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In this talk:

Part I: Travel time estimation for background velocity estimation.

Part II: Passive sensor imaging of reflectors.
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Travel time estimation by cross correlation

• Ambient noise sources (◦) emit stationary random signals.

• The waves propagate in the (inhomogeneous) medium.

• The signals u(t,x1) and u(t,x2) are recorded at two sensors x1 and x2.
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• What information (about the medium) can possibly be in these signals ?
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Travel time estimation by cross correlation

• Ambient noise sources (◦) emit stationary random signals.

• The waves propagate in the (inhomogeneous) medium.

• The signals u(t,x1) and u(t,x2) are recorded at two sensors x1 and x2.
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• Compute the empirical cross correlation:

CT (τ,x1,x2) =
1

T

∫ T

0

u(t,x1)u(t+ τ,x2)dt

• CT (τ,x1,x2) contains two pseudo-peaks separated by twice the travel time from x1

to x2.
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Estimations of travel times between pairs of sensors

Surface (Rayleigh) waves [from Shapiro, Campillo, et al, Science 307 (2005), 1615]
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Background velocity estimation from travel time estimates

[from Shapiro, Campillo, et al, Science 307 (2005), 1615]
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The wave equation with noise sources

• Consider the scalar wave model with noise sources:

1

c2(~x)

∂2u

∂t2
(t, ~x)−∆~xu(t, ~x) = n(t, ~x)

n(t, ~x): source.

c(~x): propagation speed (parameter of the medium), assumed to be constant outside

a domain with compact support.

• In the Fourier domain, we have

û(ω, ~x) =

∫
Ĝ(ω, ~x, ~y)n̂(ω, ~y)d~y

where the time-harmonic Green’s function Ĝ(ω, ~x, ~y) is the solution of the Helmholtz

equation

∆~xĜ+
ω2

c2(~x)
Ĝ = −δ(~x− ~y),

with the Sommerfeld radiation condition (c(~x) = c0 at infinity):

lim
|~x|→∞

|~x|
( ~x

|~x|
· ∇~x − i

ω

c0

)
Ĝ(ω, ~x, ~y) = 0
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Green’s function estimation with ambient noise sources (1/3)

1

c2(~x)

∂2u

∂t2
(t, ~x)−∆~xu(t, ~x) = n(t, ~x)

• Sources n(t, ~x): Gaussian random process, stationary in time, with mean zero and

covariance 〈
n(t1, ~y1)n(t2, ~y2)

〉
= F (t2 − t1)K(~y1)δ(~y1 − ~y2)

〈·〉: statistical average.

The function F̂ is the power spectral density of the sources.

The function K characterizes the spatial support of the sources.

• The field u(t, ~x) is stationary in time. The mean field 〈u(t, ~x)〉 is zero. The

information is carried by the correlations 〈u(t1, ~x1)u(t2, ~x2)〉.

• The empirical cross correlation:

CT (τ, ~x1, ~x2) =
1

T

∫ T

0

u(t, ~x1)u(t+ τ, ~x2)dt

converges in probability as T → ∞ to the statistical cross correlation C(1) given by

C(1)(τ, ~x1, ~x2) =
〈
u(0, ~x1)u(τ, ~x2)

〉

=
1

2π

∫
d~y

∫
dωĜ(ω, ~x1, ~y)Ĝ(ω, ~x2, ~y)K(~y)F̂ (ω)e−iωτ
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Green’s function estimation with ambient noise sources (2/3)

x
x

B(0,L)

1
2

Cross correlation with noise sources distributed on a closed surface ∂B(0, L):

C(1)(τ, ~x1, ~x2) =
1

2π

∫
dω

∫

∂B(0,L)

dσ(~y)Ĝ(ω, ~x1, ~y)Ĝ(ω, ~x2, ~y)F̂ (ω)e−iωτ

By Helmholtz-Kirchhoff identity,

Ĝ(ω, ~x1, ~x2)− Ĝ(ω, ~x1, ~x2) =
2iω

c0

∫

∂B(0,L)

dσ(~y)Ĝ(ω, ~x1, ~y)Ĝ(ω, ~x2, ~y)

we have

C(1)(τ, ~x1, ~x2) =
c0
4π

∫
F̂ (ω)

ω
Im

(
Ĝ(ω, ~x1, ~x2)

)
e−iωτdω
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Green’s function estimation with ambient noise sources (3/3)

x
x

B(0,L)

1
2

∂τC
(1)(τ, ~x1, ~x2) = −

ic0
4π

∫
F̂ (ω)Im

(
Ĝ(ω, ~x1, ~x2)

)
e−iωτdω

= −
c0
2

(
F ∗τ G(τ, ~x1, ~x2)− F ∗τ G(−τ, ~x1, ~x2)

)

• The cross correlation of noise signals recorded by two passive sensors is related to

the Green’s function between the sensors.

→֒ the passive sensors can be transformed into virtual sources (known in seismology).

• This proof requires the sources to surround the region of interest.

Other proofs can justify that travel time estimation is possible with cross correlations

of ambient noise signals (in a bounded cavity, ...).
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Left: The circles are the noise sources and the triangles are the sensors (the distance

between two successive sensors is 5). Here F̂ (ω) = ω2Ĝ(ω), Ĝ(ω) = exp(−ω2), c0 = 1.

Right: Cross correlation τ → C(1)(τ,x1,xj) between the pairs of sensors (x1,xj),

j = 1, . . . , 5, versus the distance |xj − x1|. In theory

C(1)(τ,x1,xj) =
c0

8π|x1 − xj |

[
G′

(
τ −

|xj − x1|

c0

)
−G′

(
τ +

|xj − x1|

c0

)]
, j ≥ 2

C(1)(τ,x1,x1) = −
1

4π
G′′(τ)

Peaks in the form of the first derivative of a Gaussian centered at ±|xj − x1|/c0 can

be clearly distinguished for j ≥ 2.
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A quick introduction to geometric optics (1/2)

We look for an approximate expression as ε → 0 for Ĝ
(
ω
ε
,x,y

)
solution of

∆xĜ
(ω
ε
,x,y

)
+

ω2

c2(x)ε2
Ĝ
(ω
ε
,x,y

)
= −δ(x− y)

Note that, if c(x) = c0, then

Ĝ
(ω
ε
,x,y

)
=

1

4π|x− y|
e
iω
ε

|x−y|
c0

Consider a smoothly varying c(x) and look for an expansion of the form:

Ĝ
(ω
ε
,x,y

)
= ei

ω
ε
T (x,y)

∞∑

j=0

εjAj(x,y)

ωj

Substitute the ansatz into Helmholtz equation and collect the terms with the same

powers in ε:

O
( 1

ε2

)
: |∇xT |2 −

1

c2(x)
= 0

O
(1
ε

)
: 2∇xT · ∇xA0 +A0∆xT = 0

→֒ Eikonal equation for the quantity T (that turns out to be the travel time) +

transport equation for the amplitude A0.

Solve by method of characteristics (ray equations).
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A quick introduction to geometric optics (2/2)

Geometric optics approximation of the Green’s function:

Ĝ
(ω
ε
,x,y

)
∼ A(x,y)ei

ω
ε
T (x,y)

valid when ε ≪ 1, where the travel time is

T (x,y) = inf

{
T s.t. ∃(Xt)t∈[0,T ] ∈ C1 , X0 = x , XT = y ,

∣∣dXt

dt

∣∣ = c(Xt)

}

The curve(s) that minimizes this functional are called ray(s).

Simple geometry hypothesis: c(x) is smooth and there is a unique ray between any

pair of points (in the region of interest).

In the homogeneous case c(x) ≡ c0:

Ĝ
(ω
ε
,x,y

)
= A(x,y)ei

ω
ε
T (x,y), with A(x,y) =

1

4π|x− y|
, T (x,y) =

|x− y|

c0
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High-frequency analysis

• We assume that the ratio ε of the decoherence time of the sources over the typical

travel time between sensors is small.

→֒ The time correlation function of the sources is of the form

F ε(t2 − t1) = F
( t2 − t1

ε

)
=⇒ F̂ ε(ω) = εF̂ (εω)

C(1)(τ,x1,x2) =
1

2π

∫
dy

∫
dω Ĝ(ω,x1,y)Ĝ(ω,x2,y)K(y)εF̂ (εω)e−iωτ

ω→ω
ε=

1

2π

∫
dy

∫
dω Ĝ

(ω
ε
,x1,y

)
Ĝ
(ω
ε
,x2,y

)
K(y)F̂ (ω)e−iω

ε
τ

Geometric optics approximation for Ĝ:

C(1)(τ,x1,x2) =
1

2π

∫
dy

∫
dωA(x1,y)A(x2,y)K(y)F̂ (ω)ei

ω
ε
T (y)

with the rapid phase

ωT (y) = ω[T (x2,y)− T (x1,y)− τ ]
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Use of the stationary phase theorem. The dominant contribution comes from the

stationary points (ω,y) satisfying:

∇y

(
ωT (y)

)
= 0 , ∂ω

(
ωT (y)

)
= 0

→֒ two conditions:

∇yT (y,x2) = ∇yT (y,x1) , T (x2,y)− T (x1,y) = τ

=⇒ x1 and x2 are on the same ray issuing from y

=⇒ τ = ±T (x1,x2).

y

x
1

x
2

Also: y should be in the support of K.
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x
1

x
2

x
1

x
2

Singular component at T (x1,x2) No singular component

Conclusion: The cross correlation C(1)(τ,x1,x2) has singular components iff the ray

joining x1 and x2 reaches into the source region (i.e. the support of K). Then there

are one or two singular components at τ = ±T (x1,x2).

[More exactly:

the rays y → x1 → x2 contribute to the singular component at τ = T (x1,x2),

the rays y → x2 → x1 contribute to the singular component at τ = −T (x1,x2).]
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Left: The circles are the noise sources and the triangles are the sensors (the distance

between two successive sensors is 50).

Right: Cross correlation τ → C(1)(τ,x1,xj) between the pairs of sensors (x1,xj),

j = 1, . . . , 5, versus the distance |xj − x1|.

No peak can be distinguished for j ≥ 2.
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Left: The circles are the noise sources and the triangles are the sensors (the distance

between two successive sensors is 50).

Right: Cross correlation τ → C(1)(τ,x1,xj) between the pairs of sensors (x1,xj),

j = 1, . . . , 5, versus the distance |xj − x1|.

Peaks in the form of the first derivative of a Gaussian centered at +|xj − x1|/c0 can

be clearly distinguished for j ≥ 2.
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High-frequency analysis

• As ε tends to zero, in a homogeneous medium with background velocity c0:

∂τC
(1)(τ,x1,x2) =

c0
2
A(x1,x2)

[
K(x2,x1)Fε

(
τ + T (x1,x2)

)

−K(x1,x2)Fε

(
τ − T (x1,x2)

)]
,

where A(x1,x2) = 1/(4π|x1 − x2|), T (x1,x2) = |x1 − x2|/c0,

K(x1,x2) =

∫ ∞

0

K
(
x1 +

x1 − x2

|x1 − x2|
l
)
dl,

• K(x1,x2) is the power released by the noise sources located along the ray starting

from x1 with the direction of x1 − x2.

• It is possible to extract the travel times between pairs of sensors (with a resolution

equal to the inverse of the noise bandwidth).

• It is difficult to extract the amplitude A of the high-frequency Green’s function as it

comes with a multiplicative term that depends on the source distribution.
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Left: The circles are the noise sources and the triangles are the sensors (the distance

between two successive sensors is 5).

Right: Cross correlation τ → C(1)(τ,x1,xj) between the pairs of sensors (x1,xj),

j = 1, . . . , 5, versus the distance |xj − x1|.

Peaks centered at +|xj − x1|/c0 can be clearly distinguished for j ≥ 2, but their

forms are not exactly the first derivative of a Gaussian for j = 2, 3 (distance 5, 10),

and become of this form for j = 4, 5 (distance 15, 20).
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Left: The circles are the noise sources and the triangles are the sensors (the distance

between two successive sensors is 50).

Right: Cross correlation τ → C(1)(τ,x1,xj) between the pairs of sensors (x1,xj),

j = 1, . . . , 5, versus the distance |xj − x1|.

Peaks in the form of the first derivative of a Gaussian centered at +|xj − x1|/c0 can

be clearly distinguished for j ≥ 2.
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• Here, the cross correlation method does not allow for travel time estimation,

because there is not enough “directional diversity”.
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x
1

x
2

• Here, the cross correlation method does not allow for travel time estimation,

because there is not enough “directional diversity”.

• Idea (first suggested by M. Campillo [1]): exploit the scattering properties of the

medium and use the scatterers as “secondary noise sources”.

[1] M. Campillo and L. Stehly, Eos Trans. AGU 88(52) (2007), Fall Meet. Suppl., Abstract S51D-07.



Fourth-order cross correlations for travel time estimation

x
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Use of auxiliary sensors xa,j , j = 1, . . . , N . Algorithm:

1) for each j, compute the cross correlations CT (τ,xa,j ,x1) and CT (τ,xa,j ,x2):

CT (τ,xa,j ,xl) =
1

T

∫ T

0

u(t,xa,j)u(t+ τ,xl)dt , l = 1, 2
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Fourth-order cross correlations for travel time estimation

x
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a,1
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cross correlation x
a,1
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2

Use of auxiliary sensors xa,j , j = 1, . . . , N . Algorithm:

1) for each j, compute the cross correlations CT (τ,xa,j ,x1) and CT (τ,xa,j ,x2):

CT (τ,xa,j ,xl) =
1

T

∫ T

0

u(t,xa,j)u(t+ τ,xl)dt , l = 1, 2

2) consider the tails of CT (τ,xa,j ,x1) and CT (τ,xa,j ,x2):

CT,coda(τ,xa,j ,xl) = CT (τ,xa,j ,xl)
[
1(−Tc2,−Tc1)(τ) + 1(Tc1,Tc2)(τ)

]
, l = 1, 2
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Fourth-order cross correlations for travel time estimation

x
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Use of auxiliary sensors xa,j , j = 1, . . . , N . Algorithm:

1) for each j, compute the cross correlations CT (τ,xa,j ,x1) and CT (τ,xa,j ,x2):

CT (τ,xa,j ,xl) =
1

T

∫ T

0

u(t,xa,j)u(t+ τ,xl)dt , l = 1, 2

2) consider the tails of CT (τ,xa,j ,x1) and CT (τ,xa,j ,x2):

CT,coda(τ,xa,j ,xl) = CT (τ,xa,j ,xl)
[
1(−Tc2,−Tc1)(τ) + 1(Tc1,Tc2)(τ)

]
, l = 1, 2

3) compute the cross correlations between the tails and sum over j:

C
(3)
T (τ,x1,x2) =

N∑

j=1

∫ ∞

−∞

CT,coda(τ
′,xa,j ,x1)CT,coda(τ

′ + τ,xa,j ,x2)dτ
′
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Analysis of the fourth-order cross correlation C(3)

• Self-averaging property for C(3) when T → ∞.

• Born (single scattering) approximation for the scattering medium.

• Geometric optics approximation for the background Green’s function.

→֒ expression of C(3) with a fast phase parameterized by a frequency ω, an auxiliary

sensor xa, two sources y1, y2, a scatterer zs (and the main sensors x1, x2).

• Stationary phase analysis: five conditions for the stationary points.
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→֒ There are stationary points:

Conclusion: C(3) has singular components if:

1) there are scatterers along the ray joining x1 and x2.

2) there are auxiliary sensors along rays joining sources and scatterers.

These singular components are at τ = ±T (x1,x2).

It is not required that the ray joining x1 and x2 reaches into the source region !

If the scattering region covers the region of interest or surrounds it, then C(3) has

singular components at τ = ±T (x1,x2) !
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ray
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scatterer
auxiliary sensor
sensor

Here:

It is not possible to extract the travel time τ(x1,x2) from C(1)

It is possible to extract the travel time T (x1,x2) from C(3)
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Configuration C(1)(τ,x1,xj) C(3)(τ,x1,xj)

The circles are the noise sources, the squares are the scatterers, and the triangles are

the sensors.
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Configuration C(1)(τ,x1,xj) C(3)(τ,x1,xj)

The circles are the noise sources, the squares are the scatterers, and the triangles are

the sensors.
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Imaging of reflectors by cross correlation of ambient noise signals

• Array of passive sensors xj , j = 1, . . . , N

• Ambient noise sources emitting stationary random signals

• Target at zr (small reflector to be imaged)

• Two different illumination configurations

x
1

x
N

z
r

x
1

x
N

z
r

Daylight configuration Backlight configuration

• Two types of situations:

• Data in the absence (C0) and in the presence (C) of the reflector.

• Data only in the presence of the reflector (C).

• Note: The travel times between the sensors and points in the search region (around

zr) are supposed to be known.
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Daylight configuration

• Data in the absence (C0(τ,xj ,xl), j, l = 1, . . . , 5) and in the presence (C(τ,xj ,xl),

j, l = 1, . . . , 5) of the reflector

0 20 40 60 80 100 120
−50

0

50

x
1

x
5 z

r

−150 −100 −50 0 50 100 150
−0.5

0

0.5

1

τ

differential cross correlation x
1
−x

1

−150 −100 −50 0 50 100 150
−0.5

0

0.5

1

τ

differential cross correlation x
1
−x

5

Differential cross correlation:

∆C(τ,xj ,xl) = (C − C0)(τ,xj ,xl) , j, l = 1, . . . , 5

Theory (high-frequency analysis): ∆C(τ,xj ,xl) has singular components at

τ = ±[T (xj , zr) + T (xl, zr)].
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High-frequency analysis

We still have

C(1)(τ,x1,x2) =
1

2π

∫
dy

∫
dω Ĝ

(ω
ε
,x1,y

)
Ĝ
(ω
ε
,x2,y

)
K(y)F̂ (ω)e−iω

ε
τ

Geometric optics approximatinon:

Ĝ
(ω
ε
,x1,x2

)
∼ A(x1,x2)e

iω
ε
T (x1,x2) +

ω2

ε2
Ar(x1,x2)e

iω
ε
Tr(x1,x2)

Here

Tr(x1,x2) = T (x1,zr) + T (zr,x2) ,

Point-like reflector:

Ar(x1,x2) =
σrl

3
r

c20
A(x1,zr)A(zr,x2).

Ecole Polytechnique august 2015



C(1)(τ,x1,x2) ≃ C
(1)
0 (τ,x1,x2) + C

(1)
I (τ,x1,x2) + C

(1)
II (τ,x1,x2) ,

with

C
(1)
0 (τ,x1,x2) =

1

2π

∫
dyK(y)

∫
dω F̂ (ω)A(x1,y)A(x2,y)e

iω
ε
T0(y) ,

C
(1)
I (τ,x1,x2) =

1

2πε2

∫
dyK(y)

∫
dω ω2F̂ (ω)Ar(x1,y)A(x2,y)e

iω
ε
TI(y) ,

C
(1)
II (τ,x1,x2) =

1

2πε2

∫
dyK(y)

∫
dω ω2F̂ (ω)A(x1,y)Ar(x2,y)e

iω
ε
TII(y) ,

and

ωT0(y) = ω[T (y,x2)− T (y,x1)− τ ]

ωTI(y) = ω[T (y,x2)− Tr(y,x1)− τ ]

= ω[T (y,x2)− T (y, zr)− T (zr,x1)− τ ] ,

ωTII(y) = ω[Tr(y,x2)− T (y,x1)− τ ]

= ω[T (y, zr) + T (zr,x2)− T (y,x1)− τ ] .

• The term C
(1)
0 is of the same form as the function C(1) without reflector. It has

singular components only if x1, x2 and y are on the same ray. These singular

components are supported on ±T (x1,x2).
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C
(1)
II (τ,x1,x2) =

1

2πε2

∫
dyK(y)

∫
dω ω2F̂ (ω)A(x1,y)Ar(x2,y)e

i
ω
ε
TII(y) ,

ωTII(y) = ω[T (y, zr) + T (zr,x2)− T (y,x1)− τ ] .

The dominant contribution to the term C
(1)
II comes from the stationary points (ω,y)

satisfying

∂ω

(
ωTII(y)

)
= 0 , ∇y

(
ωTII(y)

)
= 0 ,

which gives the conditions

T (y, zr) + T (zr,x2)− T (y,x1) = τ , ∇yT (y,zr) = ∇yT (y,x1) .

The second condition implies that x1 and zr are on the same side of a ray issuing

from y. If the points are aligned along the ray as y → x1 → zr (daylight

configuration), then the first condition is equivalent to τ = T (zr,x2) + T (zr,x1).
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C
(1)
I (τ,x1,x2) =

1

2πε2

∫
dyK(y)

∫
dω ω2F̂ (ω)Ar(x1,y)A(x2,y)e

iω
ε
TI(y) ,

ωTI(y) = ω[T (y,x2)− T (y, zr)− T (zr,x1)− τ ]

• The dominant contribution to the term C
(1)
I comes from the stationary points (ω,y)

satisfying

∂ω

(
ωTI(y)

)
= 0 , ∇y

(
ωTI(y)

)
= 0 ,

which gives the conditions

T (y,x2)− T (y, zr)− T (zr,x1) = τ , ∇yT (y,x2) = ∇yT (y, zr) .

The second condition implies that x2 and zr are on the same side of a ray issuing

from y. If the points are aligned along the ray as y → x2 → zr (daylight

configuration), then the first condition is equivalent to τ = −T (zr,x2)− T (zr,x1).

x
1

x
2

z
r

y

Ecole Polytechnique august 2015



Daylight configuration - migration

∆C(τ,xj ,xl) = (C − C0)(τ,xj ,xl)

Theory: ∆C(τ,xj ,xl) has singular components at τ = ±[T (xj ,zr) + T (xl, zr)].

• Migration of the differential cross correlations ∆C.

Migration functional for the search point zS :

ID(zS) =
N∑

j,l=1

∆C
(
T (zS ,xj) + T (zS ,xl),xj ,xl

)
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Daylight configuration - resolution analysis

Migration functional:

ID(zS) =

N∑

j,l=1

∆C
(
T (zS ,xj) + T (zS ,xl),xj ,xl)

Analogy with Kirchhoff Migration [1] for array imaging using an array of active

sensors (xj)j=1,...,N emitting broadband pulses. The data is then the impulse

response matrix (u(t,xj ;xl))j,l=1,...,N and the Kirchhoff Migration functional is

IKM(zS) =
N∑

j,l=1

u
(
T (zS ,xj) + T (zS ,xl),xj ;xl

)

→֒ Passive imaging using ambient noise has the same resolution as array imaging

using active sources !

→ Range resolution ≃ c0/B, where B is the bandwidth.

→ Cross range resolution (for a linear array) ≃ λ0L/a, where λ0 is the carrier

wavelength, L is the distance from the array to the reflector, a the diameter of the

array.

→ Cross range resolution (for a distributed network) ≃ c0/B (triangulation).

[1] N. Bleistein, J. K. Cohen, and J. W. Stockwell Jr, Mathematics of seismic imaging, Springer, 2001.



Daylight configuration

• Data only in the presence of the reflector: C(τ,xj ,xl), j, l = 1, . . . , 5.
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Coda cross correlation:

Ccoda(τ,xj ,xl) = C(τ,xj ,xl)1(T (xj ,xl),∞)(|τ |)
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Daylight configuration - migration

Ccoda(τ,xj ,xl) = C(τ,xj ,xl)1(T (xj ,xl),∞)(|τ |)

Theory: Ccoda(τ,xj ,xl) has singular components at τ = ±[T (xj , zr) + T (xl,zr)].

Triangular inequality: |T (xj , zr) + T (xl, zr)| ≥ T (xj ,xl) =⇒ singular components in

Ccoda.

• Migration of the coda cross correlations.

Migration functional for the search point zS :

ID(zS) =

N∑

j,l=1

Ccoda

(
T (zS ,xj) + T (zS ,xl),xj ,xl

)
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Backlight configuration

• Data in the absence (C0) and in the presence (C) of the reflector

0 20 40 60 80 100 120
−50

0

50

x
1

x
5z

r

−150 −100 −50 0 50 100 150
−0.5

0

0.5

1

τ

differential cross correlation x
1
−x

1

−150 −100 −50 0 50 100 150
−0.5

0

0.5

1

τ

differential cross correlation x
1
−x

5

Differential cross correlation:

∆C(τ,xj ,xl) = (C − C0)(τ,xj ,xl)

Theory: ∆C(τ,xj ,xl) has singular components at τ = T (xl, zr)−T (xj , zr).
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C
(1)
I (τ,x1,x2) =

1

2πε2

∫
dyK(y)

∫
dω ω2F̂ (ω)Ar(x1,y)A(x2,y)e

iω
ε
TI(y) ,

ωTI(y) = ω[T (y,x2)− T (y, zr)− T (zr,x1)− τ ]

• The dominant contribution to the term C
(1)
I comes from the stationary points (ω,y)

satisfying

∂ω

(
ωTI(y)

)
= 0 , ∇y

(
ωTI(y)

)
= 0 ,

which gives the conditions

T (y,x2)− T (y, zr)− T (zr,x1) = τ , ∇yT (y,x2) = ∇yT (y, zr) .

The second condition implies that x2 and zr are on the same side of a ray issuing

from y. If the points are aligned along the ray as y → zr → x2 (backlight

configuration), then the first condition is equivalent to τ = T (zr,x2)− T (zr,x1).
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Backlight configuration - migration

∆C(τ,xj ,xl) = (C − C0)(τ,xj ,xl)

Theory: ∆C(τ,xj ,xl) has singular components at τ = T (xl, zr)−T (xj , zr).

• Migration of the differential cross correlations ∆C.

Migration functional for the search point zS :

IB(zS) =

N∑

j,l=1

∆C
(
T (xl,z

S)− T (xj ,z
S),xj ,xl

)
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Backlight configuration - resolution analysis

Migration functional

IB(zS) =

N∑

j,l=1

∆C
(
T (xl,z

S)− T (xj , z
S),xj ,xl

)

=
1

2π

∫
dω

N∑

j,l=1

e−iω[T (zS ,xl)−T (zS ,xj)]∆̂C
(
T (xl, z

S)− T (xj ,z
S),xj ,xl

)

Analogy with Incoherent Interferometry imaging [1], used when zr is a source emitting

an impulse that is recorded by passive sensors at (xj)j=1,...,N . The data is then the

vector (u(t,xj))j=1,...,N . The MF functional is

IMF(zS) =
1

2π

∫
dω

∣∣∣
N∑

l=1

e−iωT (zS ,xl)û(ω,xl)
∣∣∣
2

=
1

2π

∫
dω

N∑

j,l=1

e−iω[T (zS ,xl)−T (zS ,xj)]û(ω,xl)û(ω,xj)

→ Backlight cross correlation imaging with passive sensor arrays provides poor range

resolution, as in Incoherent Interferometry imaging.

[1] L. Borcea, G. Papanicolaou, and C. Tsogka, Inverse Problems 19, S134 (2003).



Backlight configuration

• Data only in the presence (C) of the reflector: C(τ,xj ,xl), j, l = 1, . . . , 5.

Theory: C(τ,xj ,xl) has singular components at τ = T (xl, zr)− T (xj , zr).

Triangular inequality |T (xl,zr)− T (xj ,zr)| ≤ T (xj ,xl) =⇒ the singular components

of the scattered waves are buried in the components of the direct waves

→֒ the coda cross correlation technique cannot be applied.
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Imaging with daylight illumination
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Passive sensor imaging using the differential cross correlation technique in a

homogeneous medium. The daylight illumination configuration is plotted in the left

figure: the circles are the noise sources and the triangles are the sensors.

Good range resolution (∼ c0/B), good cross range resolution (∼ λ0L/a) for I
D (sum

of travel times is used in ID, very sensitive to range).
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Imaging with backlight illumination
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Configuration IB ID

Passive sensor imaging using the differential cross correlation technique in a

homogeneous medium. The backlight illumination configuration is plotted in left

figure: the circles are the noise sources and the triangles are the sensors.

Poor range resolution (∼ λ0L
2/a2), good cross range resolution (∼ λ0L/a) for I

B

(difference of travel times is used in IB, not sensitive to range).
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Imaging in a randomly scattering medium

What if the background is not homogeneous (or smoothly varying) but scattering ?

A scattering medium plays a dual role: it enhances the directional diversity of the

illumination but it blurs the image.

Migration of C(1) and/or C(3) with backlight and/or daylight imaging functionals.
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Imaging with backlight illumination and with strong scattering
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Passive sensor imaging using the differential cross correlation technique in a strongly

scattering medium. The configuration is plotted in the left figure: the circles are the

noise sources, the squares are the strong scatterers.
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Imaging with backlight illumination and with weak scattering
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IB with ∆C(1) ID with ∆C(1) Configuration
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Imaging with backlight illumination and with weak scattering
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IB with ∆C(1) ID with ∆C(1) Configuration

IB with ∆C(3) ID with ∆C(3)
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Conclusion

• Travel time estimation and imaging of reflectors are possible using cross correlation

of ambient noise signals.

• It is possible to exploit the scattering properties of the medium for travel time

estimation using special fourth-order cross correlation.

• It is possible to exploit the scattering properties of the medium for imaging by cross

correlating and migrating the coda cross correlations (ID and/or IB migration with

C(1) and/or C(3)).

• Other propagation regimes can be analyzed: parabolic approximation, radiative

transfer, randomly layered media.

• Main applications in geophysics (global, regional, and local scales: volcano

monitoring[1], oil reservoir monitoring). Also in microwave imaging.

Cf:

J. Garnier and G. Papanicolaou, SIAM J. Imaging Sciences 2, 396 (2009).

J. Garnier and G. Papanicolaou, Passive Imaging with Ambient Noise, CUP, in press.

[1] F. Brenguier, N. M. Shapiro, M. Campillo, et al, Nature Geoscience 1, 126 (2008).


