!)

+
↵

2
kuk2L2

([0,T ]⇥⌦)

u 2 L2([0, T ]⇥ B),
(3.2)

where p(u) is the solution to (3.1) and u is supported in ⌦ ⇢ B. This uncoupled
system gives rise to the same kind of optimality system as the coupled system, except
that there is only a slight modification of adjoint equation (2.9) and necessary
condition (2.11) to consider. Moreover, we do not introduce bounds on u so no
projection has to be performed.

Uad is a set of bounded functions with support in ΩΩ  

30



Computation of (J’(u),v)

ṗ := p0[u] · v is the solution of the (linearized) equation  
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8
>>>><

>>>>:

@2ṗ

@t2
� div(v2srṗ) = v in [0, T ]⇥ B

ṗ(0, ·)= @ṗ

@t
(0, ·) = 0 in B

ṗ = 0 on [0, T ]⇥ @B

A calculus of variation standard analysis permits to show, applying shrewdly the
implicit function theorem, that the functional F is di↵erentiable at µ in direction ⇠.
Its derivative writes

hdF (µ), ⇠i =
Z

[0,T ]⇥!

�
p(t, x)� pobs(t, x)

�
ṗ(t, x)dx dt, (2.2)

where ṗ is the solution of the system
8
>>>><

>>>>:

@2ṗ

@t2
� div(v2srṗ) = 1

⌦

�⇠µaI + 1
⌦

�µaİ in [0, T ]⇥ B

ṗ(0, ·)= @ṗ

@t
(0, ·) = 0 in B

ṗ = 0 on [0, T ]⇥ @B

(2.3)

and I is solution of the following system
8
>>><

>>>:

1

⌫

@İ

@t
+ µaİ + ⇠µaI � div(Drİ)� div(⇠DrI) = 0 in Q

İ(0, ·) = 0 in ⌦

İ = 0 on ⌃

(2.4)

Since the expression (2.2) does not permit to express the first order optimality
conditions easily, it is convenient to introduce some adjoint states to rewrite this
derivative into a more workable expression. For that purpose, let us define q

1

and
q
2

as the respective solutions of the systems
8
>>>><

>>>>:

@2q
1

@t2
� div(v2srq

1

) = (p� pobs)1!" in [0, T ]⇥ B

q
1

(T, ·) = @q
1

@t
(T, ·) = 0 in B

q
1

= 0 on [0, T ]⇥ @B

(2.5)

and

8
>>><

>>>:

�1

⌫

@q
2

@t
+ µaq2 � div(Drq

2

) = �µaq1 in Q

q
2

(T, ·) = 0 on ⌦

q
2

= 0 on ⌃.

(2.6)

It is standard that under the assumptions of Theorem 1.1, System (2.6) has a unique
solution

q
2

2 C0(0, T ;L2(⌦)) \ L2(0, T ;H1

0

(⌦))

J 0(u) · v =
�
p[u]� pobs, p0[u] · v

�
L

2((0,T )⇥!)
+ ↵ (u, v)

L

2((0,T )⇥⌦)

31



Optimal control (duality) technique : use of the adjoint state q
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8
>>>><

>>>>:

@2ṗ

@t2
� div(v2srṗ) = v in [0, T ]⇥ B

ṗ(0, ·)= @ṗ

@t
(0, ·) = 0 in B

ṗ = 0 on [0, T ]⇥ @B

A calculus of variation standard analysis permits to show, applying shrewdly the
implicit function theorem, that the functional F is di↵erentiable at µ in direction ⇠.
Its derivative writes

hdF (µ), ⇠i =
Z

[0,T ]⇥!

�
p(t, x)� pobs(t, x)

�
ṗ(t, x)dx dt, (2.2)

where ṗ is the solution of the system

8
>>>><

>>>>:

@2ṗ

@t2
� div(v2srṗ) = 1

⌦

�⇠µaI + 1
⌦

�µaİ in [0, T ]⇥ B

ṗ(0, ·)= @ṗ

@t
(0, ·) = 0 in B

ṗ = 0 on [0, T ]⇥ @B

(2.3)

and I is solution of the following system

8
>>><

>>>:

1

⌫

@İ

@t
+ µaİ + ⇠µaI � div(Drİ)� div(⇠DrI) = 0 in Q

İ(0, ·) = 0 in ⌦

İ = 0 on ⌃

(2.4)

8
>>>><

>>>>:

@2q

@t2
� div(v2srq) = (p[ū]� pobs)1! in [0, T ]⇥ B

q(T, ·) = @q

@t
(T, ·) = 0 in B

q = 0 on [0, T ]⇥ @B

Since the expression (2.2) does not permit to express the first order optimality
conditions easily, it is convenient to introduce some adjoint states to rewrite this
derivative into a more workable expression. For that purpose, let us define q

1

and
q
2

as the respective solutions of the systems

8
>>>><

>>>>:

@2q
1

@t2
� div(v2srq

1

) = (p� pobs)1!" in [0, T ]⇥ B

q
1

(T, ·) = @q
1

@t
(T, ·) = 0 in B

q
1

= 0 on [0, T ]⇥ @B

(2.5)

and

�
p[u]� p

obs

, p

0[u] · v
�
L

2((0,T )⇥!)
=

Z

(0,T )⇥B
(p[ū]� p

obs)1
!

ṗ dt dx

=

Z

(0,T )⇥B

✓
@

2
q

@t

2
� div(v2srq)

◆
ṗ dt dx

=

Z

(0,T )⇥B

✓
@

2
ṗ

@t

2
� div(v2srṗ)

◆
q dt dx

=

Z

(0,T )⇥⌦
q v dt dx

32



J

0(ū) · (u� ū) =

Z

(0,T )⇥⌦
(q + ↵ū)(u� ū) dt dx

Finally 

That is

8u 2 Uad (q + ↵ū, u� ū) � 0

8u 2 Uad (ū� q � ↵ū� ū, u� ū)  0

ū = ⇧Uad(ū� q � ↵ū)

33



Finally, the solution   is characterized by  ū

July 20, 2015 15:45 WSPC/INSTRUCTION FILE copieX

An optimal control problem in photoacoustic tomography 17

Since this doesn’t solve the time-scale di↵erence problem, an idea is to use an
asymptotic development to capture the main features of the RTE solution and
plug it into the wave equation.This implies that we have to consider appropri-
ate methods (multiscale, asymptotic methods or adaptative meshes) to perform
competitive numerical computations. In addition, this has to be compared with
existing methods.

Those interesting issues will be addressed in a forthcoming paper.
To illustrate the control approach and show that it is a relevant alternative

method to the classical ones (that we mentioned in the introduction), we briefly
present numerical experiments to compute a simple TAT model. Shortly speaking,
we assume that the fluence equation is not useful any longer and consider equation
(1.1) as a good model for TAT (as usual in TAT papers). More precisely we want
to recover the source u which drives the following equation

8
>>><

>>>:

✓
@2p̄

@t2
� div(v2srp̄)

◆
(t, x) = ū(t, x), (t, x) 2 [0, T ]⇥ B,

p̄(t, x) = 0, (t, x) 2 [0, T ]⇥ @B,

p̄(0, x) = 0,
@p̄

@t
(0, x) = 0, x 2 B

(3.1)

from measurements pobs on the boundary of ⌦ where ⌦ is the 0-centered ball of
radius 1/

p
2 (so as to be outside the square containing the phantom). We consider

the case where the observation surface is not closed (half a sphere) and the sound
speed v is not constant.
We consider a 2D problem. Though we should deal with the 3D problem, the 2D
- one is still interesting, since it covers the case where detectors are lineic34. With
the previous notations, we assume that k = 1 (only one source), B is a mollifier16

and � = 0 (total variation not included). The control problem writes

J(u) =
1

2

��p[u]� pobs
��2
L2

([0,T ]⇥!)

+
↵

2
kuk2L2

([0,T ]⇥⌦)

min
u2Uad

J(u)

(P")

8
><

>:

min
1

2
kp(u)� pobsk2L2

([0,T ]⇥!)

+
↵

2
kuk2L2

([0,T ]⇥⌦)

u 2 L2([0, T ]⇥ B),
(3.2)

where p(u) is the solution to (3.1) and u is supported in ⌦ ⇢ B. This uncoupled
system gives rise to the same kind of optimality system as the coupled system, except
that there is only a slight modification of adjoint equation (2.9) and necessary
condition (2.11) to consider. Moreover, we do not introduce bounds on u so no
projection has to be performed.
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8
>>>><

>>>>:

@2ṗ

@t2
� div(v2srṗ) = v in [0, T ]⇥ B

ṗ(0, ·)= @ṗ

@t
(0, ·) = 0 in B

ṗ = 0 on [0, T ]⇥ @B

A calculus of variation standard analysis permits to show, applying shrewdly the
implicit function theorem, that the functional F is di↵erentiable at µ in direction ⇠.
Its derivative writes

hdF (µ), ⇠i =
Z

[0,T ]⇥!

�
p(t, x)� pobs(t, x)

�
ṗ(t, x)dx dt, (2.2)

where ṗ is the solution of the system

8
>>>><

>>>>:

@2ṗ

@t2
� div(v2srṗ) = 1

⌦

�⇠µaI + 1
⌦

�µaİ in [0, T ]⇥ B

ṗ(0, ·)= @ṗ

@t
(0, ·) = 0 in B

ṗ = 0 on [0, T ]⇥ @B

(2.3)

and I is solution of the following system

8
>>><

>>>:

1

⌫

@İ

@t
+ µaİ + ⇠µaI � div(Drİ)� div(⇠DrI) = 0 in Q

İ(0, ·) = 0 in ⌦

İ = 0 on ⌃

(2.4)

8
>>>><

>>>>:

@2q̄

@t2
� div(v2srq̄) = (p̄� pobs)1! in [0, T ]⇥ B

q̄(T, ·) = @q̄

@t
(T, ·) = 0 in B

q̄ = 0 on [0, T ]⇥ @B

Since the expression (2.2) does not permit to express the first order optimality
conditions easily, it is convenient to introduce some adjoint states to rewrite this
derivative into a more workable expression. For that purpose, let us define q

1

and
q
2

as the respective solutions of the systems

8
>>>><

>>>>:

@2q
1

@t2
� div(v2srq

1

) = (p� pobs)1!" in [0, T ]⇥ B

q
1

(T, ·) = @q
1

@t
(T, ·) = 0 in B

q
1

= 0 on [0, T ]⇥ @B

(2.5)

and

ū = ⇧Uad(ū� q̄ � ↵ū)

State 
equation

Adjoint

equation

Projection

equation
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2.4 The general  case

State function :  (p, I)

Control function  (parameters to identify)  
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Fig. 2. The dots are !, the blue (light gray) balls are !".

We thus make the assumption that the pressure p0k is known on [0, T ]⇥!". Still

defining the state variables pk as

Z t

0

p0k(t, x) dx, the PAT data are given by

{pk(t, x)|1  k  s, t 2 [0, T ], x 2 !"} .

Actually, we don’t have access to such an information (we only record p0k on !).
Nevertheless, once the space discretization step is set to �x, " can be set to �x

2

, so
that the thickened data have the same discrete counterpart as the actual data.

Next Section is devoted to the sensitivity analysis of these state equations.

µ := (µa, D), µa 2 [µmin

a , µmax

a ], D 2 [Dmin, Dmax], S 2 L1(Q)

1.4. Sensitivity analysis

In this section, we will omit the indices k when we refer to pk and Ik, the solutions
of (1.3)-(1.4), for the sake of clarity. Define Uad, the set of admissible controls
µ = (µa, D) as

Uad =
�
µ = (µa, D)2 [L1(B)]2 | µa 2 [µmin

a , µmax
a ] andD 2 [Dmin, Dmax] a.e. inB

 
.

Using Theorem 1.1, we define the maps

I : Uad �! C0(0, T ;L2(⌦)) \ L2(0, T ;H1

0

(⌦))

µ 7�! I[µ]
(1.6)

where I[µ] satisfies (1.4) and

p : Uad �! C0(0, T ;H1

0

(B))
µ 7�! p[µ]

(1.7)

Admissible control set
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Fig. 2. The dots are !, the blue (light gray) balls are !".

We thus make the assumption that the pressure p0k is known on [0, T ]⇥!". Still

defining the state variables pk as

Z t

0

p0k(t, x) dx, the PAT data are given by

{pk(t, x)|1  k  s, t 2 [0, T ], x 2 !"} .

Actually, we don’t have access to such an information (we only record p0k on !).
Nevertheless, once the space discretization step is set to �x, " can be set to �x

2

, so
that the thickened data have the same discrete counterpart as the actual data.

Next Section is devoted to the sensitivity analysis of these state equations.

µ := (µa, D), µa 2 [µmin

a , µmax

a ], D 2 [Dmin, Dmax], S 2 L1(Q)

1.4. Sensitivity analysis

In this section, we will omit the indices k when we refer to pk and Ik, the solutions
of (1.3)-(1.4), for the sake of clarity. Define Uad, the set of admissible controls
µ = (µa, D) as

Uad =
�
µ = (µa, D)2 [L1(B)]2 | µa 2 [µmin

a , µmax
a ] andD 2 [Dmin, Dmax] a.e. inB

 
.

Using Theorem 1.1, we define the maps

I : Uad �! C0(0, T ;L2(⌦)) \ L2(0, T ;H1

0

(⌦))

µ 7�! I[µ]
(1.6)

where I[µ] satisfies (1.4) and

p : Uad �! C0(0, T ;H1

0

(B))
µ 7�! p[µ]

(1.7)
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According to Leibniz rule, this latter satisfies

8
>>>><

>>>>:

@2p

@t2
(t, x)� div(v2srp)(t, x) = 1

⌦

(x)�(x)µa(x)I(t, x), (t, x) 2 [0, T ]⇥ B,

p(t, x) = 0, (t, x) 2 [0, T ]⇥ @B,

p(0, x) =
@p

@t
(0, x) = 0, x 2 B.

2.3. The direct problem

The e↵ectiveness of photoacoustic tomography relies on the relation between in-
homogeneities of the biological tissues and variations of the coe�cients µa and D.
Depending on the frequency range of the illumination (usually in the red or near
infrared region), the gray level mapping of the absorptivity can achieve useful func-
tional and structural imaging through, for instance, quantification of oxygen satu-
ration or hemoglobin content32,40.

These considerations suggest to define µ := (µa, D) as the control variable
that we want to identify. Let µmin

a < µmax

a and Dmin < Dmax denote positive real
numbers. The minimal (natural) assumptions on µa and D are

µa 2 [µmin

a , µmax

a ] and D 2 [Dmin, Dmax] a.e. in B, (2.2)

so that these maps lie in L1(B). We recall that ⌦ and B are two bounded open
sets of Rd (d � 2), with C1-boundaries, satisfying ⌦ ⇢ B. The set ⌦ being the
(extrapolated) body, we may assume that µa and D are known on B \ ⌦.

Introduce the set Q and its boundary ⌃ defined by

Q = (0, T )⇥ ⌦ and ⌃ = (0, T )⇥ @⌦.

Since there are two variables to reconstruct, we might need at least two sets of
data. This idea has been explored in a slightly di↵erent context in 14. Following
this work, we assume that the experiment is repeated with di↵erent light sources,
denoted by (Sk)1ks with s � 2 and each Sk in L1(Q).

Provided that the frequency of the sources Sk doesn’t change, the coe�cients µa

and D remain the same. However, the fluence rate I and the acoustic signal p may
change with k. Then, we may define Ik and pk, for k 2 {1, . . . , s} as the solutions
of the two state equations

8
>>>><

>>>>:

@2p

@t2
(t, x)� div(v2sr)(t, x) = 1

⌦

(x)�(x)µa(x)I(t, x), (t, x) 2 (0, T )⇥ B,

p(t, x) = 0, (t, x) 2 (0, T )⇥ @B,

p(0, x) =
@p

@t
(0, x) = 0, x 2 B,

(1.3)

and
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8
>>>><

>>>>:

1

⌫

@I

@t
(t, x) + µa(x)I(t, x)� div(DrI)(t, x) = S(t, x), (t, x) 2 (0, T )⇥ ⌦,

I(0, x) = 0, x 2 ⌦,
I(t, x) = 0 (t, x) 2 B\⌦
I(t, x) = 0, (t, x) 2 ⌃.

(1.4)

The photoacoustic tomography model is completely described by the coupling
of equations (1.4) and (1.3), in which Ik is extended to 0 on B \⌦. We first mention
that this system is well-posed, in other terms that (1.3)-(1.4) has a unique solution
under standard assumptions. The following theorem is standard and its proof can
be found for example in 20.

Theorem 1.1. Let ⌦ be a bounded connected open set of Rd
with C1

boundary,

� 2 L1(B), vs 2 L1(B, [vmin

s , vmax

s ]). Assume that the assumptions (2.2) hold.

Then,

(1) Equation (1.4) has a unique solution Ik such that

Ik 2 C0(0, T ;L2(⌦)) \ L2(0, T ;H1

0

(⌦)),
@Ik
@t

2 L2(0, T ;H�1(⌦)).

(2) Equation (1.3) has a unique solution pk such that

pk 2 C(0, T ;H1

0

(B)) \ C1(0, T ;L2(B)).

Remark 1.1. Even if they are reasonable in this setting, the assumptions made
earlier on the variables µa, D and vs are not sharp, neither are the regularity results
stated here. Nevertheless, our purpose does not require stronger statements.

The last step to complete the description of the direct model is the formalization
of data acquisition. In PAT, ultrasonic transducers are placed in a neighborhood of
the body and record the resulting pressure wave p0 for all times in [0, T ]. Let us
denote by ! the set of the locations of these transducers, which can be either finite,
discrete or (ideally) some hypersurface of Rd. Assume for example that

! =
N[

i=1

{xi},

where each point xi belongs to B\⌦. Unfortunately, this choice of acquisition set
do not allow to apply some classic techniques of optimal control, such as Stokes’
theorem. To overcome this di�culty, we propose to thicken the set ! into a union
of non empty open sets of Rd. Namely, we replace in the sequel the set ! by the set
!" defined for " > 0 by

!" =
[

x2!

B(x, "), (1.5)

Diapo 3636
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! instead of !", for the sake of simplicity. The asymptotic behavior of the solutions
as " ! 0 will be investigated in a forthcoming work.

Physically, it seems relevant to minimize a least square functional with respect
to µa and D. We choose to add a penalization term in order to ensure the existence
of an optimal control.

Let us define the functional J by

J(µ) = F(µ) + f(µ), (2.1)

for every µ = (µa, D) 2 Uad, where f(µ) stands for a regularizing term and F is a
least square functional with respect to the measured pressure data. We set

Fk(µ) =
1

2

Z

[0,T ]⇥!

(pk(t, x)� pobsk (t, x))2dx dt

where pobsk is the measured pressure (observed state) on ! when the source signal
is Sk. Fix ↵ � 0 and � � 0. Assuming that we perform s experiments, we define

F(µ) =
sX

k=1

Fk(µ) =
sX

k=1

1

2

Z

[0,T ]⇥!

(pk(t, x)� pobsk (t, x))2dx dt

and

f(µ) =

8
<

:
↵

Z

⌦

(Bµa)
2(x)dx+ �TV (D) if D 2 BV (⌦)

+1 otherwise.

Here BV (⌦) denotes the space of functions of bounded variation2,13, TV (D) stands
for the total variation of D, and B : L2(⌦) ! L2(⌦) is an invertible linear operator.

Remark 2.1. The operator B is usually the L2(⌦) identity operator. However one
can decide to focus on specific frequencies of µa and B can be chosen as a pass-band
filter. Following16, B can be chosen as a mollifier operator for example.

The choice of the total variation as a regularization term is a technical choice
that fits the physical meaning. Indeed, strong L2 convergence of the D part of
minimizing sequences is needed to use Theorem 1.2 and obtain an existence result.
The TV term seems to be the weakest one that provides such a convergence while
respecting the physical requirements since discontinuities (and contours) are pre-
served.

The original inverse problem to perform parameter identification can be viewed
as the following optimal control problem

(P) min
µ2Uad

J(µ),

where the admissible set Uad is defined by (1.6).
Notice that the values of the coe�cients µa and D on B \ ⌦ are already known

and that Uad is a closed convex subset of L2(B)⇥ L2(B).
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! instead of !", for the sake of simplicity. The asymptotic behavior of the solutions
as " ! 0 will be investigated in a forthcoming work.

Physically, it seems relevant to minimize a least square functional with respect
to µa and D. We choose to add a penalization term in order to ensure the existence
of an optimal control.

Let us define the functional J by

J(µ) = F(µ) + f(µ), (2.1)

for every µ = (µa, D) 2 Uad, where f(µ) stands for a regularizing term and F is a
least square functional with respect to the measured pressure data. We set

F(µ) =
1

2

Z

[0,T ]⇥!

(p[µ](t, x)� pobs(t, x))2dx dt

where pobsk is the measured pressure (observed state) on ! when the source signal
is Sk. Fix ↵ � 0 and � � 0. Assuming that we perform s experiments, we define

F(µ) =
sX

k=1

Fk(µ) =
sX

k=1

1

2

Z

[0,T ]⇥!

(pk(t, x)� pobsk (t, x))2dx dt

and

f(µ) =

8
<

:
↵

Z

⌦

(Bµa)
2(x)dx+ �TV (D) if D 2 BV (⌦)

+1 otherwise.

Here BV (⌦) denotes the space of functions of bounded variation2,13, TV (D) stands
for the total variation of D, and B : L2(⌦) ! L2(⌦) is an invertible linear operator.

Remark 2.1. The operator B is usually the L2(⌦) identity operator. However one
can decide to focus on specific frequencies of µa and B can be chosen as a pass-band
filter. Following16, B can be chosen as a mollifier operator for example.

The choice of the total variation as a regularization term is a technical choice
that fits the physical meaning. Indeed, strong L2 convergence of the D part of
minimizing sequences is needed to use Theorem 1.2 and obtain an existence result.
The TV term seems to be the weakest one that provides such a convergence while
respecting the physical requirements since discontinuities (and contours) are pre-
served.

The original inverse problem to perform parameter identification can be viewed
as the following optimal control problem

(P) min
µ2Uad

J(µ),

where the admissible set Uad is defined by (??).
Notice that the values of the coe�cients µa and D on B \ ⌦ are already known

and that Uad is a closed convex subset of L2(B)⇥ L2(B).

Cost functional and optimization problem
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! instead of !", for the sake of simplicity. The asymptotic behavior of the solutions
as " ! 0 will be investigated in a forthcoming work.

Physically, it seems relevant to minimize a least square functional with respect
to µa and D. We choose to add a penalization term in order to ensure the existence
of an optimal control.

Let us define the functional J by

J(µ) = F(µ) + f(µ), (2.1)

for every µ = (µa, D) 2 Uad, where f(µ) stands for a regularizing term and F is a
least square functional with respect to the measured pressure data. We set

F(µ) =
1

2

Z

[0,T ]⇥!

(p(t, x)� pobs(t, x))2dx dt

where pobsk is the measured pressure (observed state) on ! when the source signal
is Sk. Fix ↵ � 0 and � � 0. Assuming that we perform s experiments, we define

F(µ) =
sX

k=1

Fk(µ) =
sX

k=1

1

2

Z

[0,T ]⇥!

(pk(t, x)� pobsk (t, x))2dx dt

and

f(µ) =

8
<

:
↵

Z

⌦

(Bµa)
2(x)dx+ �TV (D) if D 2 BV (⌦)

+1 otherwise.

Here BV (⌦) denotes the space of functions of bounded variation2,13, TV (D) stands
for the total variation of D, and B : L2(⌦) ! L2(⌦) is an invertible linear operator.

Remark 2.1. The operator B is usually the L2(⌦) identity operator. However one
can decide to focus on specific frequencies of µa and B can be chosen as a pass-band
filter. Following16, B can be chosen as a mollifier operator for example.

The choice of the total variation as a regularization term is a technical choice
that fits the physical meaning. Indeed, strong L2 convergence of the D part of
minimizing sequences is needed to use Theorem 1.2 and obtain an existence result.
The TV term seems to be the weakest one that provides such a convergence while
respecting the physical requirements since discontinuities (and contours) are pre-
served.

The original inverse problem to perform parameter identification can be viewed
as the following optimal control problem

(P) min
µ2Uad

J(µ),

where the admissible set Uad is defined by (??).
Notice that the values of the coe�cients µa and D on B \ ⌦ are already known

and that Uad is a closed convex subset of L2(B)⇥ L2(B).
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! instead of !", for the sake of simplicity. The asymptotic behavior of the solutions
as " ! 0 will be investigated in a forthcoming work.

Physically, it seems relevant to minimize a least square functional with respect
to µa and D. We choose to add a penalization term in order to ensure the existence
of an optimal control.

Let us define the functional J by

J(µ) = F(µ) + f(µ), (2.1)

for every µ = (µa, D) 2 Uad, where f(µ) stands for a regularizing term and F is a
least square functional with respect to the measured pressure data. We set

Fk(µ) =
1

2

Z

[0,T ]⇥!

(pk(t, x)� pobsk (t, x))2dx dt

where pobsk is the measured pressure (observed state) on ! when the source signal
is Sk. Fix ↵ � 0 and � � 0. Assuming that we perform s experiments, we define

F(µ) =
sX

k=1

Fk(µ) =
sX

k=1

1

2

Z

[0,T ]⇥!

(pk(t, x)� pobsk (t, x))2dx dt

and

f(µ) =

8
<

:
↵

Z

⌦

(Bµa)
2(x)dx+ �TV (D) if D 2 BV (⌦)

+1 otherwise.

Here BV (⌦) denotes the space of functions of bounded variation2,13, TV (D) stands
for the total variation of D, and B : L2(⌦) ! L2(⌦) is an invertible linear operator.

Remark 2.1. The operator B is usually the L2(⌦) identity operator. However one
can decide to focus on specific frequencies of µa and B can be chosen as a pass-band
filter. Following16, B can be chosen as a mollifier operator for example.

The choice of the total variation as a regularization term is a technical choice
that fits the physical meaning. Indeed, strong L2 convergence of the D part of
minimizing sequences is needed to use Theorem 1.2 and obtain an existence result.
The TV term seems to be the weakest one that provides such a convergence while
respecting the physical requirements since discontinuities (and contours) are pre-
served.

The original inverse problem to perform parameter identification can be viewed
as the following optimal control problem

(P) min
µ2Uad

J(µ),

where the admissible set Uad is defined by (1.6).
Notice that the values of the coe�cients µa and D on B \ ⌦ are already known

and that Uad is a closed convex subset of L2(B)⇥ L2(B).



µ 7! p[µ]  is no longer linear (because of the term          )µaI[µ]

 J is no longer convex

Existence OK but no uniqueness


The optimality system is no longer a 
necessary and sufficient condition


J is not Gâteaux differentiable because of 
the TV term 
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! instead of !", for the sake of simplicity. The asymptotic behavior of the solutions
as " ! 0 will be investigated in a forthcoming work.

Physically, it seems relevant to minimize a least square functional with respect
to µa and D. We choose to add a penalization term in order to ensure the existence
of an optimal control.

Let us define the functional J by

J(µ) = F(µ) + f(µ), (2.1)

for every µ = (µa, D) 2 Uad, where f(µ) stands for a regularizing term and F is a
least square functional with respect to the measured pressure data. We set

Fk(µ) =
1

2

Z

[0,T ]⇥!

(pk(t, x)� pobsk (t, x))2dx dt

where pobsk is the measured pressure (observed state) on ! when the source signal
is Sk. Fix ↵ � 0 and � � 0. Assuming that we perform s experiments, we define

F(µ) =
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k=1

Fk(µ) =
sX

k=1

1

2

Z
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(pk(t, x)� pobsk (t, x))2dx dt

and

f(µ) =

8
<

:
↵

Z

⌦

(Bµa)
2(x)dx+ �TV (D) if D 2 BV (⌦)

+1 otherwise.

Here BV (⌦) denotes the space of functions of bounded variation2,13, TV (D) stands
for the total variation of D, and B : L2(⌦) ! L2(⌦) is an invertible linear operator.

Remark 2.1. The operator B is usually the L2(⌦) identity operator. However one
can decide to focus on specific frequencies of µa and B can be chosen as a pass-band
filter. Following16, B can be chosen as a mollifier operator for example.

The choice of the total variation as a regularization term is a technical choice
that fits the physical meaning. Indeed, strong L2 convergence of the D part of
minimizing sequences is needed to use Theorem 1.2 and obtain an existence result.
The TV term seems to be the weakest one that provides such a convergence while
respecting the physical requirements since discontinuities (and contours) are pre-
served.

The original inverse problem to perform parameter identification can be viewed
as the following optimal control problem

(P) min
µ2Uad

J(µ),

where the admissible set Uad is defined by (1.6).
Notice that the values of the coe�cients µa and D on B \ ⌦ are already known

and that Uad is a closed convex subset of L2(B)⇥ L2(B).
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2.3. First order optimality conditions for Problem (P)

Assume that µ̄ = (µ̄a, D̄) is an optimal solution to problem (P). Introduce the so
called indicator function of the set Uad, denoted ◆Uad and defined by

◆Uad(x) =

⇢
0 if x 2 Uad

+1 otherwise.

The regularization function f is not Gâteaux di↵erentiable because of the Total
Variation term. However the subdi↵erential @TV is well known18 and we get

0 2 @TV (µ) () µ 2 @TV ⇤(0),

where the total variation conjugate functional TV ⇤ is the indicator function ◆
¯K of

K̄ with

K =
�
div ' | ' 2 C1

c (⌦,R2), k'k1  1
 
.

This gives useful algorithms to compute the total variation subgradients (see 18,39

for example).
Writing (P) as

min
µ2[L1

(⌦)]

2

F(µ) + f(µ) + ◆Uad(µ),

the classical optimality condition reads

0 2 @(F(µ̄) + f(µ̄) + ◆Uad(µ̄)) .

Using standard computational rules19 and decoupling the first order optimality
conditions on µa and D yields:

i) Equation on µa. For every µa 2 L1(⌦) such that µa 2 [µmin

a , µmax

a ],
⌧

@F
@µa

(µ̄a, D̄) + 2↵B⇤Bµ̄a , µa � µ̄a

�

L2

(⌦)

� 0 , (2.11)

ii) Equation on D.

� @F
@D

(µ̄a, D̄) 2 @TV (D̄) + @◆
[Dmin,Dmax

]

, (2.12)

where B⇤ is the L2-adjoint operator of B.

With the previous computations, equation (2.11) writes

8µa 2 L1(⌦), s.t. µa 2 [µmin

a , µmax

a ],
*

sX

k=1

Z T

0

(1
⌦

�qk
1

� qk
2

)Ik dt+ 2↵B⇤Bµ̄a , µa � µ̄a

+

L2

(⌦)

� 0, (2.13)
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⌦
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1
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2
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a , µmax

a ],
⌧

@F
@µa

(µ̄a, D̄) + 2↵B⇤Bµ̄a , µa � µ̄a

�

L2

(⌦)

� 0 , (2.11)

ii) Equation on D.

� @F
@D

(µ̄a, D̄) 2 @TV (D̄) + @◆
[Dmin,Dmax

]

, (2.12)

where B⇤ is the L2-adjoint operator of B.

With the previous computations, equation (2.11) writes

8µa 2 L1(⌦), s.t. µa 2 [µmin

a , µmax

a ],
*

sX

k=1

Z T

0

(1
⌦

�qk
1

� qk
2

)Ik dt+ 2↵B⇤Bµ̄a , µa � µ̄a

+

L2

(⌦)

� 0, (2.13)
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⌦
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8
>>><

>>>:

�1

⌫

@q
2

@t
+ µaq2 � div(Drq

2

) = �µaq1 in Q

q
2

(T, ·) = 0 on ⌦

q
2

= 0 on ⌃.

(2.6)

It is standard that under the assumptions of Theorem 1.1, System (2.6) has a unique
solution

q
2

2 C0(0, T ;L2(⌦)) \ L2(0, T ;H1

0

(⌦))

and System (2.5) has a unique solution

q
1

2 C0(0, T ;H1

0

(B)) \ C1(0, T ;L2(B)).

Let us now compute the derivative of F at µ in the direction ⇠.

Proposition 2.1. For every ⇠ = (⇠a, ⇠D) 2 L2(⌦) ⇥ L2(⌦), the functional F is

Gâteaux-di↵erentiable at µ = (µa, D) in the direction ⇠ and

hdF(µ) , ⇠ iL2

(⌦)

=

Z

⌦

rF(µ)(x)⇠(x)dx

=

Z

⌦

✓
@F
@µa

(µa, D)(x)⇠µa +
@F
@D

(µa, D)(x)⇠D(x)

◆
dx (2.7)

where

rF(µ) =

✓
@F
@µa

(µ),
@F
@D

(µ)

◆
=

 Z T

0

(1
⌦

�q
1

� q
2

)I,�
Z T

0

rq
2

·rI

!
.

Proof. Using integration by parts and Green’s formula, one gets

hdF (µa) , ⇠ iL2

(⌦)

=

Z

[0,T ]⇥!

�
p� pobs

�
ṗ

=

Z

[0,T ]⇥B
ṗ

✓
@2q

1

@t2
� div(v2srq

1

)

◆

=

Z

[0,T ]⇥B
q
1

✓
@2ṗ

@t2
� div(v2srṗ)

◆

=

Z

[0,T ]⇥B
q
1

⇣
1
⌦

�⇠µaI + 1
⌦

�µaİ
⌘

=

Z

Q
�q

1

⇠µaI +

Z

Q
�q

1

µaİ .
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8
>>>><

>>>>:

@2ṗ

@t2
� div(v2srṗ) = v in [0, T ]⇥ B

ṗ(0, ·)= @ṗ

@t
(0, ·) = 0 in B

ṗ = 0 on [0, T ]⇥ @B

A calculus of variation standard analysis permits to show, applying shrewdly the
implicit function theorem, that the functional F is di↵erentiable at µ in direction ⇠.
Its derivative writes

hdF (µ), ⇠i =
Z

[0,T ]⇥!

�
p(t, x)� pobs(t, x)

�
ṗ(t, x)dx dt, (2.2)

where ṗ is the solution of the system

8
>>>><

>>>>:

@2ṗ

@t2
� div(v2srṗ) = 1

⌦

�⇠µaI + 1
⌦

�µaİ in [0, T ]⇥ B

ṗ(0, ·)= @ṗ

@t
(0, ·) = 0 in B

ṗ = 0 on [0, T ]⇥ @B

(2.3)

and I is solution of the following system

8
>>><

>>>:

1

⌫

@İ

@t
+ µaİ + ⇠µaI � div(Drİ)� div(⇠DrI) = 0 in Q

İ(0, ·) = 0 in ⌦

İ = 0 on ⌃

(2.4)

8
>>>><

>>>>:

@2q̄

@t2
� div(v2srq̄) = (p̄� pobs)1! in [0, T ]⇥ B

q̄(T, ·) = @q̄

@t
(T, ·) = 0 in B

q̄ = 0 on [0, T ]⇥ @B

Since the expression (2.2) does not permit to express the first order optimality
conditions easily, it is convenient to introduce some adjoint states to rewrite this
derivative into a more workable expression. For that purpose, let us define q

1

and
q
2

as the respective solutions of the systems

8
>>>><

>>>>:

@2q
1

@t2
� div(v2srq

1

) = (p� pobs)1!" in [0, T ]⇥ B

q
1

(T, ·) = @q
1

@t
(T, ·) = 0 in B

q
1

= 0 on [0, T ]⇥ @B

(2.5)

and
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8
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2
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q
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q
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0

(B)) \ C1(0, T ;L2(B)).

Let us now compute the derivative of F at µ in the direction ⇠.

Proposition 2.1. For every ⇠ = (⇠a, ⇠D) 2 L2(⌦) ⇥ L2(⌦), the functional F is

Gâteaux-di↵erentiable at µ = (µa, D) in the direction ⇠ and

hdF(µ) , ⇠ iL2

(⌦)

=

Z

⌦

rF(µ)(x)⇠(x)dx

=

Z

⌦

✓
@F
@µa

(µa, D)(x)⇠µa +
@F
@D

(µa, D)(x)⇠D(x)

◆
dx (2.7)

where

rF(µ) =

✓
@F
@µa

(µ),
@F
@D

(µ)

◆
=

 Z T

0

(1
⌦

�q
1

� q
2

)I,�
Z T

0

rq
2

·rI

!
.

Proof. Using integration by parts and Green’s formula, one gets

hdF (µa) , ⇠ iL2

(⌦)

=

Z

[0,T ]⇥!

�
p� pobs

�
ṗ

=

Z

[0,T ]⇥B
ṗ

✓
@2q

1

@t2
� div(v2srq

1

)

◆

=

Z

[0,T ]⇥B
q
1

✓
@2ṗ

@t2
� div(v2srṗ)

◆

=

Z

[0,T ]⇥B
q
1

⇣
1
⌦
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⌦

�µaİ
⌘
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Z

Q
�q

1
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Z

Q
�q

1
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2.3. First order optimality conditions for Problem (P)

Assume that µ̄ = (µ̄a, D̄) is an optimal solution to problem (P). Introduce the so
called indicator function of the set Uad, denoted ◆Uad and defined by

◆Uad(x) =

⇢
0 if x 2 Uad

+1 otherwise.

The regularization function f is not Gâteaux di↵erentiable because of the Total
Variation term. However the subdi↵erential @TV is well known18 and we get

0 2 @TV (µ) () µ 2 @TV ⇤(0),

where the total variation conjugate functional TV ⇤ is the indicator function ◆
¯K of

K̄ with

K =
�
div ' | ' 2 C1

c (⌦,R2), k'k1  1
 
.

This gives useful algorithms to compute the total variation subgradients (see 18,39

for example).
Writing (P) as

min
µ2[L1

(⌦)]

2

F(µ) + f(µ) + ◆Uad(µ),

the classical optimality condition reads

0 2 @(F(µ̄) + f(µ̄) + ◆Uad(µ̄)) .

Using standard computational rules19 and decoupling the first order optimality
conditions on µa and D yields:

@(F(µ̄) + f(µ̄) + ◆Uad(µ̄)) ⇢ DF(µ̄) + @f(µ̄) + @◆Uad(µ̄))

i) Equation on µa. For every µa 2 L1(⌦) such that µa 2 [µmin

a , µmax

a ],
⌧

@F
@µa

(µ̄a, D̄) + 2↵B⇤Bµ̄a , µa � µ̄a

�

L2

(⌦)

� 0 , (2.11)

ii) Equation on D.

� @F
@D

(µ̄a, D̄) 2 @TV (D̄) + @◆
[Dmin,Dmax

]

, (2.12)

where B⇤ is the L2-adjoint operator of B.

With the previous computations, equation (2.11) writes

8µa 2 L1(⌦), s.t. µa 2 [µmin

a , µmax

a ],
*

sX

k=1

Z T

0

(1
⌦

�qk
1

� qk
2

)Ik dt+ 2↵B⇤Bµ̄a , µa � µ̄a

+

L2

(⌦)

� 0, (2.13)
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ii) Equation on D.
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@D

(µ̄a, D̄) 2 @TV (D̄) + @◆
[Dmin,Dmax
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, (2.12)

where B⇤ is the L2-adjoint operator of B.

With the previous computations, equation (2.11) writes

8µa 2 L1(⌦), s.t. µa 2 [µmin
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*

sX
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Z T

0

(1
⌦

�qk
1

� qk
2

)Ik dt+ 2↵B⇤Bµ̄a , µa � µ̄a

+

L2

(⌦)

� 0, (2.13)42
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2.3. First order optimality conditions for Problem (P)

Assume that µ̄ = (µ̄a, D̄) is an optimal solution to problem (P). Introduce the so
called indicator function of the set Uad, denoted ◆Uad and defined by

◆Uad(x) =

⇢
0 if x 2 Uad

+1 otherwise.

The regularization function f is not Gâteaux di↵erentiable because of the Total
Variation term. However the subdi↵erential @TV is well known18 and we get

0 2 @TV (µ) () µ 2 @TV ⇤(0),

where the total variation conjugate functional TV ⇤ is the indicator function ◆
¯K of

K̄ with

K =
�
div ' | ' 2 C1

c (⌦,R2), k'k1  1
 
.

This gives useful algorithms to compute the total variation subgradients (see 18,39

for example).
Writing (P) as

min
µ2[L1

(⌦)]

2

F(µ) + f(µ) + ◆Uad(µ),

the classical optimality condition reads

0 2 @(F(µ̄) + f(µ̄) + ◆Uad(µ̄)) .

Using standard computational rules19 and decoupling the first order optimality
conditions on µa and D yields:

@(F(µ̄) + f(µ̄) + ◆Uad(µ̄)) ⇢ DF(µ̄) + @f(µ̄) + @◆Uad(µ̄))

i) Equation on µa. For every µa 2 L1(⌦) such that µa 2 [µmin

a , µmax

a ],
⌧

@F
@µa

(µ̄a, D̄) + 2↵B⇤Bµ̄a , µa � µ̄a

�

L2

(⌦)

� 0 , (2.11)

ii) Equation on D.

� @F
@D

(µ̄a, D̄) 2 @TV (D̄) + @◆
[Dmin,Dmax

]

, (2.12)

where B⇤ is the L2-adjoint operator of B.

With the previous computations, equation (2.11) writes

8µa 2 L1(⌦), s.t. µa 2 [µmin

a , µmax

a ],

 Z T

0

1
⌦

�(q
1

� q
2

I) dt+ 2↵B⇤Bµ̄a, µa � µ̄a

!

L2

(⌦)

� 0
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while equation (2.12) becomes

9�⇤ 2 @TV (D̄), 8D 2 L1(⌦) s.t. D 2 [Dmin, Dmax]
 Z T

0

(rI ·rq
2

) dt� �⇤, D � D̄

!

L2

(⌦)

� 0.

The following theorem summarizes these optimality conditions.

Theorem 2.3. Assume µ̄ = (µ̄a, D̄) is an optimal solution to Problem (P). Then,
there exists qk

1

, qk
2

, k = 1, · · · , s and �⇤ 2 @TV (D̄) such that

• The 2s state equations (1.3) for the pression and (1.4) for the fluence are satisfied
(with s sources Sk, k 2 {1, . . . , s})

• The 2s adjoint state equations (2.9) -(2.10) are satisfied by qk
1

and qk
2

respectively,

for k 2 {1, . . . , s}.
• Inequations (??) and (??) hold.

Remark 2.3. In the very case whereD is constant and/or known, we are only inter-
ested in µa. The (reduced) optimality system writes then : 2s state equations (1.3)
and (1.4), 2s adjoint state equations (2.9)-(2.10) and (??).

3. Numerical experiments

The approach we use leads to an optimality system that can be solved numerically.
However, the solving of this coupled optimal control problem raises some issues like
the non di↵erentiability of the BV regularization and the di↵erence of speed scale
(sound versus light) of the two equations. There are many numerical di�culties that
we do not detail by now.

• One of them is related to the non di↵erentiability of the BV regularization term.
One can use dedicated algorithms as Chambolle’s projection algorithm18 for
example. However, we need to study precisely how such a projection algorithm
can be combined with the solving of the adjoint system. Another way could be
to simply use a di↵erentiable approximation of the total variation as TV (D) ⇡p
krDk2 + ", where " > 0 is small.

• The second numerical delicate issue is the coupled state (and adjoint state) sys-
tem solving. The full coupled system has di↵erent time-scales. Indeed, the wave
equation has a characteristic time related to the speed of sound while the one of
the fluence is related to the speed of light. As discussed before, if the light source
is a short pulse (with respect to the speed of sound), then we can modify the
fluence equation by replacing it with the stationary one (dropping the @t term).
This would then replace the source term in the wave equation by a Dirac. Such a
modification would only simplify the derivation of the necessary condition as well
as the numerical implementation. On the other hand, when considering a long
lasting light source, we need to solve the 2 concurrent unstationary equations.
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 The «simplified model» for TAT (no optical effect) 

8
>>>><

>>>>:

@

2
p

@t

2
� div(v2rp) = u0(x)

@j

@t

in (0, T )⇥ B

p(0, ·) = @p

@t

(0, ·) =0 in B

p = 0 in (0, T )⇥ @B,

u0 is the energy deposition function 

8
>>>><

>>>>:

@2p

@t2
� div(v2rp) = Cv2µa1⌦

@I

@t
in (0, T )⇥ B

p(0, ·) = @p

@t
(0, ·) =0 in B

p = 0 in (0, T )⇥ @B,

3. Numerical computation (simplified case)    



8
>>>>>><

>>>>>>:

@2p

@t2
(t, x)� div(v2

s

rp)(t, x) = 0 (t, x) 2 [0, T ]⇥ B,

p(t, x) = 0, (t, x) 2 [0, T ]⇥ @B,

p(0, x) = 1
⌦

(x)�(x)µ
a

(x)I(x) x 2 B,
@p

@t
(0, x) = 0, x 2 B.

where the notation 1
⌦

stands for the characteristic function of the domain ⌦,

defined for almost every x 2 B by

(
µ
a

(x)I(x)� div(D(x)rI(x)) = S(x) x 2 ⌦,

I(x) = 0, x 2 @⌦.
(1)

In this section, we will omit the indices k when we refer to p
k

and I
k

, the

solutions of (??)-(1), for the sake of clarity. Define U
ad

, the set of admissible

controls µ = (µ
a

, D) as

U
ad

=

�
(µ

a

, D)2 [L1
(B)]2 | µ

a

2 [µmin

a

, µmax

a

] andD 2 [Dmin, Dmax

] a.e. inB
 
.
(2)

Using Theorem ??, we define the maps

I : U
ad

�! C0

(0, T ;L2

(⌦)) \ L2

(0, T ;H1

0

(⌦))

(µ
a

, D) 7�! I(µ
a

, D)

(3)

where I(µ
a

, D) satisfies (1) and

p : U
ad

�! C0

(0, T ;H1

0

(B))
(µ

a

, D) 7�! p(µ
a

, D),
(4)

where p(µ
a

, D) is the solution to (??).

The following theorem constitutes the main result of this section.
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(B). More pre-
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a

, D⇤
) in U

ad

; then the

sequence (pn)
n2N defined by pn = p(µn

a

, Dn

) strongly converges up to a subse-

quence to p⇤ = p(µ⇤
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where B⇤
is the L2

-adjoint operator of B.
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The following theorem summarizes these optimality conditions.

Theorem 0.2. Assume

¯µ = (µ̄
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, ¯D) is an optimal solution to Problem (P).

Then, there exists qk
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¯D) such that
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• Inequations (9) and (10) hold.
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Optimality system
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We chose to solve the optimality system by means of the gradient algorithm. 
The forward and backward problems  are solved by means of a leapfrog 
discretization scheme on a staggered grid. In order to avoid handling large 
grids (due to the size of B ), we use an appropriate PML (Perfectly Matched 
Layer) technique
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Reconstruction without D  (=1) - 4 sensors  - 64 pixels - α = 0.1  
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Reconstruction without D  (=1) - 2 sensors (left/right)  - 64 pixels - α = 0.1  
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4 sources (lightning)
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Reconstruction without D  (=1) - 4 sensors  - 64 pixels - α = 0.1  
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