Passive sensor imaging using cross correlations of ambient noise signals

Josselin Garnier (Université Paris Diderot)
http://www.josselin-garnier.org

In this talk:
Part I: Travel time estimation for background velocity estimation.
Part II: Passive sensor imaging of reflectors.

Travel time estimation by cross correlation

- Ambient noise sources (\circ) emit stationary random signals.
- The waves propagate in the (inhomogeneous) medium.
- The signals $u\left(t, \boldsymbol{x}_{1}\right)$ and $u\left(t, \boldsymbol{x}_{2}\right)$ are recorded at two sensors \boldsymbol{x}_{1} and \boldsymbol{x}_{2}.

- What information (about the medium) can possibly be in these signals ?

Travel time estimation by cross correlation

- Ambient noise sources (\circ) emit stationary random signals.
- The waves propagate in the (inhomogeneous) medium.
- The signals $u\left(t, \boldsymbol{x}_{1}\right)$ and $u\left(t, \boldsymbol{x}_{2}\right)$ are recorded at two sensors \boldsymbol{x}_{1} and \boldsymbol{x}_{2}.

- Compute the empirical cross correlation:

$$
C_{T}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\frac{1}{T} \int_{0}^{T} u\left(t, \boldsymbol{x}_{1}\right) u\left(t+\tau, \boldsymbol{x}_{2}\right) d t
$$

- $C_{T}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$ contains two pseudo-peaks separated by twice the travel time from \boldsymbol{x}_{1} to \boldsymbol{x}_{2}.

Estimations of travel times between pairs of sensors

Surface (Rayleigh) waves [from Shapiro, Campillo, et al, Science 307 (2005), 1615]

Background velocity estimation from travel time estimates

[from Shapiro, Campillo, et al, Science 307 (2005), 1615]

The wave equation with noise sources

- Consider the scalar wave model with noise sources:

$$
\frac{1}{c^{2}(\overrightarrow{\boldsymbol{x}})} \frac{\partial^{2} u}{\partial t^{2}}(t, \overrightarrow{\boldsymbol{x}})-\Delta_{\overrightarrow{\boldsymbol{x}}} u(t, \overrightarrow{\boldsymbol{x}})=n(t, \overrightarrow{\boldsymbol{x}})
$$

$n(t, \overrightarrow{\boldsymbol{x}})$: source.
$c(\overrightarrow{\boldsymbol{x}})$: propagation speed (parameter of the medium), assumed to be constant outside a domain with compact support.

- In the Fourier domain, we have

$$
\hat{u}(\omega, \overrightarrow{\boldsymbol{x}})=\int \hat{G}(\omega, \overrightarrow{\boldsymbol{x}}, \overrightarrow{\boldsymbol{y}}) \hat{n}(\omega, \overrightarrow{\boldsymbol{y}}) d \overrightarrow{\boldsymbol{y}}
$$

where the time-harmonic Green's function $\hat{G}(\omega, \overrightarrow{\boldsymbol{x}}, \overrightarrow{\boldsymbol{y}})$ is the solution of the Helmholtz equation

$$
\Delta_{\overrightarrow{\boldsymbol{x}}} \hat{G}+\frac{\omega^{2}}{c^{2}(\overrightarrow{\boldsymbol{x}})} \hat{G}=-\delta(\overrightarrow{\boldsymbol{x}}-\overrightarrow{\boldsymbol{y}}),
$$

with the Sommerfeld radiation condition $\left(c(\overrightarrow{\boldsymbol{x}})=c_{0}\right.$ at infinity):

$$
\lim _{|\overrightarrow{\boldsymbol{x}}| \rightarrow \infty}|\overrightarrow{\boldsymbol{x}}|\left(\frac{\overrightarrow{\boldsymbol{x}}}{|\overrightarrow{\boldsymbol{x}}|} \cdot \nabla_{\overrightarrow{\boldsymbol{x}}}-i \frac{\omega}{c_{0}}\right) \hat{G}(\omega, \overrightarrow{\boldsymbol{x}}, \overrightarrow{\boldsymbol{y}})=0
$$

Green's function estimation with ambient noise sources (1/3)

$$
\frac{1}{c^{2}(\overrightarrow{\boldsymbol{x}})} \frac{\partial^{2} u}{\partial t^{2}}(t, \overrightarrow{\boldsymbol{x}})-\Delta_{\overrightarrow{\boldsymbol{x}}} u(t, \overrightarrow{\boldsymbol{x}})=n(t, \overrightarrow{\boldsymbol{x}})
$$

- Sources $n(t, \overrightarrow{\boldsymbol{x}})$: Gaussian random process, stationary in time, with mean zero and covariance

$$
\left\langle n\left(t_{1}, \overrightarrow{\boldsymbol{y}}_{1}\right) n\left(t_{2}, \overrightarrow{\boldsymbol{y}}_{2}\right)\right\rangle=F\left(t_{2}-t_{1}\right) K\left(\overrightarrow{\boldsymbol{y}}_{1}\right) \delta\left(\overrightarrow{\boldsymbol{y}}_{1}-\overrightarrow{\boldsymbol{y}}_{2}\right)
$$

$\langle\cdot\rangle$: statistical average.
The function \hat{F} is the power spectral density of the sources.
The function K characterizes the spatial support of the sources.

- The field $u(t, \overrightarrow{\boldsymbol{x}})$ is stationary in time. The mean field $\langle u(t, \overrightarrow{\boldsymbol{x}})\rangle$ is zero. The information is carried by the correlations $\left\langle u\left(t_{1}, \overrightarrow{\boldsymbol{x}}_{1}\right) u\left(t_{2}, \overrightarrow{\boldsymbol{x}}_{2}\right)\right\rangle$.
- The empirical cross correlation:

$$
C_{T}\left(\tau, \overrightarrow{\boldsymbol{x}}_{1}, \overrightarrow{\boldsymbol{x}}_{2}\right)=\frac{1}{T} \int_{0}^{T} u\left(t, \overrightarrow{\boldsymbol{x}}_{1}\right) u\left(t+\tau, \overrightarrow{\boldsymbol{x}}_{2}\right) d t
$$

converges in probability as $T \rightarrow \infty$ to the statistical cross correlation $C^{(1)}$ given by

$$
\begin{aligned}
C^{(1)}\left(\tau, \overrightarrow{\boldsymbol{x}}_{1}, \overrightarrow{\boldsymbol{x}}_{2}\right) & =\left\langle u\left(0, \overrightarrow{\boldsymbol{x}}_{1}\right) u\left(\tau, \overrightarrow{\boldsymbol{x}}_{2}\right)\right\rangle \\
& =\frac{1}{2 \pi} \int d \overrightarrow{\boldsymbol{y}} \int d \omega \hat{G}\left(\omega, \overrightarrow{\boldsymbol{x}}_{1}, \overrightarrow{\boldsymbol{y}}\right) \hat{G}\left(\omega, \overrightarrow{\boldsymbol{x}}_{2}, \overrightarrow{\boldsymbol{y}}\right) K(\overrightarrow{\boldsymbol{y}}) \hat{F}(\omega) e^{-i \omega \tau}
\end{aligned}
$$

Green's function estimation with ambient noise sources (2/3)

Cross correlation with noise sources distributed on a closed surface $\partial B(\mathbf{0}, L)$:

$$
C^{(1)}\left(\tau, \overrightarrow{\boldsymbol{x}}_{1}, \overrightarrow{\boldsymbol{x}}_{2}\right)=\frac{1}{2 \pi} \int d \omega \int_{\partial B(0, L)} d \sigma(\overrightarrow{\boldsymbol{y}}) \hat{\hat{G}}\left(\omega, \overrightarrow{\boldsymbol{x}}_{1}, \overrightarrow{\boldsymbol{y}}\right) \hat{G}\left(\omega, \overrightarrow{\boldsymbol{x}}_{2}, \overrightarrow{\boldsymbol{y}}\right) \hat{F}(\omega) e^{-i \omega \tau}
$$

By Helmholtz-Kirchhoff identity,

$$
\hat{G}\left(\omega, \overrightarrow{\boldsymbol{x}}_{1}, \overrightarrow{\boldsymbol{x}}_{2}\right)-\overline{\hat{G}}\left(\omega, \overrightarrow{\boldsymbol{x}}_{1}, \overrightarrow{\boldsymbol{x}}_{2}\right)=\frac{2 i \omega}{c_{0}} \int_{\partial B(0, L)} d \sigma(\overrightarrow{\boldsymbol{y}}) \overline{\hat{G}}\left(\omega, \overrightarrow{\boldsymbol{x}}_{1}, \overrightarrow{\boldsymbol{y}}\right) \hat{G}\left(\omega, \overrightarrow{\boldsymbol{x}}_{2}, \overrightarrow{\boldsymbol{y}}\right)
$$

we have

$$
C^{(1)}\left(\tau, \overrightarrow{\boldsymbol{x}}_{1}, \overrightarrow{\boldsymbol{x}}_{2}\right)=\frac{c_{0}}{4 \pi} \int \frac{\hat{F}(\omega)}{\omega} \operatorname{Im}\left(\hat{G}\left(\omega, \overrightarrow{\boldsymbol{x}}_{1}, \overrightarrow{\boldsymbol{x}}_{2}\right)\right) e^{-i \omega \tau} d \omega
$$

Green's function estimation with ambient noise sources (3/3)

$$
\begin{aligned}
\partial_{\tau} C^{(1)}\left(\tau, \overrightarrow{\boldsymbol{x}}_{1}, \overrightarrow{\boldsymbol{x}}_{2}\right) & =-\frac{i c_{0}}{4 \pi} \int \hat{F}(\omega) \operatorname{Im}\left(\hat{G}\left(\omega, \overrightarrow{\boldsymbol{x}}_{1}, \overrightarrow{\boldsymbol{x}}_{2}\right)\right) e^{-i \omega \tau} d \omega \\
& =-\frac{c_{0}}{2}\left(F *_{\tau} G\left(\tau, \overrightarrow{\boldsymbol{x}}_{1}, \overrightarrow{\boldsymbol{x}}_{2}\right)-F *_{\tau} G\left(-\tau, \overrightarrow{\boldsymbol{x}}_{1}, \overrightarrow{\boldsymbol{x}}_{2}\right)\right)
\end{aligned}
$$

- The cross correlation of noise signals recorded by two passive sensors is related to the Green's function between the sensors.
\hookrightarrow the passive sensors can be transformed into virtual sources (known in seismology).
- This proof requires the sources to surround the region of interest.

Other proofs can justify that travel time estimation is possible with cross correlations of ambient noise signals (in a bounded cavity, ...).

Left: The circles are the noise sources and the triangles are the sensors (the distance between two successive sensors is 5). Here $\hat{F}(\omega)=\omega^{2} \hat{G}(\omega), \hat{G}(\omega)=\exp \left(-\omega^{2}\right), c_{0}=1$. Right: Cross correlation $\tau \rightarrow C^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{j}\right)$ between the pairs of sensors $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{j}\right)$, $j=1, \ldots, 5$, versus the distance $\left|\boldsymbol{x}_{j}-\boldsymbol{x}_{1}\right|$. In theory

$$
\begin{aligned}
C^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{j}\right) & =\frac{c_{0}}{8 \pi\left|\boldsymbol{x}_{1}-\boldsymbol{x}_{j}\right|}\left[G^{\prime}\left(\tau-\frac{\left|\boldsymbol{x}_{j}-\boldsymbol{x}_{1}\right|}{c_{0}}\right)-G^{\prime}\left(\tau+\frac{\left|\boldsymbol{x}_{j}-\boldsymbol{x}_{1}\right|}{c_{0}}\right)\right], \quad j \geq 2 \\
C^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{1}\right) & =-\frac{1}{4 \pi} G^{\prime \prime}(\tau)
\end{aligned}
$$

Peaks in the form of the first derivative of a Gaussian centered at $\pm\left|\boldsymbol{x}_{j}-\boldsymbol{x}_{1}\right| / c_{0}$ can be clearly distinguished for $j \geq 2$.

A quick introduction to geometric optics (1/2)

We look for an approximate expression as $\varepsilon \rightarrow 0$ for $\hat{G}\left(\frac{\omega}{\varepsilon}, \boldsymbol{x}, \boldsymbol{y}\right)$ solution of

$$
\Delta_{\boldsymbol{x}} \hat{G}\left(\frac{\omega}{\varepsilon}, \boldsymbol{x}, \boldsymbol{y}\right)+\frac{\omega^{2}}{c^{2}(\boldsymbol{x}) \varepsilon^{2}} \hat{G}\left(\frac{\omega}{\varepsilon}, \boldsymbol{x}, \boldsymbol{y}\right)=-\delta(\boldsymbol{x}-\boldsymbol{y})
$$

Note that, if $c(\boldsymbol{x})=c_{0}$, then

$$
\hat{G}\left(\frac{\omega}{\varepsilon}, \boldsymbol{x}, \boldsymbol{y}\right)=\frac{1}{4 \pi|\boldsymbol{x}-\boldsymbol{y}|} e^{i \frac{\omega}{\varepsilon} \frac{|\boldsymbol{x}-\boldsymbol{y}|}{c_{0}}}
$$

Consider a smoothly varying $c(\boldsymbol{x})$ and look for an expansion of the form:

$$
\hat{G}\left(\frac{\omega}{\varepsilon}, \boldsymbol{x}, \boldsymbol{y}\right)=e^{i \frac{\omega}{\varepsilon} \mathcal{T}(\boldsymbol{x}, \boldsymbol{y})} \sum_{j=0}^{\infty} \frac{\varepsilon^{j} \mathcal{A}_{j}(\boldsymbol{x}, \boldsymbol{y})}{\omega^{j}}
$$

Substitute the ansatz into Helmholtz equation and collect the terms with the same powers in ε :

$$
\begin{array}{ll}
O\left(\frac{1}{\varepsilon^{2}}\right): & \left|\nabla_{\boldsymbol{x}} \mathcal{T}\right|^{2}-\frac{1}{c^{2}(\boldsymbol{x})}=0 \\
O\left(\frac{1}{\varepsilon}\right): & 2 \nabla_{\boldsymbol{x}} \mathcal{T} \cdot \nabla_{\boldsymbol{x}} \mathcal{A}_{0}+\mathcal{A}_{0} \Delta_{\boldsymbol{x}} \mathcal{T}=0
\end{array}
$$

\hookrightarrow Eikonal equation for the quantity \mathcal{T} (that turns out to be the travel time) + transport equation for the amplitude \mathcal{A}_{0}.
Solve by method of characteristics (ray equations).

A quick introduction to geometric optics (2/2)

Geometric optics approximation of the Green's function:

$$
\hat{G}\left(\frac{\omega}{\varepsilon}, \boldsymbol{x}, \boldsymbol{y}\right) \sim \mathcal{A}(\boldsymbol{x}, \boldsymbol{y}) e^{i \frac{\omega}{\varepsilon} \mathcal{T}(\boldsymbol{x}, \boldsymbol{y})}
$$

valid when $\varepsilon \ll 1$, where the travel time is

$$
\mathcal{T}(\boldsymbol{x}, \boldsymbol{y})=\inf \left\{T \text { s.t. } \exists\left(\boldsymbol{X}_{t}\right)_{t \in[0, T]} \in \mathcal{C}^{1}, \boldsymbol{X}_{0}=\boldsymbol{x}, \boldsymbol{X}_{T}=\boldsymbol{y},\left|\frac{d \boldsymbol{X}_{t}}{d t}\right|=c\left(\boldsymbol{X}_{t}\right)\right\}
$$

The curve(s) that minimizes this functional are called ray(s).
Simple geometry hypothesis: $c(\boldsymbol{x})$ is smooth and there is a unique ray between any pair of points (in the region of interest).

In the homogeneous case $c(\boldsymbol{x}) \equiv c_{0}$:

$$
\hat{G}\left(\frac{\omega}{\varepsilon}, \boldsymbol{x}, \boldsymbol{y}\right)=\mathcal{A}(\boldsymbol{x}, \boldsymbol{y}) e^{i \frac{\omega}{\varepsilon} \mathcal{T}(\boldsymbol{x}, \boldsymbol{y})}, \text { with } \mathcal{A}(\boldsymbol{x}, \boldsymbol{y})=\frac{1}{4 \pi|\boldsymbol{x}-\boldsymbol{y}|}, \quad \mathcal{T}(\boldsymbol{x}, \boldsymbol{y})=\frac{|\boldsymbol{x}-\boldsymbol{y}|}{c_{0}}
$$

High-frequency analysis

- We assume that the ratio ε of the decoherence time of the sources over the typical travel time between sensors is small.
\hookrightarrow The time correlation function of the sources is of the form

$$
\begin{aligned}
& F^{\varepsilon}\left(t_{2}-t_{1}\right)=F\left(\frac{t_{2}-t_{1}}{\varepsilon}\right) \Longrightarrow \hat{F}^{\varepsilon}(\omega)=\varepsilon \hat{F}(\varepsilon \omega) \\
& C^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\frac{1}{2 \pi} \int d \boldsymbol{y} \int d \omega \hat{G}\left(\omega, \boldsymbol{x}_{1}, \boldsymbol{y}\right) \hat{G}\left(\omega, \boldsymbol{x}_{2}, \boldsymbol{y}\right) K(\boldsymbol{y}) \varepsilon \hat{F}(\varepsilon \omega) e^{-i \omega \tau} \\
& \stackrel{\omega \rightarrow \frac{\omega}{\varepsilon}}{=} \frac{1}{2 \pi} \int d \boldsymbol{y} \int d \omega \overline{\hat{G}}\left(\frac{\omega}{\varepsilon}, \boldsymbol{x}_{1}, \boldsymbol{y}\right) \hat{G}\left(\frac{\omega}{\varepsilon}, \boldsymbol{x}_{2}, \boldsymbol{y}\right) K(\boldsymbol{y}) \hat{F}(\omega) e^{-i \frac{\omega}{\varepsilon} \tau}
\end{aligned}
$$

Geometric optics approximation for \hat{G} :

$$
C^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\frac{1}{2 \pi} \int d \boldsymbol{y} \int d \omega \mathcal{A}\left(\boldsymbol{x}_{1}, \boldsymbol{y}\right) \mathcal{A}\left(\boldsymbol{x}_{2}, \boldsymbol{y}\right) K(\boldsymbol{y}) \hat{F}(\omega) e^{i \frac{\omega}{\varepsilon} T(y)}
$$

with the rapid phase

$$
\omega T(\boldsymbol{y})=\omega\left[\mathcal{T}\left(\boldsymbol{x}_{2}, \boldsymbol{y}\right)-\mathcal{T}\left(\boldsymbol{x}_{1}, \boldsymbol{y}\right)-\tau\right]
$$

Use of the stationary phase theorem. The dominant contribution comes from the stationary points (ω, \boldsymbol{y}) satisfying:

$$
\nabla_{\boldsymbol{y}}(\omega T(\boldsymbol{y}))=\mathbf{0}, \quad \partial_{\omega}(\omega T(\boldsymbol{y}))=0
$$

\hookrightarrow two conditions:

$$
\nabla_{\boldsymbol{y}} \mathcal{T}\left(\boldsymbol{y}, \boldsymbol{x}_{2}\right)=\nabla_{\boldsymbol{y}} \mathcal{T}\left(\boldsymbol{y}, \boldsymbol{x}_{1}\right), \quad \mathcal{T}\left(\boldsymbol{x}_{2}, \boldsymbol{y}\right)-\mathcal{T}\left(\boldsymbol{x}_{1}, \boldsymbol{y}\right)=\tau
$$

$\Longrightarrow \boldsymbol{x}_{1}$ and \boldsymbol{x}_{2} are on the same ray issuing from \boldsymbol{y}
$\Longrightarrow \tau= \pm \mathcal{T}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$.

Also: \boldsymbol{y} should be in the support of K.

Singular component at $\mathcal{T}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$

No singular component

Conclusion: The cross correlation $C^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$ has singular components iff the ray joining x_{1} and x_{2} reaches into the source region (i.e. the support of K). Then there are one or two singular components at $\tau= \pm \mathcal{T}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$.
[More exactly:
the rays $\boldsymbol{y} \rightarrow \boldsymbol{x}_{1} \rightarrow \boldsymbol{x}_{2}$ contribute to the singular component at $\tau=\mathcal{T}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$,
the rays $\boldsymbol{y} \rightarrow \boldsymbol{x}_{2} \rightarrow \boldsymbol{x}_{1}$ contribute to the singular component at $\tau=-\mathcal{T}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$.]

Left: The circles are the noise sources and the triangles are the sensors (the distance between two successive sensors is 50).
Right: Cross correlation $\tau \rightarrow C^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{j}\right)$ between the pairs of sensors $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{j}\right)$, $j=1, \ldots, 5$, versus the distance $\left|\boldsymbol{x}_{j}-\boldsymbol{x}_{1}\right|$.
No peak can be distinguished for $j \geq 2$.

Left: The circles are the noise sources and the triangles are the sensors (the distance between two successive sensors is 50).
Right: Cross correlation $\tau \rightarrow C^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{j}\right)$ between the pairs of sensors $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{j}\right)$, $j=1, \ldots, 5$, versus the distance $\left|\boldsymbol{x}_{j}-\boldsymbol{x}_{1}\right|$.
Peaks in the form of the first derivative of a Gaussian centered at $+\left|\boldsymbol{x}_{j}-\boldsymbol{x}_{1}\right| / c_{0}$ can be clearly distinguished for $j \geq 2$.

High-frequency analysis

- As ε tends to zero, in a homogeneous medium with background velocity c_{0} :

$$
\begin{aligned}
\partial_{\tau} C^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\frac{c_{0}}{2} \mathcal{A}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)[& {\left[\mathcal{K}\left(\boldsymbol{x}_{2}, \boldsymbol{x}_{1}\right) F_{\varepsilon}\left(\tau+\mathcal{T}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right)\right.} \\
& \left.-\mathcal{K}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) F_{\varepsilon}\left(\tau-\mathcal{T}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)\right)\right]
\end{aligned}
$$

where $\mathcal{A}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=1 /\left(4 \pi\left|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right|\right), \mathcal{T}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\left|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right| / c_{0}$,

$$
\mathcal{K}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\int_{0}^{\infty} K\left(\boldsymbol{x}_{1}+\frac{\boldsymbol{x}_{1}-\boldsymbol{x}_{2}}{\left|\boldsymbol{x}_{1}-\boldsymbol{x}_{2}\right|} l\right) d l,
$$

- $\mathcal{K}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$ is the power released by the noise sources located along the ray starting from \boldsymbol{x}_{1} with the direction of $\boldsymbol{x}_{1}-\boldsymbol{x}_{2}$.
- It is possible to extract the travel times between pairs of sensors (with a resolution equal to the inverse of the noise bandwidth).
- It is difficult to extract the amplitude \mathcal{A} of the high-frequency Green's function as it comes with a multiplicative term that depends on the source distribution.

Left: The circles are the noise sources and the triangles are the sensors (the distance between two successive sensors is $\underline{5}$).
Right: Cross correlation $\tau \rightarrow C^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{j}\right)$ between the pairs of sensors $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{j}\right)$, $j=1, \ldots, 5$, versus the distance $\left|\boldsymbol{x}_{j}-\boldsymbol{x}_{1}\right|$.
Peaks centered at $+\left|\boldsymbol{x}_{j}-\boldsymbol{x}_{1}\right| / c_{0}$ can be clearly distinguished for $j \geq 2$, but their forms are not exactly the first derivative of a Gaussian for $j=2,3$ (distance 5,10), and become of this form for $j=4,5$ (distance 15,20).

Left: The circles are the noise sources and the triangles are the sensors (the distance between two successive sensors is $\underline{50})$.
Right: Cross correlation $\tau \rightarrow C^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{j}\right)$ between the pairs of sensors $\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{j}\right)$, $j=1, \ldots, 5$, versus the distance $\left|\boldsymbol{x}_{j}-\boldsymbol{x}_{1}\right|$.
Peaks in the form of the first derivative of a Gaussian centered at $+\left|\boldsymbol{x}_{j}-\boldsymbol{x}_{1}\right| / c_{0}$ can be clearly distinguished for $j \geq 2$.

- Here, the cross correlation method does not allow for travel time estimation, because there is not enough "directional diversity".

- Here, the cross correlation method does not allow for travel time estimation, because there is not enough "directional diversity".
- Idea (first suggested by M. Campillo ${ }^{[1]}$): exploit the scattering properties of the medium and use the scatterers as "secondary noise sources".
[1] M. Campillo and L. Stehly, Eos Trans. $A G U$ 88(52) (2007), Fall Meet. Suppl., Abstract S51D-07.

Fourth-order cross correlations for travel time estimation

Use of auxiliary sensors $\boldsymbol{x}_{a, j}, j=1, \ldots, N$. Algorithm:

1) for each j, compute the cross correlations $C_{T}\left(\tau, \boldsymbol{x}_{a, j}, \boldsymbol{x}_{1}\right)$ and $C_{T}\left(\tau, \boldsymbol{x}_{a, j}, \boldsymbol{x}_{2}\right)$:

$$
C_{T}\left(\tau, \boldsymbol{x}_{a, j}, \boldsymbol{x}_{l}\right)=\frac{1}{T} \int_{0}^{T} u\left(t, \boldsymbol{x}_{a, j}\right) u\left(t+\tau, \boldsymbol{x}_{l}\right) d t, \quad l=1,2
$$

Fourth-order cross correlations for travel time estimation

Use of auxiliary sensors $\boldsymbol{x}_{a, j}, j=1, \ldots, N$. Algorithm:

1) for each j, compute the cross correlations $C_{T}\left(\tau, \boldsymbol{x}_{a, j}, \boldsymbol{x}_{1}\right)$ and $C_{T}\left(\tau, \boldsymbol{x}_{a, j}, \boldsymbol{x}_{2}\right)$:

$$
C_{T}\left(\tau, \boldsymbol{x}_{a, j}, \boldsymbol{x}_{l}\right)=\frac{1}{T} \int_{0}^{T} u\left(t, \boldsymbol{x}_{a, j}\right) u\left(t+\tau, \boldsymbol{x}_{l}\right) d t, \quad l=1,2
$$

2) consider the tails of $C_{T}\left(\tau, \boldsymbol{x}_{a, j}, \boldsymbol{x}_{1}\right)$ and $C_{T}\left(\tau, \boldsymbol{x}_{a, j}, \boldsymbol{x}_{2}\right)$:

$$
C_{T, \mathrm{coda}}\left(\tau, \boldsymbol{x}_{a, j}, \boldsymbol{x}_{l}\right)=C_{T}\left(\tau, \boldsymbol{x}_{a, j}, \boldsymbol{x}_{l}\right)\left[\mathbf{1}_{\left(-T_{c 2},-T_{c 1}\right)}(\tau)+\mathbf{1}_{\left(T_{c 1}, T_{c 2}\right)}(\tau)\right], \quad l=1,2
$$

Fourth-order cross correlations for travel time estimation

Use of auxiliary sensors $\boldsymbol{x}_{a, j}, j=1, \ldots, N$. Algorithm:

1) for each j, compute the cross correlations $C_{T}\left(\tau, \boldsymbol{x}_{a, j}, \boldsymbol{x}_{1}\right)$ and $C_{T}\left(\tau, \boldsymbol{x}_{a, j}, \boldsymbol{x}_{2}\right)$:

$$
C_{T}\left(\tau, \boldsymbol{x}_{a, j}, \boldsymbol{x}_{l}\right)=\frac{1}{T} \int_{0}^{T} u\left(t, \boldsymbol{x}_{a, j}\right) u\left(t+\tau, \boldsymbol{x}_{l}\right) d t, \quad l=1,2
$$

2) consider the tails of $C_{T}\left(\tau, \boldsymbol{x}_{a, j}, \boldsymbol{x}_{1}\right)$ and $C_{T}\left(\tau, \boldsymbol{x}_{a, j}, \boldsymbol{x}_{2}\right)$:

$$
C_{T, \mathrm{coda}}\left(\tau, \boldsymbol{x}_{a, j}, \boldsymbol{x}_{l}\right)=C_{T}\left(\tau, \boldsymbol{x}_{a, j}, \boldsymbol{x}_{l}\right)\left[\mathbf{1}_{\left(-T_{c 2},-T_{c 1}\right)}(\tau)+\mathbf{1}_{\left(T_{c 1}, T_{c 2}\right)}(\tau)\right], \quad l=1,2
$$

3) compute the cross correlations between the tails and sum over j :

$$
C_{T}^{(3)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\sum_{j=1}^{N} \int_{-\infty}^{\infty} C_{T, \operatorname{coda}}\left(\tau^{\prime}, \boldsymbol{x}_{a, j}, \boldsymbol{x}_{1}\right) C_{T, \operatorname{coda}}\left(\tau^{\prime}+\tau, \boldsymbol{x}_{a, j}, \boldsymbol{x}_{2}\right) d \tau^{\prime}
$$

Analysis of the fourth-order cross correlation $C^{(3)}$

- Self-averaging property for $C^{(3)}$ when $T \rightarrow \infty$.
- Born (single scattering) approximation for the scattering medium.
- Geometric optics approximation for the background Green's function.
\hookrightarrow expression of $C^{(3)}$ with a fast phase parameterized by a frequency ω, an auxiliary sensor \boldsymbol{x}_{a}, two sources $\boldsymbol{y}_{1}, \boldsymbol{y}_{2}$, a scatterer \boldsymbol{z}_{s} (and the main sensors $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$).
- Stationary phase analysis: five conditions for the stationary points.
\hookrightarrow There are stationary points:

Conclusion: $C^{(3)}$ has singular components if:

1) there are scatterers along the ray joining \boldsymbol{x}_{1} and \boldsymbol{x}_{2}.
2) there are auxiliary sensors along rays joining sources and scatterers.

These singular components are at $\tau= \pm \mathcal{T}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$.
It is not required that the ray joining \boldsymbol{x}_{1} and \boldsymbol{x}_{2} reaches into the source region!
If the scattering region covers the region of interest or surrounds it, then $C^{(3)}$ has singular components at $\tau= \pm \mathcal{T}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$!

Here:
It is not possible to extract the travel time $\tau\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$ from $C^{(1)}$ It is possible to extract the travel time $\mathcal{T}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$ from $C^{(3)}$

Configuration

$$
C^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{j}\right)
$$

$$
C^{(3)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{j}\right)
$$

The circles are the noise sources, the squares are the scatterers, and the triangles are the sensors.

Configuration

$$
C^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{j}\right)
$$

$C^{(3)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{j}\right)$

The circles are the noise sources, the squares are the scatterers, and the triangles are the sensors.

Imaging of reflectors by cross correlation of ambient noise signals

- Array of passive sensors $\boldsymbol{x}_{j}, j=1, \ldots, N$
- Ambient noise sources emitting stationary random signals
- Target at $\boldsymbol{z}_{\mathrm{r}}$ (small reflector to be imaged)
- Two different illumination configurations

Daylight configuration

Backlight configuration

- Two types of situations:
- Data in the absence $\left(C_{0}\right)$ and in the presence (C) of the reflector.
- Data only in the presence of the reflector (C).
- Note: The travel times between the sensors and points in the search region (around $\boldsymbol{z}_{\mathrm{r}}$) are supposed to be known.

Daylight configuration

- Data in the absence $\left(C_{0}\left(\tau, \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right), j, l=1, \ldots, 5\right)$ and in the presence $\left(C\left(\tau, \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right)\right.$, $j, l=1, \ldots, 5)$ of the reflector

Differential cross correlation:

$$
\Delta C\left(\tau, \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right)=\left(C-C_{0}\right)\left(\tau, \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right), \quad j, l=1, \ldots, 5
$$

Theory (high-frequency analysis): $\Delta C\left(\tau, \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right)$ has singular components at $\tau= \pm\left[\mathcal{T}\left(\boldsymbol{x}_{j}, \boldsymbol{z}_{\mathrm{r}}\right)+\mathcal{T}\left(\boldsymbol{x}_{l}, \boldsymbol{z}_{\mathrm{r}}\right)\right]$.

High-frequency analysis

We still have

$$
C^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\frac{1}{2 \pi} \int d \boldsymbol{y} \int d \omega \overline{\hat{G}}\left(\frac{\omega}{\varepsilon}, \boldsymbol{x}_{1}, \boldsymbol{y}\right) \hat{G}\left(\frac{\omega}{\varepsilon}, \boldsymbol{x}_{2}, \boldsymbol{y}\right) K(\boldsymbol{y}) \hat{F}(\omega) e^{-i \frac{\omega}{\varepsilon} \tau}
$$

Geometric optics approximatinon:

$$
\hat{G}\left(\frac{\omega}{\varepsilon}, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \sim \mathcal{A}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) e^{i \frac{\omega}{\varepsilon} \mathcal{T}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)}+\frac{\omega^{2}}{\varepsilon^{2}} \mathcal{A}_{\mathrm{r}}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) e^{i \frac{\omega}{\varepsilon} \mathcal{T}_{\mathbf{r}}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)}
$$

Here

$$
\mathcal{T}_{\mathrm{r}}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\mathcal{T}\left(\boldsymbol{x}_{1}, \boldsymbol{z}_{\mathrm{r}}\right)+\mathcal{T}\left(\boldsymbol{z}_{\mathrm{r}}, \boldsymbol{x}_{2}\right),
$$

Point-like reflector:

$$
\mathcal{A}_{\mathrm{r}}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)=\frac{\sigma_{\mathrm{r}} l_{\mathrm{r}}^{3}}{c_{0}^{2}} \mathcal{A}\left(\boldsymbol{x}_{1}, \boldsymbol{z}_{\mathrm{r}}\right) \mathcal{A}\left(\boldsymbol{z}_{\mathrm{r}}, \boldsymbol{x}_{2}\right) .
$$

$$
C^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) \simeq C_{0}^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)+C_{\mathrm{I}}^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)+C_{\mathrm{II}}^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right),
$$

with

$$
\begin{aligned}
C_{0}^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) & =\frac{1}{2 \pi} \int d \boldsymbol{y} K(\boldsymbol{y}) \int d \omega \hat{F}(\omega) \overline{\mathcal{A}}\left(\boldsymbol{x}_{1}, \boldsymbol{y}\right) \mathcal{A}\left(\boldsymbol{x}_{2}, \boldsymbol{y}\right) e^{i \frac{\omega}{\varepsilon} \mathcal{T}_{0}(\boldsymbol{y})}, \\
C_{\mathrm{I}}^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) & =\frac{1}{2 \pi \varepsilon^{2}} \int d \boldsymbol{y} K(\boldsymbol{y}) \int d \omega \omega^{2} \hat{F}(\omega) \overline{\mathcal{A}_{\mathrm{r}}}\left(\boldsymbol{x}_{1}, \boldsymbol{y}\right) \mathcal{A}\left(\boldsymbol{x}_{2}, \boldsymbol{y}\right) e^{i \frac{\omega}{\varepsilon} \mathcal{T}_{\mathrm{I}}(\boldsymbol{y})}, \\
C_{\mathrm{II}}^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) & =\frac{1}{2 \pi \varepsilon^{2}} \int d \boldsymbol{y} K(\boldsymbol{y}) \int d \omega \omega^{2} \hat{F}(\omega) \overline{\mathcal{A}}\left(\boldsymbol{x}_{1}, \boldsymbol{y}\right) \mathcal{A}_{\mathrm{r}}\left(\boldsymbol{x}_{2}, \boldsymbol{y}\right) e^{i \frac{\omega}{\varepsilon} \mathcal{I I I}^{\mathrm{II}}(\boldsymbol{y})},
\end{aligned}
$$

and

$$
\begin{aligned}
\omega \mathcal{T}_{0}(\boldsymbol{y}) & =\omega\left[\mathcal{T}\left(\boldsymbol{y}, \boldsymbol{x}_{2}\right)-\mathcal{T}\left(\boldsymbol{y}, \boldsymbol{x}_{1}\right)-\tau\right] \\
\omega \mathcal{T}_{\mathrm{I}}(\boldsymbol{y}) & =\omega\left[\mathcal{T}\left(\boldsymbol{y}, \boldsymbol{x}_{2}\right)-\mathcal{T}_{\mathrm{r}}\left(\boldsymbol{y}, \boldsymbol{x}_{1}\right)-\tau\right] \\
& =\omega\left[\mathcal{T}\left(\boldsymbol{y}, \boldsymbol{x}_{2}\right)-\mathcal{T}\left(\boldsymbol{y}, \boldsymbol{z}_{\mathrm{r}}\right)-\mathcal{T}\left(\boldsymbol{z}_{\mathrm{r}}, \boldsymbol{x}_{1}\right)-\tau\right] \\
\omega \mathcal{T}_{\mathrm{II}}(\boldsymbol{y}) & =\omega\left[\mathcal{T}_{\mathrm{r}}\left(\boldsymbol{y}, \boldsymbol{x}_{2}\right)-\mathcal{T}\left(\boldsymbol{y}, \boldsymbol{x}_{1}\right)-\tau\right] \\
& =\omega\left[\mathcal{T}\left(\boldsymbol{y}, \boldsymbol{z}_{\mathrm{r}}\right)+\mathcal{T}\left(\boldsymbol{z}_{\mathrm{r}}, \boldsymbol{x}_{2}\right)-\mathcal{T}\left(\boldsymbol{y}, \boldsymbol{x}_{1}\right)-\tau\right] .
\end{aligned}
$$

- The term $C_{0}^{(1)}$ is of the same form as the function $C^{(1)}$ without reflector. It has singular components only if $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ and \boldsymbol{y} are on the same ray. These singular components are supported on $\pm \mathcal{T}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right)$.

$$
\begin{aligned}
C_{\mathrm{II}}^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) & =\frac{1}{2 \pi \varepsilon^{2}} \int d \boldsymbol{y} K(\boldsymbol{y}) \int d \omega \omega^{2} \hat{F}(\omega) \overline{\mathcal{A}}\left(\boldsymbol{x}_{1}, \boldsymbol{y}\right) \mathcal{A}_{\mathrm{r}}\left(\boldsymbol{x}_{2}, \boldsymbol{y}\right) e^{i \frac{\omega}{\varepsilon} \mathcal{T}_{\mathrm{II}}(\boldsymbol{y})} \\
\omega \mathcal{T}_{\mathrm{II}}(\boldsymbol{y}) & =\omega\left[\mathcal{T}\left(\boldsymbol{y}, \boldsymbol{z}_{\mathrm{r}}\right)+\mathcal{T}\left(\boldsymbol{z}_{\mathrm{r}}, \boldsymbol{x}_{2}\right)-\mathcal{T}\left(\boldsymbol{y}, \boldsymbol{x}_{1}\right)-\tau\right]
\end{aligned}
$$

The dominant contribution to the term $C_{\text {II }}^{(1)}$ comes from the stationary points (ω, \boldsymbol{y}) satisfying

$$
\partial_{\omega}\left(\omega \mathcal{T}_{\mathrm{II}}(\boldsymbol{y})\right)=0, \quad \nabla_{\boldsymbol{y}}\left(\omega \mathcal{T}_{\mathrm{II}}(\boldsymbol{y})\right)=\mathbf{0}
$$

which gives the conditions

$$
\mathcal{T}\left(\boldsymbol{y}, \boldsymbol{z}_{\mathrm{r}}\right)+\mathcal{T}\left(\boldsymbol{z}_{\mathrm{r}}, \boldsymbol{x}_{2}\right)-\mathcal{T}\left(\boldsymbol{y}, \boldsymbol{x}_{1}\right)=\tau, \quad \nabla_{\boldsymbol{y}} \mathcal{T}\left(\boldsymbol{y}, \boldsymbol{z}_{\mathrm{r}}\right)=\nabla_{\boldsymbol{y}} \mathcal{T}\left(\boldsymbol{y}, \boldsymbol{x}_{1}\right) .
$$

The second condition implies that \boldsymbol{x}_{1} and $\boldsymbol{z}_{\mathrm{r}}$ are on the same side of a ray issuing from \boldsymbol{y}. If the points are aligned along the ray as $\boldsymbol{y} \rightarrow \boldsymbol{x}_{1} \rightarrow \boldsymbol{z}_{\mathrm{r}}$ (daylight configuration), then the first condition is equivalent to $\tau=\mathcal{T}\left(\boldsymbol{z}_{\mathrm{r}}, \boldsymbol{x}_{2}\right)+\mathcal{T}\left(\boldsymbol{z}_{\mathrm{r}}, \boldsymbol{x}_{1}\right)$.

$$
\begin{aligned}
C_{\mathrm{I}}^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) & =\frac{1}{2 \pi \varepsilon^{2}} \int d \boldsymbol{y} K(\boldsymbol{y}) \int d \omega \omega^{2} \hat{F}(\omega) \overline{\mathcal{A}_{\mathrm{r}}}\left(\boldsymbol{x}_{1}, \boldsymbol{y}\right) \mathcal{A}\left(\boldsymbol{x}_{2}, \boldsymbol{y}\right) e^{i \frac{\omega}{\varepsilon} \mathcal{I}_{\mathrm{I}}(\boldsymbol{y})} \\
\omega \mathcal{T}_{\mathrm{I}}(\boldsymbol{y}) & =\omega\left[\mathcal{T}\left(\boldsymbol{y}, \boldsymbol{x}_{2}\right)-\mathcal{T}\left(\boldsymbol{y}, \boldsymbol{z}_{\mathrm{r}}\right)-\mathcal{T}\left(\boldsymbol{z}_{\mathrm{r}}, \boldsymbol{x}_{1}\right)-\tau\right]
\end{aligned}
$$

- The dominant contribution to the term $C_{\mathrm{I}}^{(1)}$ comes from the stationary points (ω, \boldsymbol{y}) satisfying

$$
\partial_{\omega}\left(\omega \mathcal{T}_{\mathrm{I}}(\boldsymbol{y})\right)=0, \quad \nabla_{\boldsymbol{y}}\left(\omega \mathcal{T}_{\mathrm{I}}(\boldsymbol{y})\right)=\mathbf{0}
$$

which gives the conditions

$$
\mathcal{T}\left(\boldsymbol{y}, \boldsymbol{x}_{2}\right)-\mathcal{T}\left(\boldsymbol{y}, \boldsymbol{z}_{\mathrm{r}}\right)-\mathcal{T}\left(\boldsymbol{z}_{\mathrm{r}}, \boldsymbol{x}_{1}\right)=\tau, \quad \nabla_{\boldsymbol{y}} \mathcal{T}\left(\boldsymbol{y}, \boldsymbol{x}_{2}\right)=\nabla_{\boldsymbol{y}} \mathcal{T}\left(\boldsymbol{y}, \boldsymbol{z}_{\mathrm{r}}\right) .
$$

The second condition implies that \boldsymbol{x}_{2} and $\boldsymbol{z}_{\mathrm{r}}$ are on the same side of a ray issuing from \boldsymbol{y}. If the points are aligned along the ray as $\boldsymbol{y} \rightarrow \boldsymbol{x}_{2} \rightarrow \boldsymbol{z}_{\mathrm{r}}$ (daylight configuration), then the first condition is equivalent to $\tau=-\mathcal{T}\left(\boldsymbol{z}_{\mathrm{r}}, \boldsymbol{x}_{2}\right)-\mathcal{T}\left(\boldsymbol{z}_{\mathrm{r}}, \boldsymbol{x}_{1}\right)$.

Daylight configuration - migration

$$
\Delta C\left(\tau, \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right)=\left(C-C_{0}\right)\left(\tau, \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right)
$$

Theory: $\Delta C\left(\tau, \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right)$ has singular components at $\tau= \pm\left[\mathcal{T}\left(\boldsymbol{x}_{j}, \boldsymbol{z}_{\mathrm{r}}\right)+\mathcal{T}\left(\boldsymbol{x}_{l}, \boldsymbol{z}_{\mathrm{r}}\right)\right]$.

- Migration of the differential cross correlations ΔC.

Migration functional for the search point \boldsymbol{z}^{S} :

$$
\mathcal{I}^{\mathrm{D}}\left(\boldsymbol{z}^{S}\right)=\sum_{j, l=1}^{N} \Delta C\left(\mathcal{T}\left(\boldsymbol{z}^{S}, \boldsymbol{x}_{j}\right)+\mathcal{T}\left(\boldsymbol{z}^{S}, \boldsymbol{x}_{l}\right), \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right)
$$

Daylight configuration - resolution analysis

Migration functional:

$$
\mathcal{I}^{\mathrm{D}}\left(\boldsymbol{z}^{S}\right)=\sum_{j, l=1}^{N} \Delta C\left(\mathcal{T}\left(\boldsymbol{z}^{S}, \boldsymbol{x}_{j}\right)+\mathcal{T}\left(\boldsymbol{z}^{S}, \boldsymbol{x}_{l}\right), \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right)
$$

Analogy with Kirchhoff Migration ${ }^{[1]}$ for array imaging using an array of active sensors $\left(\boldsymbol{x}_{j}\right)_{j=1, \ldots, N}$ emitting broadband pulses. The data is then the impulse response matrix $\left(u\left(t, \boldsymbol{x}_{j} ; \boldsymbol{x}_{l}\right)\right)_{j, l=1, \ldots, N}$ and the Kirchhoff Migration functional is

$$
\mathcal{I}^{\mathrm{KM}}\left(\boldsymbol{z}^{S}\right)=\sum_{j, l=1}^{N} u\left(\mathcal{T}\left(\boldsymbol{z}^{S}, \boldsymbol{x}_{j}\right)+\mathcal{T}\left(\boldsymbol{z}^{S}, \boldsymbol{x}_{l}\right), \boldsymbol{x}_{j} ; \boldsymbol{x}_{l}\right)
$$

\hookrightarrow Passive imaging using ambient noise has the same resolution as array imaging using active sources !
\rightarrow Range resolution $\simeq c_{0} / B$, where B is the bandwidth.
\rightarrow Cross range resolution (for a linear array) $\simeq \lambda_{0} L / a$, where λ_{0} is the carrier wavelength, L is the distance from the array to the reflector, a the diameter of the array.
\rightarrow Cross range resolution (for a distributed network) $\simeq c_{0} / B$ (triangulation).
[1] N. Bleistein, J. K. Cohen, and J. W. Stockwell Jr, Mathematics of seismic imaging, Springer, 2001.

Daylight configuration

- Data only in the presence of the reflector: $C\left(\tau, \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right), j, l=1, \ldots, 5$.

Coda cross correlation:

$$
C_{\mathrm{coda}}\left(\tau, \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right)=C\left(\tau, \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right) \mathbf{1}_{\left(\mathcal{T}\left(\boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right), \infty\right)}(|\tau|)
$$

Daylight configuration - migration

$$
C_{\mathrm{coda}}\left(\tau, \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right)=C\left(\tau, \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right) \mathbf{1}_{\left(\mathcal{T}\left(\boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right), \infty\right)}(|\tau|)
$$

Theory: $C_{\text {coda }}\left(\tau, \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right)$ has singular components at $\tau= \pm\left[\mathcal{T}\left(\boldsymbol{x}_{j}, \boldsymbol{z}_{\mathrm{r}}\right)+\mathcal{T}\left(\boldsymbol{x}_{l}, \boldsymbol{z}_{\mathrm{r}}\right)\right]$. Triangular inequality: $\left|\mathcal{T}\left(\boldsymbol{x}_{j}, \boldsymbol{z}_{\mathrm{r}}\right)+\mathcal{T}\left(\boldsymbol{x}_{l}, \boldsymbol{z}_{\mathrm{r}}\right)\right| \geq \mathcal{T}\left(\boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right) \Longrightarrow$ singular components in $C_{\text {coda }}$.

- Migration of the coda cross correlations.

Migration functional for the search point \boldsymbol{z}^{S} :

$$
\mathcal{I}^{\mathrm{D}}\left(\boldsymbol{z}^{S}\right)=\sum_{j, l=1}^{N} C_{\mathrm{coda}}\left(\mathcal{T}\left(\boldsymbol{z}^{S}, \boldsymbol{x}_{j}\right)+\mathcal{T}\left(\boldsymbol{z}^{S}, \boldsymbol{x}_{l}\right), \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right)
$$

Backlight configuration

- Data in the absence $\left(C_{0}\right)$ and in the presence (C) of the reflector
differential cross correlation $\mathrm{x}_{1}-\mathrm{x}_{1}$

Differential cross correlation:

$$
\Delta C\left(\tau, \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right)=\left(C-C_{0}\right)\left(\tau, \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right)
$$

Theory: $\Delta C\left(\tau, \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right)$ has singular components at $\tau=\mathcal{T}\left(\boldsymbol{x}_{l}, \boldsymbol{z}_{\mathrm{r}}\right)-\mathcal{T}\left(\boldsymbol{x}_{j}, \boldsymbol{z}_{\mathrm{r}}\right)$.

$$
\begin{aligned}
C_{\mathrm{I}}^{(1)}\left(\tau, \boldsymbol{x}_{1}, \boldsymbol{x}_{2}\right) & =\frac{1}{2 \pi \varepsilon^{2}} \int d \boldsymbol{y} K(\boldsymbol{y}) \int d \omega \omega^{2} \hat{F}(\omega) \overline{\mathcal{A}_{\mathrm{r}}}\left(\boldsymbol{x}_{1}, \boldsymbol{y}\right) \mathcal{A}\left(\boldsymbol{x}_{2}, \boldsymbol{y}\right) e^{i \frac{\omega}{\varepsilon} \mathcal{I}_{\mathrm{I}}(\boldsymbol{y})} \\
\omega \mathcal{T}_{\mathrm{I}}(\boldsymbol{y}) & =\omega\left[\mathcal{T}\left(\boldsymbol{y}, \boldsymbol{x}_{2}\right)-\mathcal{T}\left(\boldsymbol{y}, \boldsymbol{z}_{\mathrm{r}}\right)-\mathcal{T}\left(\boldsymbol{z}_{\mathrm{r}}, \boldsymbol{x}_{1}\right)-\tau\right]
\end{aligned}
$$

- The dominant contribution to the term $C_{\mathrm{I}}^{(1)}$ comes from the stationary points (ω, \boldsymbol{y}) satisfying

$$
\partial_{\omega}\left(\omega \mathcal{T}_{\mathrm{I}}(\boldsymbol{y})\right)=0, \quad \nabla_{\boldsymbol{y}}\left(\omega \mathcal{T}_{\mathrm{I}}(\boldsymbol{y})\right)=\mathbf{0}
$$

which gives the conditions

$$
\mathcal{T}\left(\boldsymbol{y}, \boldsymbol{x}_{2}\right)-\mathcal{T}\left(\boldsymbol{y}, \boldsymbol{z}_{\mathrm{r}}\right)-\mathcal{T}\left(\boldsymbol{z}_{\mathrm{r}}, \boldsymbol{x}_{1}\right)=\tau, \quad \nabla_{\boldsymbol{y}} \mathcal{T}\left(\boldsymbol{y}, \boldsymbol{x}_{2}\right)=\nabla_{\boldsymbol{y}} \mathcal{T}\left(\boldsymbol{y}, \boldsymbol{z}_{\mathrm{r}}\right) .
$$

The second condition implies that \boldsymbol{x}_{2} and $\boldsymbol{z}_{\mathrm{r}}$ are on the same side of a ray issuing from \boldsymbol{y}. If the points are aligned along the ray as $\boldsymbol{y} \rightarrow \boldsymbol{z}_{\mathrm{r}} \rightarrow \boldsymbol{x}_{2}$ (backlight configuration), then the first condition is equivalent to $\tau=\mathcal{T}\left(\boldsymbol{z}_{\mathrm{r}}, \boldsymbol{x}_{2}\right)-\mathcal{T}\left(\boldsymbol{z}_{\mathrm{r}}, \boldsymbol{x}_{1}\right)$.

Backlight configuration - migration

$$
\Delta C\left(\tau, \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right)=\left(C-C_{0}\right)\left(\tau, \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right)
$$

Theory: $\Delta C\left(\tau, \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right)$ has singular components at $\tau=\mathcal{T}\left(\boldsymbol{x}_{l}, \boldsymbol{z}_{\mathrm{r}}\right)-\mathcal{T}\left(\boldsymbol{x}_{j}, \boldsymbol{z}_{\mathrm{r}}\right)$.

- Migration of the differential cross correlations ΔC.

Migration functional for the search point \boldsymbol{z}^{S} :

$$
\mathcal{I}^{\mathrm{B}}\left(\boldsymbol{z}^{S}\right)=\sum_{j, l=1}^{N} \Delta C\left(\mathcal{T}\left(\boldsymbol{x}_{l}, \boldsymbol{z}^{S}\right)-\mathcal{T}\left(\boldsymbol{x}_{j}, \boldsymbol{z}^{S}\right), \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right)
$$

Backlight configuration - resolution analysis

Migration functional

$$
\begin{aligned}
\mathcal{I}^{\mathrm{B}}\left(\boldsymbol{z}^{S}\right) & =\sum_{j, l=1}^{N} \Delta C\left(\mathcal{T}\left(\boldsymbol{x}_{l}, \boldsymbol{z}^{S}\right)-\mathcal{T}\left(\boldsymbol{x}_{j}, \boldsymbol{z}^{S}\right), \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right) \\
& =\frac{1}{2 \pi} \int d \omega \sum_{j, l=1}^{N} e^{-i \omega\left[\mathcal{T}\left(\boldsymbol{z}^{S}, \boldsymbol{x}_{l}\right)-\mathcal{T}\left(\boldsymbol{z}^{S}, \boldsymbol{x}_{j}\right)\right]} \widehat{\Delta C}\left(\mathcal{T}\left(\boldsymbol{x}_{l}, \boldsymbol{z}^{S}\right)-\mathcal{T}\left(\boldsymbol{x}_{j}, \boldsymbol{z}^{S}\right), \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right)
\end{aligned}
$$

Analogy with Incoherent Interferometry imaging ${ }^{[1]}$, used when $\boldsymbol{z}_{\mathrm{r}}$ is a source emitting an impulse that is recorded by passive sensors at $\left(\boldsymbol{x}_{j}\right)_{j=1, \ldots, N}$. The data is then the vector $\left(u\left(t, \boldsymbol{x}_{j}\right)\right)_{j=1, \ldots, N}$. The MF functional is

$$
\begin{aligned}
\mathcal{I}^{\mathrm{MF}}\left(\boldsymbol{z}^{S}\right) & =\frac{1}{2 \pi} \int d \omega\left|\sum_{l=1}^{N} e^{-i \omega \mathcal{T}\left(\boldsymbol{z}^{S}, \boldsymbol{x}_{l}\right)} \hat{u}\left(\omega, \boldsymbol{x}_{l}\right)\right|^{2} \\
& =\frac{1}{2 \pi} \int d \omega \sum_{j, l=1}^{N} e^{-i \omega\left[\mathcal{T}\left(\boldsymbol{z}^{S}, \boldsymbol{x}_{l}\right)-\mathcal{T}\left(\boldsymbol{z}^{S}, \boldsymbol{x}_{j}\right)\right]} \hat{u}\left(\omega, \boldsymbol{x}_{l}\right) \overline{\hat{u}\left(\omega, \boldsymbol{x}_{j}\right)}
\end{aligned}
$$

\rightarrow Backlight cross correlation imaging with passive sensor arrays provides poor range resolution, as in Incoherent Interferometry imaging.

[^0]
Backlight configuration

- Data only in the presence (C) of the reflector: $C\left(\tau, \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right), j, l=1, \ldots, 5$.

Theory: $C\left(\tau, \boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right)$ has singular components at $\tau=\mathcal{T}\left(\boldsymbol{x}_{l}, \boldsymbol{z}_{\mathrm{r}}\right)-\mathcal{T}\left(\boldsymbol{x}_{j}, \boldsymbol{z}_{\mathrm{r}}\right)$. Triangular inequality $\left|\mathcal{T}\left(\boldsymbol{x}_{l}, \boldsymbol{z}_{\mathrm{r}}\right)-\mathcal{T}\left(\boldsymbol{x}_{j}, \boldsymbol{z}_{\mathrm{r}}\right)\right| \leq \mathcal{T}\left(\boldsymbol{x}_{j}, \boldsymbol{x}_{l}\right) \Longrightarrow$ the singular components of the scattered waves are buried in the components of the direct waves \hookrightarrow the coda cross correlation technique cannot be applied.

Imaging with daylight illumination

Passive sensor imaging using the differential cross correlation technique in a homogeneous medium. The daylight illumination configuration is plotted in the left figure: the circles are the noise sources and the triangles are the sensors.

Good range resolution $\left(\sim c_{0} / B\right)$, good cross range resolution $\left(\sim \lambda_{0} L / a\right)$ for $\mathcal{I}^{\text {D }}$ (sum of travel times is used in \mathcal{I}^{D}, very sensitive to range).

Imaging with backlight illumination

Passive sensor imaging using the differential cross correlation technique in a homogeneous medium. The backlight illumination configuration is plotted in left figure: the circles are the noise sources and the triangles are the sensors.

Poor range resolution ($\sim \lambda_{0} L^{2} / a^{2}$), good cross range resolution $\left(\sim \lambda_{0} L / a\right)$ for \mathcal{I}^{B} (difference of travel times is used in \mathcal{I}^{B}, not sensitive to range).

Imaging in a randomly scattering medium

What if the background is not homogeneous (or smoothly varying) but scattering ? A scattering medium plays a dual role: it enhances the directional diversity of the illumination but it blurs the image.

Migration of $C^{(1)}$ and/or $C^{(3)}$ with backlight and/or daylight imaging functionals.

Imaging with backlight illumination and with strong scattering

Passive sensor imaging using the differential cross correlation technique in a strongly scattering medium. The configuration is plotted in the left figure: the circles are the noise sources, the squares are the strong scatterers.

Imaging with backlight illumination and with weak scattering

Conclusion

- Travel time estimation and imaging of reflectors are possible using cross correlation of ambient noise signals.
- It is possible to exploit the scattering properties of the medium for travel time estimation using special fourth-order cross correlation.
- It is possible to exploit the scattering properties of the medium for imaging by cross correlating and migrating the coda cross correlations (\mathcal{I}^{D} and/or \mathcal{I}^{B} migration with $C^{(1)}$ and/or $\left.C^{(3)}\right)$.
- Other propagation regimes can be analyzed: parabolic approximation, radiative transfer, randomly layered media.
- Main applications in geophysics (global, regional, and local scales: volcano monitoring ${ }^{[1]}$, oil reservoir monitoring). Also in microwave imaging.

Cf:

J. Garnier and G. Papanicolaou, SIAM J. Imaging Sciences 2, 396 (2009).
J. Garnier and G. Papanicolaou, Passive Imaging with Ambient Noise, CUP, in press.
[1] F. Brenguier, N. M. Shapiro, M. Campillo, et al, Nature Geoscience 1, 126 (2008).

[^0]: [1] L. Borcea, G. Papanicolaou, and C. Tsogka, Inverse Problems 19, S134 (2003).

