Imaging a periodic waveguide from far field data

> Laurent Bourgeois joint work with Sonia Fliss

> > Laboratoire POEMS CNRS/ENSTA/INRIA Palaiseau, France

Franco-German Summer School Ecole Polytechnique, Palaiseau, 24-28 August, 2015

Statement of the problem

Geometry : a 2D waveguide with periodic real refractive index n_p

Objective : find the infected cell C_j and the support of the defect $q = n^2 - n_p^2$ in C_j from far field scattering data

Already some litterature on inverse scattering for periodic structures (T. Arens, A. Kirsch, A. Lechleiter, ...) : but the objective was to find the unknown periodic geometry of the structure from scattering data (no defect)

Outline of the talk

• First part

- 1. the forward problem (briefly)
- 2. the inverse problem with near field data

• Second part

- 1. the inverse problem with far field data
- 2. numerical experiments

The forward problem

The forward problem : $u = u^s + u^i$

$$\begin{cases} (\Delta + \omega^2 n^2)u = 0 & \text{in} & \Omega_b \\ \partial_2 u = 0 & \text{on} & \Gamma_b \\ \pm \partial_1 u^s = T_{\pm} u^s & \text{on} & S_{\pm} \end{cases}$$

• $n_p \ge c > 0, n_p$ is 1- periodic

• $n \ge c > 0$, contrast $q = n^2 - n_p^2$ with $\overline{D} := \operatorname{supp}(q) \subset C$

- u^i solves $\Delta u^i + \omega^2 n_p^2 u^i = 0$ in Ω and $\partial_2 u^i = 0$ on Γ
- T_{\pm} : Dirichlet to Neumann operator on S_{\pm}

The forward problem

Homogeneous waveguide : the forward problem has a unique solution u in $H^2(\Omega_b)$ expect for at most a countable set of ω Periodic waveguide :

- **Proposition** : assuming n_p is constant near the transverse sections of the cell, the forward problem is of Fredholm type
- **Conjecture** : the D-to-N operator is an analytic function of ω
- **Theorem** : the forward problem has a unique solution u in $H^2(\Omega_b)$ expect for at most a countable set of ω (proof : Fredholm analytical theorem provides uniqueness)

Factorization method (A. Kirsch)

Inverse problem with near field data : we measure on $\hat{S} = S_{-} \cup S_{+}$ the scattered field $\tilde{u}^{s}(\cdot, y)$ associated to the incident field $u^{i} = \overline{G(\cdot, y)}$ on \hat{S} : find D

• Near field operator : \tilde{N} : $L^2(\hat{S}) \to L^2(\hat{S})$

$$(\tilde{N}h)(x) := \int_{\hat{S}} \tilde{u}^s(x, y)h(y) \, ds(y), \quad x \in \hat{S}$$

- Self-adjoint operator : $\tilde{N}_{\sharp} = |\text{Re}\tilde{N}| + |\text{Im}\tilde{N}|$
- Characterization of D (with assumption that $q \ge c > 0$ or $q \le -c$ with c > 0):

$$z \in D \Leftrightarrow G(\cdot, z)|_{\hat{S}} \in R(\tilde{N}_{\sharp}^{\frac{1}{2}})$$

Justification

First step (factorization of near field) : $\tilde{N} = H^*TH$

• Reflectivity operator $T: L^2(D) \to L^2(D)$

$$(Tf)(x) = \omega^2 \operatorname{sgn}(q(x)) \left(f(x) + \sqrt{|q(x)|} v(x) \right), \quad x \in D$$

where $\operatorname{sgn}(q) = q/|q|$ and v solves

$$\begin{cases} -(\Delta v + \omega^2 n^2 v) = \omega^2 (q/\sqrt{|q|})f & \text{in} \quad \Omega_b \\ \partial_2 v = 0 & \text{on} \quad \Gamma_b \\ \pm \partial_1 v = T_{\pm} v & \text{on} \quad S_{\pm} \end{cases}$$

• Herglotz operator $H: L^2(\hat{S}) \to L^2(D)$

$$(Hh)(x) = \sqrt{|q(x)|} \int_{\hat{S}} \overline{G(x,y)} h(y) \, ds(y), \quad x \in D$$

Justification (cont.)

Second step (range test) : $z \in D \Leftrightarrow G(\cdot, z)|_{\hat{S}} \in R(H^*)$ Third step (fondamental theorem) :

Consider Hilbert spaces $X \subset U \subset X^*$ (dense inclusion) and $V = V^*$, operators $F : V \to V$, $H : V \to X$ and $T : X \to X^*$ with $F = H^*TH$ Assumptions :

- 1. H is compact and injective
- 2. $\operatorname{Re}T = T_0 + T_1$, T_0 self-adjoint coercive, T_1 compact
- 3. $\langle (\mathrm{Im}T)\phi, \phi \rangle \geq 0$, for all $\phi \in X$
- 4. T is injective

Statement : for $F_{\sharp} = |\operatorname{Re} F| + |\operatorname{Im} F|$, then $\operatorname{R}(H^*) = \operatorname{R}(F_{\sharp}^{\frac{1}{2}})$

Proof of injectivity of H

Since $\overline{H} = \sqrt{|q|}J$, it suffices to prove injectivity of $J : L^2(\hat{S}) \to L^2(D)$ $(Jh)(x) = \int_{S_-} G(x, y)h_-(y) \, ds(y) + \int_{S_+} G(x, y)h_+(y) \, ds(y) \quad x \in D$

v := Jh is the unique solution of the transmission problem

Proof of injectivity of H (cont.) Assume v = 0 in D

- Since $(\Delta + \omega^2 n_p^2)v = 0$ in Ω_b , unique continuation implies v = 0 in Ω_b , in particular $v_- = 0$ on S_+ and v_+ on S_-
- Using jump relations $[v]_{\pm} = 0$ on S_{\pm} , we obtain $v_{\pm} = 0$ on S_{\pm} and $v_{\pm} = 0$ on S_{\pm}
- By using D-t-N operators T_+ and T_- , v = 0 in Ω_+ and v = 0 in Ω_-
- Using jump relations $[\partial_1 v]_{\pm} = -h_{\pm}$, we obtain $h_+ = 0$ and $h_- = 0$

We conclude h = 0 in \hat{S} : the proof is completed

Near field/far field data

The inverse problem with near field data : we measure on $\hat{S} := S_- \cup S_+$ the scattered field $\tilde{u}^s(\cdot, y)/u^s(\cdot, y)$ associated with the incident field $u^i = \overline{G(\cdot, y)}/G(\cdot, y)$ on \hat{S} : find the support D of the defect

What happens if \hat{S} (support of the data) is far away from D (defect) \longrightarrow **far field data** ?

Factorization method with near field data

Conjugated point source: we measure on \hat{S} the scattered field $\tilde{u}^s(\cdot, y)$ associated to the incident field $u^i = \overline{G(\cdot, y)}$ on \hat{S} : find D

• Near field operator: $\tilde{N} : L^2(\hat{S}) \to L^2(\hat{S})$

$$(\tilde{N}h)(x) := \int_{\hat{S}} \tilde{u}^s(x, y)h(y) \, ds(y), \quad x \in \hat{S}$$

- Factorization: $\tilde{N} = H^*TH$
- Self-adjoint operator: $\tilde{N}_{\sharp} = |\text{Re}\tilde{N}| + |\text{Im}\tilde{N}|$
- Characterization of D (with assumption that $q \ge c > 0$ or $q \le -c$ with c > 0):

$$z \in D \Leftrightarrow G(\cdot, z)|_{\hat{S}} \in R(\tilde{N}_{\sharp}^{\frac{1}{2}})$$

Linear Sampling Method with near field data

Point source : we measure on \hat{S} the scattered field $u^s(\cdot, y)$ associated to the incident field $u^i = G(\cdot, y)$ on \hat{S} : find D

• Near field operator : $N : L^2(\hat{S}) \to L^2(\hat{S})$

$$(Nh)(x) := \int_{\hat{S}} u^s(x, y) h(y) \, ds(y), \quad x \in \hat{S}$$

- Factorization: $N = H^*T\overline{H}$
- Half-characterization of D (with assumption that $q \ge c > 0$ or $q \le -c$ with c > 0):

$$z \in D \Leftarrow G(\cdot, z)|_{\hat{S}} \in R(N)$$

Sampling Methods with near field data

For z in the sampling grid,

Factorization Method: "solve"

$$\tilde{N}_{\sharp}^{\frac{1}{2}}h = G(\cdot, z)|_{\hat{S}}$$

Linear Sampling Method: "solve"

 $Nh = G(\cdot, z)|_{\hat{S}}$

Indicator function of defect D:

 $\Psi(z) = 1/||h(z)||_{L^2(\hat{S})}$

Homogeneous waveguide: the guided modes

• The guided modes : find u such that

$$\begin{cases} \Delta u + \omega^2 u = 0 & \text{dans} & \Omega \\ \partial_{\nu} u = 0 & \text{sur} & \Gamma \end{cases}$$

- θ_p and λ_p (p > 0): Neumann eigenfunctions and eigenvalues of the 1D operator $-\Delta$ in transverse section S
- Guided modes : $u_p^{\pm}(x_1, x_2) = \theta_p(x_2)e^{\pm i\beta_p x_1}, \ \beta_p = \sqrt{\omega^2 \lambda_p}$ for $p \leq P$ (propagating modes) and $\beta_p = i\sqrt{\lambda_p - \omega^2}$ for p > P
- Assumption on ω : $\beta_p \neq 0$

Homogeneous waveguide: the Green function

• Fundamental solution :

$$G(x,y) = i \sum_{p=1}^{+\infty} \frac{e^{i\beta_p |x_1 - y_1|}}{2\beta_p} \theta_p(x_2) \theta_p(y_2)$$

• Far field : for large x_1 and $\pm := \operatorname{sgn}(x_1 - y_1)$

$$G(x,y) = G_{\infty}^{\pm}(x,y) + \mathcal{O}(e^{-\alpha|x_1|}), \quad \alpha > 0$$

with

$$G_{\infty}^{\pm}(x,y) = i \sum_{p=1}^{P} \frac{e^{\pm i\beta_{p}(x_{1}-y_{1})}}{2\beta_{p}} \theta_{p}(x_{2})\theta_{p}(y_{2})$$

Short expression :

$$G_{\infty}^{\pm}(x,y) = i \sum_{p=1}^{P} \frac{u_p^{\pm}(x)u_p^{\mp}(y)}{2\beta_p}$$

Periodic waveguide: the Floquet modes

• Unbounded operator $A(\xi)$ in the cell $C = (-\frac{1}{2}, \frac{1}{2}) \times (0, 1)$:

$$A(\xi) = -\frac{1}{n_p^2} \Delta : L^2(C, n_p^2 dx_1 dx_2) \longrightarrow L^2(C, n_p^2 dx_1 dx_2)$$
$$D(A(\xi)) = \{ u \in H^1(C), \ \Delta u \in L^2(C), \$$

 $\partial_2 u = 0 \text{ on } \partial C \cap \Gamma, \ u \in \operatorname{QP}_{\xi}(C) \}$

 $\operatorname{QP}_{\xi}(C) := \xi$ -quasiperiodic functions for $\xi \in (-\pi, \pi]$

 $u(1/2, x_2) = e^{i\xi}u(-1/2, x_2), \quad \partial_1 u(1/2, x_2) = e^{i\xi}\partial_1 u(-1/2, x_2)$

• $A(\xi)$ is self-adjoint, positive and has compact resolvent : eigenvalues $\lambda_n(\xi)$, eigenfunctions $\phi_n(\cdot;\xi) \in H^2(C)$

$$0 \le \lambda_1(\xi) \le \lambda_2(\xi) \le \dots \le \lambda_n(\xi) \longrightarrow +\infty$$

Periodic waveguide: the Floquet modes $\int_{r_{1}}^{x_{2}} \int_{C_{j-2}} \int_{C_{j-1}} \int_{C_{j}} \int_{C_{j}} \int_{C_{j+1}} \int_{C_{j+1}}^{\Omega} \int_{C_{j+1}$

• Find u s.t. for some $\xi \in (-\pi, \pi]$, $u \in \operatorname{QP}_{\xi}(C_j)$ for all $j \in \mathbb{Z}$ and

$$(\Delta + \omega^2 n_p^2)u = 0$$
 in Ω
 $\partial_{\nu} u = 0$ on Γ

For such u, we have $A(\xi)u = \omega^2 u$ and $u = \sum_n \alpha_n \phi_n(\cdot; \xi)$ in C

$$\Rightarrow \sum_{n} \alpha_n \lambda_n(\xi) \phi_n = \sum_{n} \alpha_n \omega^2 \phi_n \quad \Rightarrow \quad \alpha_n = 0 \quad \text{or} \quad \lambda_n(\xi) = \omega^2$$

• Floquet modes : for $(x, j) \in C \times \mathbb{Z}$

 $u_n(x_1+j,x_2;\xi) = \phi_n(x_1,x_2;\xi)e^{ij\xi}, \quad \forall n \in I(\omega), \ \forall \xi \in \Xi_n(\omega)$

with $I(\omega) = \{n, \exists \xi, \lambda_n(\xi) = \omega^2\}$ and $\Xi_n(\omega) = \{\xi, \lambda_n(\xi) = \omega^2\}$

Properties of the Floquet modes

• Symmetry of eigenvalues and eigenfunctions of $A(\xi)$:

$$\lambda_n(-\xi) = \lambda_n(\xi), \quad \phi_n(\cdot; -\xi) = \overline{\phi_n(\cdot; \xi)}$$

• Assumption on ω : $\forall n \in I(\omega), \forall \xi \in \Xi_n(\omega)$

 $\lambda_n(\xi)$ is simple and $\lambda'_n(\xi) \neq 0$

• Group velocity :

$$V_n(\xi) = \frac{1}{2}\lambda_n^{-1/2}\lambda_n'(\xi)$$

For $\lambda'_n(\xi) > 0$,

$$u_n^+(\cdot;\xi) := u_n(\cdot;\xi), \quad u_n^-(\cdot;\xi) := u_n(\cdot;-\xi)$$

• Symmetry of Floquet modes :

$$u_n^-(\cdot;\xi) = u_n^+(\cdot;\xi)$$

Dispersion curves

 $I(\omega) = \{2\} \quad \Xi_2(\omega) = \{\pm\xi_1, \pm\xi_2, \pm\xi_3\}$

Periodic waveguide: the Green function

The fund. sol. G is given, $\forall x, y \in C$ and $\forall p, q \in \mathbb{Z}$, by:

$$G(x_{1}+p,x_{2};y_{1}+q,y_{2}) = \frac{1}{2\pi} \sum_{n \notin I(\omega)} \int_{-\pi}^{\pi} \frac{\phi_{n}(x;\xi)\phi_{n}(y;\xi)}{\lambda_{n}(\xi) - \omega^{2}} e^{i(p-q)\xi} d\xi$$
$$+ \frac{1}{2\pi} \sum_{n \in I(\omega)} \left\{ \text{p.v.} \int_{-\pi}^{\pi} \frac{\phi_{n}(x;\xi)\overline{\phi_{n}(y;\xi)}}{\lambda_{n}(\xi) - \omega^{2}} e^{i(p-q)\xi} d\xi$$
$$+ i\pi \sum_{\xi \in \Xi_{n}(\omega)} \frac{\phi_{n}(x;\xi)\overline{\phi_{n}(y;\xi)}}{|\lambda_{n}'(\xi)|} e^{i(p-q)\xi} \right\}$$

Reciprocity:

$$\forall x, y \in \Omega, \quad G(x, y) = G(y, x)$$

Periodic waveguide: the Green function

Far field:

 $\forall x, y \in C, \forall q \in \mathbb{Z}, \text{ for large } p \in \mathbb{Z} \text{ and } \pm := \operatorname{sgn}(p-q)$ $G(x_1 + p, x_2; y_1 + q, y_2) = G_{\infty}^{\pm}(x_1 + p, x_2; y_1 + q, y_2) + \mathcal{O}(e^{-\alpha|p|}), \quad \alpha > 0$ with

$$G_{\infty}^{\pm}(x_{1}+p,x_{2};y_{1}+q,y_{2}) = i \sum_{\substack{n \in I(\omega) \\ \pm \lambda_{n}'(\xi) > 0}} \sum_{\substack{\xi \in \Xi_{n}(\omega) \\ |\lambda_{n}'(\xi)|}} \frac{\phi_{n}(x;\xi)\phi_{n}(y;\xi)}{|\lambda_{n}'(\xi)|} e^{i(p-q)\xi}$$

Short expression:

$$\forall x, y \in \Omega, \quad G_{\infty}^{\pm}(x; y) = i \sum_{n \in I(\omega)} \sum_{\substack{\xi \in \Xi_n(\omega) \\ \lambda'_n(\xi) > 0}} \frac{u_n^{\pm}(x; \xi) u_n^{\mp}(y; \xi)}{\lambda'_n(\xi)}$$

Far field approximation (LSM)

• Far field of the Green function G:

$$G_{\infty}^{\pm}(x,y) = i \sum_{n \in I(\omega)} \sum_{\xi \in \Xi_n(\omega), \lambda'_n(\xi) > 0} \frac{u_n^{\pm}(x;\xi)u_n^{\mp}(y;\xi)}{\lambda'_n(\xi)}$$

• Far field of the scattered field associated with $G(\cdot, y)$:

$$u_{\infty}^{\pm}(x,y) = i \sum_{n \in I(\omega)} \sum_{\xi \in \Xi_n(\omega), \lambda'_n(\xi) > 0} \frac{u_n^{s\pm}(x;\xi)u_n^{\mp}(y;\xi)}{\lambda'_n(\xi)}$$

where $u_n^{s\pm}(\cdot;\xi)$: scattered field associated with $u_n^{\pm}(\cdot;\xi)$

- Far field operator N_{∞} : kernel $u^{s}(x, y)$ replaced by kernel $u_{\infty}(x, y)$
- \rightarrow Far field formulation for LSM: "solve"

$$N_{\infty} h = G_{\infty}(\cdot, z)|_{\hat{S}}$$

Far field approximation (Factorization Method) Far field of the Green function G:

$$G_{\infty}^{\pm}(x,y) = i \sum_{n \in I(\omega)} \sum_{\xi \in \Xi_n(\omega), \lambda'_n(\xi) > 0} \frac{u_n^{\pm}(x;\xi)u_n^{+}(y;\xi)}{\lambda'_n(\xi)}$$

Recall the symmetry of Floquet modes:

$$u_n^-(\cdot,\xi) = \overline{u_n^+(\cdot,\xi)}, \quad \forall n \in I(\omega), \quad \forall \xi \in \Xi_n(\omega), \quad \lambda'_n(\xi) > 0$$

Far field of the conjugated Green function $G(\cdot, y)$:

$$\overline{G_{\infty}^{\pm}(x,y)} = -i \sum_{n \in I(\omega)} \sum_{\xi \in \Xi_n(\omega), \lambda'_n(\xi) > 0} \frac{u_n^{\mp}(x;\xi)u_n^{\pm}(y;\xi)}{\lambda'_n(\xi)}$$

Far field of the scattered field associated with $G(\cdot, y)$:

$$\tilde{u}_{\infty}^{\pm}(x,y) = -i \sum_{n \in I(\omega)} \sum_{\xi \in \Xi_n(\omega), \lambda'_n(\xi) > 0} \frac{u_n^{s+}(x;\xi)u_n^{\pm}(y;\xi)}{\lambda'_n(\xi)}$$

Kernel $\tilde{u}^s(x,y)$ of \tilde{N} is replaced by kernel $\tilde{u}_{\infty}(x,y)$ of $\tilde{N}_{\infty} \to$ far field formulation of FM: "solve" $N_{\infty,\sharp}^{1/2}h = G_{\infty}(\cdot,z)|_{\hat{S}}$

Projection (LSM)

Conclusion : in the far field formulation of LSM/FM, the data are the scattered fields $u_n^{s\pm}(\cdot;\xi)$ associated with the propagating Floquet modes.

$$(N_{\infty}h)(x) = i \sum_{n \in I(\omega)} \sum_{\substack{\xi \in \Xi_n(\omega) \\ \lambda'_n(\xi) > 0}} \frac{u_n^{s+}(x;\xi)e^{iM\xi}}{\lambda'_n(\xi)} \int_0^1 \overline{\phi_n(-1/2, y_2;\xi)} h_-(y_2) \, ds(y_2)$$

$$+i\sum_{n\in I(\omega)}\sum_{\substack{\xi\in\Xi_n(\omega)\\\lambda'_n(\xi)>0}}\frac{u_n^{s-}(x;\xi)e^{iN\xi}}{\lambda'_n(\xi)}\int_0^1\phi_n(1/2,y_2;\xi)h_+(y_2)\,ds(y_2).$$

Two complete basis $(\psi_m^{\pm})_{m>0}$ of $L^2(]0,1[)$:

$$u_n^{s+}(\cdot;\xi)|_{S_-} = \sum_{k>0} U_{nk}^{+-}(\xi)\psi_k^{-}, \quad u_n^{s+}(\cdot;\xi)|_{S_+} = \sum_{k>0} U_{nk}^{++}(\xi)\psi_k^{+},$$
$$u_n^{s-}(\cdot;\xi)|_{S_-} = \sum_{k>0} U_{nk}^{--}(\xi)\psi_k^{-}, \quad u_n^{s-}(\cdot;\xi)|_{S_+} = \sum_{k>0} U_{nk}^{-+}(\xi)\psi_k^{+}.$$

Projection of left hand side (LSM)

$$\begin{split} (N_{\infty}h)|_{S_{-}} &= i\sum_{k>0} [\cdot]_{-} \psi_{k}^{-} \quad (N_{\infty}h)|_{S_{+}} = i\sum_{k>0} [\cdot]_{+} \psi_{k}^{+} \\ [\cdot]_{-} &= \sum_{n \in I(\omega)} \sum_{\substack{\xi \in \Xi_{n}(\omega) \\ \lambda_{n}'(\xi) > 0}} \left(\frac{U_{nk}^{+-}(\xi)e^{iM\xi}(\sum_{m,m'>0} \Phi_{nm}^{-}(\xi)M_{mm'}^{-}h_{m'}^{-})}{\lambda_{n}'(\xi)} \right) \\ &+ \frac{U_{nk}^{--}(\xi)e^{iN\xi}(\sum_{m,m'>0} \Phi_{nm}^{+}(\xi)M_{mm'}^{+}h_{m'}^{+})}{\lambda_{n}'(\xi)} \right) \\ [\cdot]_{+} &= \sum_{n \in I(\omega)} \sum_{\substack{\xi \in \Xi_{n}(\omega) \\ \lambda_{n}'(\xi) > 0}} \left(\frac{U_{nk}^{++}(\xi)e^{iM\xi}(\sum_{m,m'>0} \Phi_{nm}^{-}(\xi)M_{mm'}^{-}h_{m'}^{-})}{\lambda_{n}'(\xi)} \right) \\ &+ \frac{U_{nk}^{-+}(\xi)e^{iN\xi}(\sum_{m,m'>0} \Phi_{nm}^{+}(\xi)M_{mm'}^{+}h_{m'}^{+})}{\lambda_{n}'(\xi)} \right) \end{split}$$

Projection of right hand side (LSM)

$$G_{\infty}(\cdot,z)|_{S_{-}} = i \sum_{k>0} \left[\sum_{\substack{n \in I(\omega) \\ \lambda'_{n}(\xi) > 0}} \sum_{\substack{\xi \in \Xi_{n}(\omega) \\ \lambda'_{n}(\xi) > 0}} \left(\frac{e^{i(M+q_{z})\xi} \phi_{n}(z_{1},z_{2};\xi) \Phi_{nk}^{-}(\xi)}{\lambda'_{n}(\xi)} \right) \right] \psi_{k}^{-}$$
$$G_{\infty}(\cdot,z)|_{S_{+}} = i \sum_{k>0} \left[\sum_{\substack{n \in I(\omega) \\ \xi \in \Xi_{n}(\omega) \\ \lambda'_{n}(\xi) > 0}} \left(\frac{e^{i(N-q_{z})\xi} \overline{\phi_{n}(z_{1},z_{2};\xi)} \Phi_{nk}^{+}(\xi)}{\lambda'_{n}(\xi)} \right) \right] \psi_{k}^{+}$$

 \longrightarrow Many possible choices for the basis (ψ_k^{\pm})

Some numerical experiments Linear Sampling Method

12 Floquet modes1% noise

Choice of projection basis :

Basis θ_p

Traces of Floquet modes

Higher contrast :

12 Floquet modes1% noise

Comparison with homogeneous waveguide :

12 guided modes1% noise

12 Floquet modes1% noise

12 Floquet modes10% noise

12 Floquet modes1% noise

6 Floquet modes 1% noise

Some bibliography

- 1. The linear sampling method in a waveguide: a modal formulation (L.B. and E. Lunéville, 2008)
- Solutions of the time-harmonic wave equation in periodic waveguides: asymptotic behaviour and radiation condition (S. Fliss and P. Joly, accepted)
- 3. On the identification of defects in a periodic waveguide from far field data (L.B. and S. Fliss, 2014)
- 4. Guided waves by electromagnetic gratings and non-uniqueness examples for the diffraction problem (A.-S. Bonnet-Ben Dhia, 1994)
- 5. Variational formulations for scattering in a three-dimensional acoustic waveguide (T. Arens, D. Gintides and A. Lechleiter, 2008)

Some bibliography (cont.)

- 6. QUALITATIVE METHODS IN INVERSE SCATTERING THEORY (F. Cakoni and D. Colton, 2006)
- 7. THE FACTORIZATION METHOD FOR INVERSE PROBLEMS (A. Kirsch and N. Grinberg, 2008)
- The factorization method is independent of transmission eigenvalues (A. Lechleiter, 2009)
- 9. The factorization method for an acoustic wave guide (A. Charalambopoulos, D. Ginides, K. Kiriaki and A. Kirsch, 2006)
- Direct and inverse medium scattering in a three-dimensional homogeneous planar waveguide (T. Arens, D. Gintides and A. Lechleiter, 2011)

Some perspectives and open questions

- The forward scattering problem for periodic waveguides: an open question
- Bi-periodic structures (many applications): defining the far field is an open question
- Find a junction between two periodic half-waveguides
- Imaging a (periodic) waveguide in the time domain and with realistic data

• • • •

Thank you for your attention !