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Scattering by an Inhomogeneous Media
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∆us + k2us = 0 in R3 \ D
∇ · A∇u + k2nu = 0 in D

u = us + ui in ∂D
ν · A∇u = ν · ∇(us + ui ) in ∂D

lim
r→∞

r
(
∂us

∂r
− ikus

)
= 0

The matrix valued function A with C1(D) entries and n ∈ L∞(D) are
such that <(A) ≥ α > 0, =(A) ≤ 0, <(n) > 0 and =(n) ≥ 0. Here k is
the wave number and is proportional to the frequency ω, ui is the
incident wave and S is the unit sphere.

∇ · A∇us + k2nus = ∇ · (I − A)∇ui + k2(1− n)ui in R3.

A, n are extended by I, 1 respectively and us := u − ui in D.



Far Field Operator

Scattering Data

u∞(x̂ ,d , k), for d ∈ Si ⊂ S, x̂ ∈ Sm ⊂ S and (possibly) k ∈ [k1, k2].

The far field operator F : L2(S)→ L2(S) is defined by

(Fg)(x̂) :=

∫
S

u∞(x̂ ,d , k)g(d)dsd .

Fg is the far field pattern of the scattered field corresponding to
the incident field

vg(x) :=

∫
S

eikx·dg(d)dsd

(known as a Herglotz wave function).

F is related to the scattering operator S by

S = I +
ik
2π

F



Far Field Operator

Theorem

F : L2(S)→ L2(S) is injective and has dense range if and only if there
does not exist a nontrivial solution to the transmission eigenvalue
problem

∆v + k2v = 0 in D
∇ · A∇w + k2nw = 0 in D

w = v on ∂D
ν · A∇w = ν · ∇v on ∂D

such that v := vg is a Herglotz wave function.

Values of k ∈ C for which the transmission eigenvalue problem has
non trivial solution are called transmission eigenvalues.

Transmission eigenvalues relates to non-scattering frequencies.



Qualitative Methods for the Support

The linear sampling method has been widely used for various
inverse scattering problems, limited aperture data etc.

CAKONI-COLTON (2014), A Qualitative Approach to Inverse
Scattering Theory, Springer.

Factorization methods is mathematically rigorous for exact data
and justified for noisy data.

A. KIRSCH AND N. GRINBERG (2008), The Factorization
Method for Inverse Problems, Oxford University Press.

The generalized linear sampling method.

AUDIBERT - HADDAR (2014) - Inverse Problems.

All these method explore the (linear) far field operator to construct an
indicator function for the support D of the inhomogeneity

CAKONI - HADDAR (2012) - Transmission Eigenvalues, Inside
Out, MSRI.



Transmission Eigenvalue Problem

Having determined the support D without knowing anything about the
material properties we would like to get some information about the
constitutive parameters A and n.

For this we appeal to the transmission eigenvalue problem for
v ∈ H1(D) and w ∈ H1(D) such that

∆v + k2v = 0 in D
∇ · A∇w + k2nw = 0 in D

w = v on ∂D
ν · A∇w = ν · ∇v on ∂D

Related Questions

Connect transmission eigenvalues to A and n.

Determine transmission eigenvalues from scattering data?



Analysis of the Interior Transmission Problem

and the Transmission Eigenvalue Problem



Interior Transmission Problem

From now on to introduce our ideas we assume that both A and n are
real valued.

The interior transmission problem reads: Find v ∈ H1(D) and
w ∈ H1(D) such that

∆v + k2v = `1 in D
∇ · A∇w + k2nw = `2 in D

w − v = 0 on ∂D
ν · A∇w − ν · ∇v = h on ∂D

for `1 ∈ L2(D), `2 ∈ L2(D) and h ∈ H−1/2(∂D).



Notations

amin := inf
x∈D

inf
|ξ|=1

ξ ·A(x) ξ > 0, and amax := sup
x∈D

sup
|ξ|=1

ξ ·A(x) ξ <∞.

nmin := inf
x∈D

n(x) > 0 and nmin := sup
x∈D

n(x) <∞.

Consider a δ-neighborhood N of the boundary ∂D

N := {x ∈ D : dist(x , ∂D) < δ}

a? := inf
x∈N

inf
|ξ|=1

ξ · A(x) ξ > 0 and a? := sup
x∈N

sup
|ξ|=1

ξ · A(x)ξ <∞

n? := inf
x∈N

n(x) > 0 and n? := sup
x∈N

n(x) <∞.



Modified Interior Transmission Problem
The modified transmission eigenvalue problem

∆v − κ2v = `1 in D
∇ · A∇w − κ2n0w = `2 in D

w − v = 0 on ∂D
ν · A∇w − ν · ∇v = h on ∂D

for some choice of κ > 0 and n0 > 0 is a compact perturbation of the
interior transmission problem in

H(D) :=
{

(w , v) ∈ H1(D)× H1(D) : w − v ∈ H1
0 (D)

}
.

In variational form∫
D

A∇w · ∇w ′ dx −
∫
D

∇v · ∇v ′ dx + κ2
∫
D

n0w w ′ dx − κ2
∫
D

v v ′ dx

=

∫
∂D

hw ′ ds +

∫
D
`1v ′ dx −

∫
D
`2w ′ dx , for all (w ′, v ′) ∈ H(D).



Modified Interior Transmission Problem

Assume that either a? < 1 and choose n0 < 1, or a? > 1 and choose
n0 > 1. Then for κ > 0 large enough the sesquilinear form

a((w , v), (w ′, v ′)) :=

∫
D

A∇w · ∇w ′ dx −
∫
D

∇v · ∇v ′ dx + κ2
∫
D

n0w w ′ dx − κ2
∫
D

v v ′ dx

is T -coercive, i.e. aT ((w , v), (w ′, v ′)) := a((w , v),T(w ′, v ′)) is
coercive with the isomorphism T : H(D)→ H(D) defined by

T : (w , v) 7→ (w − 2χv ,−v) or T : (w , v) 7→ (w ,−v + 2χw),

respectively, where χ is C∞ cut off function supported in N .

Proof on the board

BONNET-BEN DHIA - CHESNEL, LUCAS - HADDAR (2011) - C. R.
Math. Acad. Sci. Paris



Transmission Eigenvalue Problem

If either a? < 1 or a? > 1 then the interior transmission problem is well
posed provided that k ∈ C is not a transmission eigenvalue.

Under the above assumptions, to show discreteness of transmission
eigenvalues it suffices to find one k ∈ C that is not a transmission
eigenvalue.

If either a? < 1 and n? < 1, or a? > 1 and n? > 1 then the set of
transmission eigenvalues is discrete in C with +∞ as the only
possible accumulation point.

If either amax < 1 or amin > 1, and
∫

D
(n − 1)dx 6= 0, then the set of

transmission eigenvalues is discrete in C with +∞ as the only
possible accumulation point.



Transmission Eigenvalue Problem: n ≡ 1 case.

The transmission eigenvalue problem for n ≡ 1 can be written for
w = A∇w ∈ L2(D), v = ∇v ∈ L2(D) and N := A−1 as

∇(∇ · v) + k2v = 0 in D
∇(∇ ·w) + k2N w = 0 in D

ν ·w = ν · v on ∂D
∇ ·w = ∇ · v on ∂D

with w− v ∈ H0(D) where

H0(div,D) : =
{

u ∈ L2(D)2, ∇ · u ∈ L2(D), ν · u = 0 on ∂D
}

H0(D) : =
{

u ∈ H0(div,D) : ∇ · u ∈ H1
0 (D)

}
.

which for u := w− v ∈ H0(D) is equivalent to∫
D

(N − I)−1 (∇∇ · u + k2u
)
·
(
∇∇ · u′ + k2N u′

)
dx = 0, ∀ u′ ∈ H0(D).



Transmission Eigenvalue Problem

At this point we assume that either amax < 1 or amin > 1.
and consider only k > 0.

Take amax < 1 which implies that ξ · (N − I)−1ξ ≥ α|ξ|2, α =
amax

1− amax
.

Ak (u,u′) :=
(
(N − I)−1 (∇∇ · u + k2u

)
,
(
∇∇ · u′ + k2u′

))
D+k4 (u,u′)D ,

B(u,u′) := (∇ · u,∇ · u′)D .

Here (·, ·)D denotes the L2(D)-inner product.

The eigenvalue problem becomes

Ak (u,u′)− k2B(u,u′) = 0 or Ak u− k2Bu = 0

(Ak u,u′)H0(D) = Ak (u,u′) and (Bu,u′)H0(D) = B(u,u′).



Transmission Eigenvalue Problem

Ak (u,u)− k2B(u,u) ≥
(
α− α2

ε

)
‖∇∇ · u‖2

L2(D) + (1 + α− ε)k2‖u‖2
L2(D)

− k2 1
λ1(D)

‖∇∇ · u‖2
L2(D)

hence from the Poincaré inequality

‖∇ · u‖2
L2(D) ≤

1
λ1(D)

‖∇∇ · u‖2
L2(D)

there are no transmission eigenvalues if k2 < α/(1 + α)λ1(D) where
λ1(D) is the first Dirichlet eigenvalue of −∆ on D.

A Faber-Krahn type inequality for TE – All transmission eigenvalues
satisfy

k2 > λ1(D)amax



Existence of Real Transmission Eigenvalues

The mapping k → Ak is continuous from (0, +∞) to the set of
self-adjoint coercive operators from H0(D)→ H0(D).

B : H0(D)→ H0(D) is self-adjoint, compact and non-negative.

There exists an increasing sequence of eigenvalues λj (k)j≥1 of the
generalized eigenvalue problem

Ak u − λ(k)Bu = 0 in H0(D)

such that
λj (k) = min

W⊂Uj

max
u∈W\{0}

(Ak u,u)

(Bu,u)

where Uj denotes the set of all j-dimensional subspaces W of H0(D),
W ∩ N(B) = {0}

Then k is a transmission eigenvalue if and only if satisfies

λj (k) = k2



Existence of Real Transmission Eigenvalues

Max-min principle for λj (τ) implies that if there exists k0 > 0 and
k1 > 0 such that

Ak0 − k2
0B is positive on H0(D),

Ak1 − k2
1B is non positive on a m dimensional subspace of H0(D)

then each λj (k) = k2 for j = 1, . . . ,m, has at least one solution in
[k0, k1], i.e. there exists m transmission eigenvalues counting
multiplicity within the interval [k0, k1].

It is now obvious that determining such constants k0 and k1 provides
the existence of transmission eigenvalues as well as the desired
isoperimetric inequalities.



Existence of Real Transmission Eigenvalues

Theorem (CAKONI-GINTIDES-HADDAR)

Assume that amax < 1. Then, there exists an infinite discrete set of
real transmission eigenvalues kj accumulating at +∞. Furthermore

kj (amin,B1) ≤ kj (amin,D) ≤ kj (A(x),D) ≤ kj (amax ,D) ≤ kj (amin,B2)

where B2 ⊂ D ⊂ B1.

If A := aI, 1 6= a > 0 is constant, the first transmission eigenvalue
uniquely determines the constant index of refraction.

Similar results can be obtained for the case when amin > 1.



Transmission Eigenvalues: n 6≡ 1 case
The analysis of the existence of real transmission eigenvalues when
n 6≡ 1 is more complicated and restrictive.

CAKONI-KIRSCH (2010) - Int. J. Comput. Sci. Math.

If the contrasts A− I and n − 1 have the same fixed sign, then
there exists an infinite discrete set of real transmission
eigenvalues accumulating at +∞.

If the contrasts A− I and n − 1 have the opposite fixed sign,
then there exits at least one real transmission eigenvalue
providing that n is small enough.

HARRIS-CAKONI-SUN (2014) - Inverse Problems

Assume that there is D0 ⊂ D (void) where A = I and n = 1, otherwise
in A and n satisfy the above assumption. Then there exists at least
one real transmission eigenvalue provided that D0 is sufficiently small
and this eigenvalue is depends monotonically increasing on the void
size.



Transmission Eigenvalues: n 6≡ 1 case

Set u = w − v ∈ H1
0 (D). Find v = vu by solving a Neuman type

problem: For every ψ ∈ H1(D)∫
D

(A− I)∇v · ∇ψ − k2(n − 1)vψ dx =

∫
D

A∇u · ∇ψ − k2nuψ dx .

Having u → vu, we require that v := vu satisfies ∆v + k2v = 0.

Thus we define Lk : H1
0 (D)→ H1

0 (D)

(Lk u, φ)H1
0 (D) =

∫
D
∇vu · ∇φ− k2vu · φdx , φ ∈ H1

0 (D).

Then the transmission eigenvalue problem is equivalent to

Lk u = 0 in H1
0 (D) which can be written

(I + L−1/2
0 CkL

−1/2
0 )u = 0 in H1

0 (D)

L0 self-adjoint positive definite and Ck self-adjoint compact.



Determination of Transmission Eigenvalues

from Scattering Data



Determination of Transmission Eigenvalues

First approach is based on the Linear Sampling Method

CAKONI-COLTON-HADDAR (2010) C. R. Math. Acad. Sci. Paris
The linear sampling method explores the far field equation

(Fg)(x̂) = Φ∞(x̂ , z, k), for g ∈ L2(S), z ∈ D, k ∈ [k0, k1]

As you know "solutions" to this equations are such that the Herglotz
function vz := vg(x) =

∫
S eikx·dg(d) ds and wz solve

∆vz + k2vz = 0 in D
∇ · A∇wz + k2nwz = 0 in D

wz − vz = Φ(·, z) on ∂D
ν · A∇wz − ν · ∇vz = ν · ∇Φ(·, z) on ∂D



Determination of Transmission Eigenvalues

Fg = Bvg

with the compact operator B :
{

∆v + k2v = 0, v ∈ H1(D)
}
→ L2(S)

B : ui 7→ us
∞, with ∇ · A∇us + k2nus = ∇ · (I − A)∇ui + k2(1− n)ui .

Hence we have that
Bvz = Φ∞(x̂ , z, k).

If k is not a transmission eigenvalue there exists a sequence of
gz
ε ∈ L2(D) such that

‖Fgz
ε − Φ∞(·, z, k)‖L2(S) → 0 ε→ 0

and the Herglotz function vgz
ε
→ vz in H1(D)

If k is a transmission eigenvalue and gz
ε as above, vgz

ε
can not be

bounded in H1(D) norm as ε→ 0, for almost all z ∈ D.
Proof on the board



Determination of Transmission Eigenvalues
Can the same be said about the Tikhonov regularized solution gz

δ of
the far field equation with noisy far field operator F δ, i.e. the unique
minimizer gz

δ of

‖F δgz
δ − Φ∞(·, z)‖2

L2(S) + ε‖gz
δ‖2

L2(S)

where ε is the Tikhonov regularization parameter?

If F has dense range it is easy to show that

lim
δ→0
‖F δgz

δ − Φ(·, z)‖L2(S) = 0.

Thus for almost all z ∈ D, if k is a transmission eigenvalue
limδ→0 ‖vgz

δ
‖H1(D) =∞.

If k is not a transmission eigenvalue limδ→0 ‖vgz
δ
‖H1(D) exists.

The proof of the latter involves the factorization method (Arens 2004)



Computation of Transmission Eigenvalues
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D square 2× 2, A = I and n = 16. The far field equation is solved for
several source points z inside D using 42 incoming directions and
measurements. Red dots indicate exact eigenvalues.



Inside-Outside Duality

Characterize the transmission eigenvalues k from the behavior of the
eigenvalues of the far field operator Fk : L2(S)→ L2(S)

(Fk g)(x̂) :=

∫
S

u∞(x̂ ,d , k)g(d)dsd

KIRSCH-LECHLEITER (2013) - Inverse Problems

LECHLEITER-PETERS (2015) - Com. Math. Sci.

Essential is a symmetric factorization of the far field operator

Fk = Hk Tk H∗k

where (loosely) Hk : L2(S)→ Xk (D) is such that H∗k has dense range,
Tk : Xk (D)→ Xk (D) is compact perturbation of a coercive operator
and its imaginary part satisfies a sign condition.



Inside-Outside Duality
Assume that A = I and either n > 1 or n < 1, or n = 1 and either
A > I or A < I. We call q the contrast, i.e. q = n − 1 or q = I − A.

Facts on the compact operator Fk (recall Sk = I + ik
2πFk ).

For real A and n, Fk is normal, i.e. Fk F ∗k = F ∗k Fk .
Thus, Sk is unitary, i.e. SkS∗k = S∗k Sk = I.

As such Fk has an infinite number of eigenvalues λj (k)
accumulating to 0: they lie on the circle in C

|λ|2 − 4π
k
=(λ) = 0.

For k not a transmission eigenvalue, as j →∞,
λj (k)/|λj (k)| → −1 if q > 0 and λj (k)/|λj (k)| → 1 if q < 0.

Fix q > 0, then the smallest phase eigenvalue λ∗(k) is well
defined, i.e.

ϑ∗(k) := min
{
ϑj (k) ∈ [0, π) : where λj (k) = rj (k)eiϑj (k)

}
.



Inside-Outside Duality

Inside-Outside Duality (KIRSCH, LECHLEITER, PETERS)

If q > 0, and
lim

k0−ε<k↗k0

ϑ∗(k) = 0

and
lim

k0+ε>k↘k0

ϑ∗(k) = 0

for small enough ε > 0. Then k0 > 0 is a transmission
eigenvalue.

For q < 0 the above hold if the limits are π.

The converse hods true for at least the first eigenvalue provided
that the contrast q is perturbation of a sufficiently large or small
constant.



TE and Non-desctructive Testing

For a given (unknown) anisotropic media A, we find an isotropic
homogenous media a0 that has the first transmission eigenvalue the
same as the (measured) first transmission eigenvalue for the
anisotropic media. Monotonicity properties gives that this a0 is
between Amax and Amin.

Numerical Example: We consider D := [−1, 1]× [−1, 1] and fix n = 2

A τ1 Predicted a0

diag(5.5,6.5) 1.9657 5.95
diad(5,7) 1.9696 5.79

diag(6,6.5) 1.9591 6.24
diag(6,7) 1.9547 6.45



TE and Non-desctructive Testing
D := [−1,1]2, A = diag(5,6), n = 2, void D0 := Bε(0), A0 = I, n0 = 1

HARRIS-CAKONI-SUN (2014) - Inverse Problems
Harris, Cakoni and Sun

Figure 5. Graph of first transmission eigenvalue k1 v.s. the size of a (large) circular

void for A = diag(5, 6) and n = 2, and D the unit circle and the square [�1, 1]⇥[�1, 1].

Table 4. First TEV for various void sizes computed by the FEM

✏ 0.2 0.19 0.18 0.17 0.16 0.15 0.14 0.13 0.12 0.11 0.1

Circle 9.53 9.27 9.02 8.77 8.54 8.31 8.08 7.86 7.64 7.43 7.22

Square 7.76 7.57 7.39 7.21 7.04 6.87 6.70 6.53 6.37 6.21 6.05

eigenvalue is computed by solving the far field equation.

Table 5. Dependence of first transmission eigenvalue on void’s position

location (0, 0) (0.6, 0) (0.3, 0.7) (-0.2, 0.4) (0.6, 0.6)

A1/4; k1 2.90 2.92 2.92 2.96 2.92

A1/9; k1 1.77 1.80 1.78 1.80 1.78

The monotonicity property could be used to obtain information about the volume of

the void D1. Given the first transmission eigenvalue for fixed given material properties,

we wish to find information about the size of the void. Hence, we consider the inverse

problem of finding the (additive) area of a void(s) from the first transmission eigenvalue

and again fix A = Diag(5, 6), n = 2. To do so we find an ✏⇤ such that a void of the

form B✏⇤(0, 0) satisfies k1(void(s)) ⇡ k1(B✏⇤(0, 0)). Using this idea we try to reconstruct

the area of multiple voids by using the first transmission eigenvalue computed by the

FEM. We put two circular voids in the domains considered above, i.e. a disk of radius

1 and a 2 ⇥ 2 square. The voids both have radii 0.1 and be centered at (0, 0) and

(0.5, 0.5) respectively. We compute the first transmission eigenvalue in each case, then

23



Spectral Analysis of Transmission Eigenvalue Problem

Where in the complex plane do transmission eigenvalues lie?

HITRIK-KRUPCHYK-OLA-PAIVARINTA (2011) - Math.
Research Letters

Comprehensive spectral theory for transmission eigenvalue problem
for isotropic media.

ROBBIANO (2013) - Inverse Problems

Comprehensive spectral theory with Weyl asymptotic bounds for
transmission eigenvalue problem for anisotropic media.

LAKSHTANOV-VAINBERG (2012) - SIAM J. Math. Analysis -
Inverse Problems



Spectral Theory of the Transmission Eigenvalue Problem

for Spherically Stratified Media



Spherically Stratified Medium

The transmission eigenvalue problem for spherically stratified media
is to find nontrivial v ,w ∈ L2(D), v − w ∈ H2

0 (D) such that

∆v + k2v = 0 in B
∆w + k2nw = 0 in B

w = v on ∂B
∂w
∂r

=
∂v
∂r

on ∂B

where B := {x : |x | < a}.

Transmission eigenvalues are non-scattering frequencies.

The far field operator is not injective and does not have dense range.



Spherically Stratified Medium

Restricting to spherically stratified solutions, we make the ansatz

v(r) = a0
sin kr

kr
w(r) = b0

y(r)

r
where y(r) is the unique solution of the ODE

y ′′ + k2n(r)y = 0
y(0) = 0, y ′(0) = 1

Since y(a) = a0 j0(a), y ′(a) = a0 j ′0(a) we have that transmission
eigenvalues are solutions to

d(k) := Det

∣∣∣∣∣∣∣
y(a)

sin ka
k

y ′(a) cos ka

∣∣∣∣∣∣∣ = 0.



Spherically Stratified Medium

d(k) is an entire function of k that is real for real k and is bounded on
the real axis. Hence if d(k) is not a constant then there exist a
countably infinite set of transmission eigenvalues.

Theorem (Aktosun-Gintides-Papanicolaou)

If d(k) ≡ 0 then n(r) ≡ 1.

We now assume that n(r) 6≡ 1. Then from the asymptotic expression

d(k) =
1

ka2

[
1

[n(0)n(a)]1/4 sin(kδ) cos(ka)−
[

n(a)

n(0)

]1/4

cos(kδ) sin(ka)

]
+O
(

1
k2

)
as k →∞, if

δ =

∫ a

0

√
n(ρ)dρ 6= a

there exist an infinite number of positive transmission eigenvalues.



Complex Transmission Eigenvalues

Example: Let n(r) = n2
0 where 0 < n0 6= 1 is a constant.

When n0 =
2
3

we have that

d(k) = −1
k

sin3
(

ka
2

)[
3 + 2 cos

(
2ka
3

)]
d(k) has an infinite set of real and complex zeros.

For n0 =
1
2

and we have that

d(k) = −2
k

sin3
(

ka
2

)
d(k) has an infinite set of real zeros and no complex zeros.
Note: There are always complex eigenvalues for n constant if
non-spherical eigenfunctions are included.
(very recently proved by Colton-Leung)



Entire Functions - Definitions

Definition

Let M(r) denote the maximum modulus of the entire function f (z) on
|z| = r . Then f (z) is of order ρ if

lim sup
r→∞

log log M(r)

log r
= ρ.

Roughly |f (z)| ≤ Aeτ |z|
ρ

Definition

The entire function f (z) of order ρ = 1 is called a function of
exponential type τ if

lim sup
r→∞

log M(r)

r
= τ.



Spherically Stratified Medium

Now assume that n(a) = 1 and n′(a) = 0.

1 d(k) is an even entire function of k of order (at most) one.

2 If
∫ a

0 ρ
2[1− n(ρ)]dρ 6= 0, d(k) has a zero of order two at k = 0.

Thus, by the Hadamard factorization theorem, we have that

d(k) = c k2
∞∏
j=1

(
1− k2/k2

j
)

where {kj} are the zeros of d(k) (including multiplicities) and c is a
constant. From

d(k) =
1

k [n(0)]1/4

{
sin k

(
a−

∫ a

0

√
n(ρ) dρ

)
+ O

(
1
k

)}
as k →∞ along the positive real axis we have that c[n(0)]1/4 is
known. Hence, under the above assumptions, the transmission
eigenvalues (real and complex!) determine [n(0)]1/4d(k).



The Inverse Spectral Problem
As we have just seen, under appropriate assumptions the
transmission eigenvalues determine [n(0)]1/4d(k). In order to
determine n(r) from [n(0)]1/4d(k) we need an integral representation
of the solution to

y ′′ + k2n(r)y = 0
y(0) = 0, y ′(0) = 1.

Using the Liouville transformation

ξ :=
∫ r

0

√
n(ρ) dρ

z(ξ) := [n(r)]1/4y(r)

We arrive at

z ′′ + [k2 − p(ξ)]z = 0
z(0) = 0, z ′(0) = [n(0)]−1/4

where

p(ξ) :=
n′′(r)

4[n(r)]2
− 5

16
[n′(r)]2

[n(r)]3
.



The Inverse Spectral Problem
The solution of

z ′′ + [k2 − p(ξ)]z = 0
z(0) = 0, z ′(0) = [n(0)]−1/4

can be represented in the form

z(ξ) =
1

[n(0)]1/4

[
sin kξ

k
+

∫ ξ

0
K (ξ, t)

sin kt
k

dt

]
for 0 ≤ ξ ≤ δ where δ =

∫ a
0

√
n(ρ) dρ, and K (ξ, t) is the unique

solution of the Goursat problem

Kξξ − Ktt − p(ξ)K = 0, 0 < t < ξ < δ

K (ξ,0) = 0, 0 ≤ ξ ≤ δ

K (ξ, ξ) =
1
2

∫ ξ

0
p(s) ds, 0 ≤ ξ ≤ δ

A. KIRSCH (2011), An Introduction to the Mathematical Theory
of Inverse Problems, Springer.



The Inverse Spectral Problem

Theorem (Rundell-Sacks)

Let K (ξ, t) satisfy the above Goursat problem. Then p ∈ C1[0, δ] is
uniquely determined by the Cauchy data K (δ, t), Kξ(δ, t).

Now recall the determinant

d(k) := Det

∣∣∣∣∣∣∣
y(a) −sin ka

k

y ′(a) − cos ka

∣∣∣∣∣∣∣ = 0.

From the Liouville transformation and the representation for z(ξ) we
have that

y(a) =
1

[n(0)]1/4

[
sin kδ

k
+

∫ δ

0
K (δ, t)

sin kt
k

dt

]

y ′(a) =
1

[n(0)]1/4

[
cos kδ +

sin kδ
2k

∫ δ

0
p(s)ds +

∫ δ

0
Kξ(δ, t)

sin kt
k

dt

]



The Inverse Spectral Problem

Note that the asymptotic formulas for d(k) gives us δ. The above
formula now gives us

`π

a
d
(
`π

a

)
=

(−1)`+1

[n(0)]1/4

[
sin

`πδ

a
+

∫ δ

0
K (δ, t) sin

`πt
a

dt

]
(1)

and

`π

a
d
(
`π

δ

)
= −y(a)

`π

δ
cos

`πa
δ

+
sin `πa

δ

[n(0)]1/4

[
(−1)` +

δ

`π

∫ δ

0
Kξ(δ, t) sin

`πt
δ

dt

]
(2)



The Inverse Spectral Problem

Since
{

sin
`πt
a

}
is complete in L2[0, δ] if δ ≤ a we have from (1)

that K (δ, t) (and hence y(a)) is known.

From (2) and the completeness of sin
`πt
δ

in L2[0, δ] we have
that Kξ(δ, t) is known.

The Rundell-Sacks Theorem now implies that p(ξ) is uniquely
determined for 0 ≤ ξ ≤ δ from a knowledge of [n(0)]1/4d(k).
From this we can now easily determine n(r).



The Inverse Spectral Problem

Theorem (Colton-Leung)

Assume that n ∈ C3[0, a], n(a) = 1 and n′(a) = 0. If 0 < n(r) < 1 for
0 < r < a the transmission eigenvalues (including multiplicity) with
spherically symmetric eigenfunctions, uniquely determine n(r).

Theorem (Cakoni-Colton-Gintides)

Assume that n ∈ C1[0,∞), 0 < n(r) < 1 or n(r) > 1, and that n(0) is
known. All the transmission eigenvalues uniquely determine n(r).

The only extension of the above theorem to the case of more general
domains D is for n constant. More specifically, n is uniquely
determined from a knowledge of the smallest positive transmission
eigenvalue provided it is known a priori that either n > 1 or 0 < n < 1.



Complex Transmission Eigenvalues Again

The previous result on the inverse spectral problem requires that
n(a) = 1 and n′(a) = 0. However, our previous example on the
existence of complex transmission eigenvalues was for n constant,
i.e. having a jump across the boundary.

Recall that if δ =
∫ a

0

√
n(ρ)dρ 6= a real transmission eigenvalues

always exist.

We now examine the existence of complex transmission eigenvalues
when n(a) = 1 and n′(a) = 0.



Complex Transmission Eigenvalues Again

Let n+(r) denote the number of zeros of an entire function f (z) in the
right half plane with |z| < r .

Theorem (Cartwright-Levinson)

Let the entire function f (z) of exponential type be such that∫ ∞
−∞

log+ |f (x)|
1 + x2 dx <∞

and suppose that

lim sup
y→±∞

|f (iy)|
|y | = τ.

Then
lim

r→∞

n+(r)

r
=
τ

π
.



Complex Transmission Eigenvalues Again
Definition

The number τ/π is called the density of zeros in the right half plane.

We now again consider

y ′′ + k2n(r)y = 0, y(0) = 0, y ′(0) = 1

and use the Liouville transformation

ξ :=

∫ r

0

√
n(ρ) dρ, z(ξ) := [n(r)]1/4y(r).

As previously, we have the representation

z(ξ) =
1

[n(0)]1/4

[
sin kξ

k
+

∫ ξ

0
K (ξ, t)

sin kt
k

dt

]
and again define

d(k) := Det

∣∣∣∣∣∣∣
y(a) −sin ka

k

y ′(a) − cos ka

∣∣∣∣∣∣∣



Complex Transmission Eigenvalues Again
Integrating by parts in the expression for z(ξ) now yields

d(k) =
−1

k [n(0)]1/4n(a)1/4

[
sin ((δ − a)k)− K (δ, δ)

k
cos ((δ − a)k)

+
Kτ (δ, δ)− Kξ(δ, δ)

2k2 sin ((δ − a)k) +
n′′(a)

8k2 sin ((δ + a)k) + O
(

1
k3

)]

where again δ :=

∫ a

0

√
n(ρ) dρ.

Thus d(k) is of type (δ + a) and the leading term sin ((δ − a)k)
generates an infinite set of positive real zeros with density |δ − a|/π.
However, if n′′(a) 6= 0, from the Cartwright-Levinson theorem the
density of all zeros in the right half plane is (δ + a)/π.

Theorem (Colton-Leung-Meng)

Suppose that n ∈ C2[0,a] with n(a) = 1 and n′(a) = 0 and δ 6= 1.
Then, under the extra assumption that n′′(a) 6= 0, there exist infinitely
many real and infinitely many complex transmission eigenvalues.


