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In this talk: correlation-based imaging is useful when the medium is scattering.

Ecole Polytechnique august 2015



Conventional reflector imaging through a homogeneous medium

~xs ~xr

~yref

• Sensor array imaging of a reflector located at ~yref . ~xs is a source, ~xr is a receiver.

Measured data: {u(t, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.

• Mathematical model:

( 1

c20
+

1

c2ref
1Bref

(~x− ~yref)
)∂2u

∂t2
(t, ~x; ~xs)−∆~xu(t, ~x; ~xs) = f(t)δ(~x− ~xs)

• Purpose of imaging: using the measured data, build an imaging function I(~yS) that

would ideally look like 1
c2
ref

1Bref
(~yS − ~yref), in order to extract the relevant

information (~yref , Bref , cref) about the reflector.
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• Classical imaging functions:

1) Least-Squares imaging: minimize the quadratic misfit between measured data and

synthetic data obtained by solving the wave equation with a candidate (~y, B, c)test.

2) Linearized Least-Squares imaging: simplify Least-Squares imaging by

“linearization” of the forward problem (Born).

3) Reverse Time imaging: simplify Linearized Least-Squares imaging by forgetting

the normal operator.

4) Kirchhoff Migration: simplify Reverse Time imaging by substituting travel time

migration for full wave equation.
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• Classical imaging functions:

1) Least-Squares imaging: minimize the quadratic misfit between measured data and

synthetic data obtained by solving the wave equation with a candidate (~y, B, c)test.

2) Linearized Least-Squares imaging: simplify Least-Squares imaging by

“linearization” of the forward problem (Born).

3) Reverse Time imaging: simplify Linearized Least-Squares imaging by forgetting

the normal operator.

4) Kirchhoff Migration: simplify Reverse Time imaging by substituting travel time

migration for full wave equation.

• Kirchhoff Migration function:

IKM(~yS) =

Nr
∑

r=1

Ns
∑

s=1

u
( |~xs − ~yS |

c0
+

|~yS − ~xr|
c0

, ~xr; ~xs

)

It forms the image with the superposition of the backpropagated traces.

|~yS − ~x|/c0 is the travel time from ~x to ~yS .

[1] H. Ammari, J. Garnier, and K. Sølna, Waves in Random and Complex Media 22, 40 (2012).



Kirchhoff Migration:

IKM(~yS) =

Nr
∑

r=1

Ns
∑

s=1

u
(

T (~xs, ~y
S) + T (~yS , ~xr), ~xr; ~xs

)

• Resolution analysis:

• Lateral resolution: λL/a, where λ is the central wavelength, L is the distance from

the array to the reflector, and a is the array diameter (paraxial regime λ ≪ a ≪ L).

• Range resolution: c0/B, where c0 is the background velocity and B is the

bandwidth.

[1] H. Ammari, J. Garnier, and K. Sølna, Waves in Random and Complex Media 22, 40 (2012).



Kirchhoff Migration:

IKM(~yS) =

Nr
∑

r=1

Ns
∑

s=1

u
(

T (~xs, ~y
S) + T (~yS , ~xr), ~xr; ~xs

)

• Resolution analysis:

• Lateral resolution: λL/a, where λ is the central wavelength, L is the distance from

the array to the reflector, and a is the array diameter (paraxial regime λ ≪ a ≪ L).

• Range resolution: c0/B, where c0 is the background velocity and B is the

bandwidth.

• Stability analysis:

• Very robust with respect to additive measurement noise [1].

• Sensitive to medium noise: If the medium is scattering, then Kirchhoff Migration

(usually) does not work.

[1] H. Ammari, J. Garnier, and K. Sølna, Waves in Random and Complex Media 22, 40 (2012).



Conventional reflector imaging through a scattering medium

~xs ~xr

~yref

• Sensor array imaging of a reflector located at ~yref . ~xs is a source, ~xr is a receiver.

Data: {u(t, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.
( 1

c2(~x)
+

1

c2ref
1Bref

(~x− ~yref)
)∂2u

∂t2
(t, ~x; ~xs)−∆~xu(t, ~x; ~xs) = f(t)δ(~x− ~xs)

• Random medium model:

1

c2(~x)
=

1

c20

(

1 + µ(~x)
)

c0 is a reference speed,

µ(~x) is a zero-mean random process.

Ecole Polytechnique august 2015



Conventional reflector imaging through a scattering medium

~xs ~xr

~yref

• Sensor array imaging of a reflector located at ~yref . ~xs is a source, ~xr is a receiver.

Data: {û(ω, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.

ω2
( 1

c2(~x)
+

1

c2ref
1Bref

(~x− ~yref)
)

û(ω, ~x; ~xs) + ∆~xû(ω, ~x; ~xs) = −f̂(ω)δ(~x− ~xs)

• Random medium model:

1

c2(~x)
=

1

c20

(

1 + µ(~x)
)

c0 is a reference speed,

µ(~x) is a zero-mean random process.
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Strategy: Stochastic and multiscale analysis

• Remark: The medium noise û− û0 (where û0 is the data that would be obtained in

a homogeneous medium) is very different from an additive measurement noise !

• A detailed analysis is possible in different regimes of separation of scales (small

wavelength, large propagation distance, small correlation length, . . .).

→֒ Analysis of the moments of û.

• Compute the mean and variance of an imaging function I(~yS).

→֒ resolution and stability analysis.

• The resolution analysis of the mean imaging function E
[

I(~yS)
]

gives lateral and

range resolutions.

• Criterium for statistical stability:

SNR :=
E
[

I(~yS)
]

Var
(

I(~yS)
)1/2

> 1

→֒ design the imaging function to get good trade-off between stability and resolution.
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• General results obtained by a stochastic analysis:

• The mean (coherent) wave is small.

=⇒ The Kirchhoff Migration function (or Reverse Time imaging function) is unstable

in randomly scattering media.

E
[

IKM(~yS)
]

Var
(

IKM(~yS)
)1/2

≪ 1

• The wave fluctuations at nearby points and nearby frequencies are correlated.

The wave correlations carry information about the medium and the reflector.

=⇒ One should use local cross correlations for imaging.
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Wave propagation in the random paraxial regime

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2
z +∆⊥)û+

ω2

c20

(

1 + µ(x, z)
)

û = 0.

Consider the paraxial regime “λ ≪ lc ≪ L”:

ω → ω

ε4
, µ(x, z) → ε3µ

( x

ε2
,
z

ε2
)

.

The function φ̂ε (slowly-varying envelope of a plane wave) defined by

ûε(ω,x, z) = e
i ωz

ε
4
c0 φ̂ε(ω,

x

ε2
, z
)

satisfies

ε4∂2
z φ̂

ε +

(

2i
ω

c0
∂zφ̂

ε +∆⊥φ̂
ε +

ω2

c20

1

ε
µ
(

x,
z

ε2
)

φ̂ε

)

= 0.
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Wave propagation in the random paraxial regime

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2
z +∆⊥)û+

ω2

c20

(

1 + µ(x, z)
)

û = 0.

Consider the paraxial regime “λ ≪ lc ≪ L”:

ω → ω

ε4
, µ(x, z) → ε3µ

( x

ε2
,
z

ε2
)

.

The function φ̂ε (slowly-varying envelope of a plane wave) defined by

ûε(ω,x, z) = e
i ωz

ε
4
c0 φ̂ε(ω,

x

ε2
, z
)

satisfies

ε4∂2
z φ̂

ε +

(

2i
ω

c0
∂zφ̂

ε +∆⊥φ̂
ε +

ω2

c20

1

ε
µ
(

x,
z

ε2
)

φ̂ε

)

= 0.

• In the regime ε ≪ 1, the forward-scattering approximation in direction z is valid

and φ̂ = limε→0 φ̂
ε satisfies the Itô-Schrödinger equation [1]

2i
ω

c0
∂zφ̂+∆⊥φ̂+

ω2

c20
Ḃ(x, z)φ̂ = 0

with B(x, z) Brownian field E[B(x, z)B(x′, z′)] = γ(x− x
′) min(z, z′),

γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz.

[1] J. Garnier and K. Sølna, Ann. Appl. Probab. 19, 318 (2009).



Wave propagation in the random paraxial regime

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2
z +∆⊥)û+

ω2

c20

(

1 + µ(x, z)
)

û = 0.

Consider the paraxial regime “λ ≪ lc ≪ L”:

ω → ω

ε4
, µ(x, z) → ε3µ

( x

ε2
,
z

ε2
)

.

The function φ̂ε (slowly-varying envelope of a plane wave) defined by

ûε(ω,x, z) = e
i ωz

ε
4
c0 φ̂ε(ω,

x

ε2
, z
)

satisfies

ε4∂2
z φ̂

ε +

(

2i
ω

c0
∂zφ̂

ε +∆⊥φ̂
ε +

ω2

c20

1

ε
µ
(

x,
z

ε2
)

φ̂ε

)

= 0.

• In the regime ε ≪ 1, the forward-scattering approximation in direction z is valid

and φ̂ = limε→0 φ̂
ε satisfies the Itô-Schrödinger equation [1]

dφ̂ =
ic0
2ω

∆⊥φ̂dz +
iω

2c0
φ̂ ◦ dB(x, z)

with B(x, z) Brownian field E[B(x, z)B(x′, z′)] = γ(x− x
′) min(z, z′),

γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz.

[1] J. Garnier and K. Sølna, Ann. Appl. Probab. 19, 318 (2009).



Wave propagation in the random paraxial regime

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2
z +∆⊥)û+

ω2

c20

(

1 + µ(x, z)
)

û = 0.

Consider the paraxial regime “λ ≪ lc ≪ L”:

ω → ω

ε4
, µ(x, z) → ε3µ

( x

ε2
,
z

ε2
)

.

The function φ̂ε (slowly-varying envelope of a plane wave) defined by

ûε(ω,x, z) = e
i ωz

ε
4
c0 φ̂ε(ω,

x

ε2
, z
)

satisfies

ε4∂2
z φ̂

ε +

(

2i
ω

c0
∂zφ̂

ε +∆⊥φ̂
ε +

ω2

c20

1

ε
µ
(

x,
z

ε2
)

φ̂ε

)

= 0.

• In the regime ε ≪ 1, the forward-scattering approximation in direction z is valid

and φ̂ = limε→0 φ̂
ε satisfies the Itô-Schrödinger equation [1]

dφ̂ =
ic0
2ω

∆⊥φ̂dz +
iω

2c0
φ̂dB(x, z)− ω2γ(0)

8c20
φ̂dz

with B(x, z) Brownian field E[B(x, z)B(x′, z′)] = γ(x− x
′) min(z, z′),

γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz.

[1] J. Garnier and K. Sølna, Ann. Appl. Probab. 19, 318 (2009).



• We introduce the fundamental solution Ĝ
(

ω, (x, z), (x0, z0)
)

:

dĜ =
ic0
2ω

∆⊥Ĝdz +
iω

2c0
Ĝ ◦ dB(x, z)

starting from Ĝ
(

ω, (x, z = z0), (x0, z0)
)

= δ(x− x0).

• In a homogeneous medium (B ≡ 0) the fundamental solution is

Ĝ0

(

ω, (x, z), (x0, z0)
)

=
exp

(

iω|x−x0|
2

2c0|z−z0|

)

2iπc0
|z−z0|

ω

.
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• We introduce the fundamental solution Ĝ
(

ω, (x, z), (x0, z0)
)

:

dĜ =
ic0
2ω

∆⊥Ĝdz +
iω

2c0
Ĝ ◦ dB(x, z)

starting from Ĝ
(

ω, (x, z = z0), (x0, z0)
)

= δ(x− x0).

• In a homogeneous medium (B ≡ 0) the fundamental solution is

Ĝ0

(

ω, (x, z), (x0, z0)
)

=
exp

(

iω|x−x0|
2

2c0|z−z0|

)

2iπc0
|z−z0|

ω

.

• In a random medium,

E
[

Ĝ
(

ω, (x, z), (x0, z0)
)]

= Ĝ0

(

ω, (x, z), (x0, z0)
)

exp
(

− γ(0)ω2|z − z0|
8c20

)

,

where γ(x) =
∫∞

−∞
E[µ(0, 0)µ(x, z)]dz.

• Strong damping of the coherent wave if |z − z0| > zsca := 8c20/(γ(0)ω
2).

=⇒ Coherent imaging methods (such as Kirchhoff migration) fail.
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• In a random medium,

E
[

Ĝ
(

ω, (x, z), (x0, z0)
)

Ĝ
(

ω, (x′, z), (x0, z0)
)]

= Ĝ0

(

ω, (x, z), (x0, z0)
)

Ĝ0

(

ω, (x′, z), (x0, z0)
)

exp
(

− γ2(x− x
′)ω2|z − z0|
4c20

)

,

where γ2(x) =
∫ 1

0
γ(0)− γ(xs)ds (note γ2(0) = 0).

If |z − z0| > zsca := 8c20/(γ(0)ω
2), then

E
[

Ĝ
(

ω, (x, z), (x0, z0)
)

Ĝ
(

ω, (x′, z), (x0, z0)
)]

≃ Ĝ0

(

ω, (x, z), (x0, z0)
)

Ĝ0

(

ω, (x′, z), (x0, z0)
)

exp
(

− γ̄2ω
2|z − z0|
12c20

|x− x
′|2

)

,

where γ(x) = γ(0)− γ̄2|x|2 + o(|x|2) for small |x|.
• The fields at nearby points (closer than Xc :=

√
12c0/(

√
γ̄2ω)) are correlated.

• Same results in frequency: The fields at nearby frequencies are correlated.

=⇒ One should migrate local cross correlations for imaging.
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• In a random medium,

E
[

Ĝ
(

ω, (x, z), (x0, z0)
)

Ĝ
(

ω, (x′, z), (x0, z0)
)]

= Ĝ0

(

ω, (x, z), (x0, z0)
)

Ĝ0

(

ω, (x′, z), (x0, z0)
)

exp
(

− γ2(x− x
′)ω2|z − z0|
4c20

)

,

where γ2(x) =
∫ 1

0
γ(0)− γ(xs)ds (note γ2(0) = 0).

If |z − z0| > zsca := 8c20/(γ(0)ω
2), then

E
[

Ĝ
(

ω, (x, z), (x0, z0)
)

Ĝ
(

ω, (x′, z), (x0, z0)
)]

≃ Ĝ0

(

ω, (x, z), (x0, z0)
)

Ĝ0

(

ω, (x′, z), (x0, z0)
)

exp
(

− γ̄2ω
2|z − z0|
12c20

|x− x
′|2

)

,

where γ(x) = γ(0)− γ̄2|x|2 + o(|x|2) for small |x|.
• The fields at nearby points (closer than Xc :=

√
12c0/(

√
γ̄2ω)) are correlated.

• Same results in frequency: The fields at nearby frequencies are correlated.

=⇒ One should migrate local cross correlations for imaging.

• In a random medium, one can write a closed-form equation for the n-th order

moment.

Depending on the statistics of the random medium, the wave fluctuations may have

Gaussian statistics or not [1].

[1] J. Garnier and K. Sølna, Comm. Part. Differ. Equat. 39 (2014), 626.



Imaging through a scattering medium

~xs ~xr

~yref

Sensor array imaging of a reflector located at ~yref . ~xs is a source, ~xr is a receiver.

Data: {u(t, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.
If the medium is scattering, then Kirchhoff migration does not work:

IKM(~yS) =

Ns
∑

s=1

Nr
∑

r=1

u
( |~xs − ~yS |

c0
+

|~yS − ~xr|
c0

, ~xr; ~xs

)
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Imaging through a scattering medium

~xs ~xr

~yref

Sensor array imaging of a reflector located at ~yref . ~xs is a source, ~xr is a receiver.

Data: {u(t, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.
If the medium is scattering, then Kirchhoff migration does not work:

IKM(~yS) =

Ns
∑

s=1

Nr
∑

r=1

∫

û(ω, ~xr; ~xs) exp
{

iω
[ |~xs − ~yS |

c0
+

|~yS − ~xr|
c0

]}

dω
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Imaging through a scattering medium

~xs ~xr

~yref

Sensor array imaging of a reflector located at ~yref . ~xs is a source, ~xr is a receiver.

Data: {u(t, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.
If the medium is scattering, then full migration of cross correlations does not work:

IfullCC(~y
S) =

Ns
∑

s,s′=1

Nr
∑

r,r′=1

∫∫

dωdω′ û(ω, ~xr; ~xs)û(ω′, ~xr′ ; ~xs′)

× exp
{

− iω
[ |~xr − ~yS |

c0
+

|~xs − ~yS |
c0

]

+ iω′
[ |~xr′ − ~yS |

c0
+

|~xs′ − ~yS |
c0

]}

=

∣

∣

∣

∣

Ns
∑

s=1

Nr
∑

r=1

∫

û(ω, ~xr; ~xs) exp
{

iω
[ |~xs − ~yS |

c0
+

|~yS − ~xr|
c0

]}

dω

∣

∣

∣

∣

2

=
∣

∣IKM(~yS)
∣

∣

2

If one migrates all cross correlations, one gets the same image as with Kirchhoff !
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Imaging through a scattering medium

~xs ~xr

~yref

Sensor array imaging of a reflector located at ~yref . ~xs is a source, ~xr is a receiver.

Data: {u(t, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.

If the medium is scattering, then use Coherent Interferometric Imaging (CINT):

ICINT(~y
S) =

Ns
∑

s,s′=1
|~xs−~x

s
′ |≤Xd

Nr
∑

r,r′=1
|~xr−~x

r
′ |≤Xd

∫∫

|ω−ω′|≤Ωd

dωdω′ û(ω, ~xr; ~xs)û(ω′, ~xr′ ; ~xs′)

× exp
{

− iω
[ |~xr − ~yS |

c0
+

|~xs − ~yS |
c0

]

+ iω′
[ |~xr′ − ~yS

c0
+

|~xs′ − ~yS)|
c0

]}

It forms the image with the superposition of the backpropagated local cross

correlations of the traces.

[1] L. Borcea, J. Garnier, G. Papanicolaou, and C. Tsogka, Inverse Problems 27, 085004 (2011).



Coherent Interferometric Imaging (CINT):

ICINT(~y
S) =

Ns
∑

s,s′=1
|~xs−~x

s
′ |≤Xd

Nr
∑

r,r′=1
|~xr−~x

r
′ |≤Xd

∫∫

|ω−ω′|≤Ωd

dωdω′ û(ω, ~xr; ~xs)û(ω′, ~xr′ ; ~xs′)

× exp
{

− iω
[

T (~xr, ~y
S) + T (~xs, ~y

S)
]

+ iω′[T (~xr′ , ~y
S) + T (~xs′ , ~y

S)
]

}

• Resolution analysis:

Lateral resolution: λL/Xd (for Xd < a, where a is the array diameter).

Range resolution: c0/Ωd (for Ωd < B, where B is the bandwidth).

[1] L. Borcea, J. Garnier, G. Papanicolaou, and C. Tsogka, Inverse Problems 27, 085004 (2011).



Coherent Interferometric Imaging (CINT):

ICINT(~y
S) =

Ns
∑

s,s′=1
|~xs−~x

s
′ |≤Xd

Nr
∑

r,r′=1
|~xr−~x

r
′ |≤Xd

∫∫

|ω−ω′|≤Ωd

dωdω′ û(ω, ~xr; ~xs)û(ω′, ~xr′ ; ~xs′)

× exp
{

− iω
[

T (~xr, ~y
S) + T (~xs, ~y

S)
]

+ iω′[T (~xr′ , ~y
S) + T (~xs′ , ~y

S)
]

}

• Resolution analysis:

Lateral resolution: λL/Xd (for Xd < a, where a is the array diameter).

Range resolution: c0/Ωd (for Ωd < B, where B is the bandwidth).

• Statistical stability:

SNRCINT :=
E
[

ICINT(~y
S)
]

Var
(

ICINT(~yS)
)1/2

> 1 when
Xd

Xc
< 1,

a

Xc
> 1 and/or

Ωd

Ωc
< 1,

B

Ωc
> 1

where Xc is the decoherence length (distance between sensors beyond which the

signals are not correlated) and Ωc is the decoherence frequency (frequency gap

beyond which the frequency components of the recorded signals are not correlated).

[1] L. Borcea, J. Garnier, G. Papanicolaou, and C. Tsogka, Inverse Problems 27, 085004 (2011).



Coherent Interferometric Imaging (CINT):

ICINT(~y
S) =

Ns
∑

s,s′=1
|~xs−~x

s
′ |≤Xd

Nr
∑

r,r′=1
|~xr−~x

r
′ |≤Xd

∫∫

|ω−ω′|≤Ωd

dωdω′ û(ω, ~xr; ~xs)û(ω′, ~xr′ , ~xs′)

× exp
{

− iω
[

T (~xr, ~y
S) + T (~xs, ~y

S)
]

+ iω′[T (~xr′ , ~y
S) + T (~xs′ , ~y

S)
]

}

• Resolution analysis:

Lateral resolution: λL/Xd (for Xd < a, where a is the array diameter).

Range resolution: c0/Ωd (for Ωd < B, where B is the bandwidth).

• Statistical stability:

SNRCINT :=
E
[

ICINT(~y
S)
]

Var
(

ICINT(~yS)
)1/2

> 1 when
Xd

Xc
< 1,

a

Xc
> 1 and/or

Ωd

Ωc
< 1,

B

Ωc
> 1

where Xc is the decoherence length (distance between sensors beyond which the

signals are not correlated) and Ωc is the decoherence frequency (frequency gap

beyond which the frequency components of the recorded signals are not correlated).

• Optimal values Ωd = Ωc and Xd = Xc. They can be determined by

- a statistical analysis of the data.

- an adaptive procedure minimizing a suitable norm of the image.

- a good a priori choice !

[1] L. Borcea, J. Garnier, G. Papanicolaou, and C. Tsogka, Inverse Problems 27, 085004 (2011).



Imaging below an “overburden”

From van der Neut and Bakulin (2009)
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Imaging below an overburden

~xs

~xr

~yref

Array imaging of a reflector at ~yref . ~xs is a source, ~xr is a receiver located below the

scattering medium. Data: {u(t, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.

If the overburden is scattering, then Kirchhoff Migration does not work:

IKM(~yS) =

Nr
∑

r=1

Ns
∑

s=1

u
( |~xs − ~yS |

c0
+

|~yS − ~xr|
c0

, ~xr; ~xs

)
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Numerical simulations

Computational setup Kirchhoff Migration

(simulations carried out by Chrysoula Tsogka)
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Imaging below an overburden

~xs

~xr

~yref

~xs is a source, ~xr is a receiver. Data: {u(t, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.
Image with migration of the special cross correlation matrix:

I(~yS) =

Nr
∑

r,r′=1

C
( |~xr − ~yS |

c0
+

|~yS − ~xr′ |
c0

, ~xr, ~xr′

)

,

with

C(τ, ~xr, ~xr′) =

Ns
∑

s=1

∫

u(t, ~xr; ~xs)u(t+ τ, ~xr′ ; ~xs)dt , r, r′ = 1, . . . , Nr
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Imaging below an overburden

~xs

~xr

~yref

~xs is a source, ~xr is a receiver. Data: {u(t, ~xr; ~xs), r = 1, . . . , Nr, s = 1, . . . , Ns}.
Image with migration of the special cross correlation matrix:

I(~yS) =

Nr
∑

r,r′=1

C
( |~xr − ~yS |

c0
+

|~yS − ~xr′ |
c0

, ~xr, ~xr′

)

,

with

C(τ, ~xr, ~xr′) =

Ns
∑

s=1

∫

u(t, ~xr; ~xs)u(t+ τ, ~xr′ ; ~xs)dt , r, r′ = 1, . . . , Nr

It is a special CINT function:

I(~yS) =
1

2π

Ns
∑

s=1

Nr
∑

r,r′=1

∫

dωû(ω, ~xr; ~xs)û(ω, ~xr′ ; ~xs) exp
{

iω
[ |~xr − ~yS |

c0
+

|~yS − ~xr′ |
c0

]}
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Remark: General CINT function:

ICINT(~y
S) =

Ns
∑

s,s′=1
|~xs−~x

s
′ |≤Xd

Nr
∑

r,r′=1
|~xr−~x

r
′ |≤X′

d

∫∫

|ω−ω′|≤Ωd

dωdω′ û(ω, ~xr; ~xs)û(ω′, ~xr′ , ~xs′)

× exp
{

− iω
[ |~xr − ~yS |

c0
+

|~xs − ~yS |
c0

]

+ iω′
[ |~xr′ − ~yS |

c0
+

|~xs′ − ~yS |
c0

]}

• If Xd = X ′
d = Ωd = ∞, then ICINT(~y

S) =
∣

∣IKM(~yS)
∣

∣

2
.

• If Xd = 0, X ′
d = ∞, Ωd = 0, then ICINT(~y

S) is the special CINT.
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Numerical simulations

Kirchhoff Migration Cross Correlation Migration
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Analysis in randomly scattering media

• Does the cross correlation imaging function give good images in scattering media ?

→֒ It is possible to analyze the resolution and stability of the imaging function in

randomly scattering media.

• General results:

Imaging function is stable provided the bandwidth is large enough and/or the source

array is large enough.

• Detailed results:

If there are sources everywhere at the surface: scattering plays no role.

If the source distribution is spatially limited: scattering is important.

- in the random paraxial regime, scattering helps (it enhances the angular diversity of

the illumination).

- in the randomly layered regime, scattering does not help (it reduces the angular

diversity of the illumination).

[1] J. Garnier and G. Papanicolaou, Inverse Problems 28 075002 (2012).



Imaging below an overburden: analysis in the paraxial regime

−Ly

−L

0

z x~xs

~xr

~yref

• Consider the regime “λ ≪ lc ≪ L”.

• Assume that:

- the source aperture is b and the receiver aperture is a.

- there is a point reflector at ~y = (y,−Ly).

- the covariance function γ(x) =
∫

E[µ(0, 0)µ(x, z)]dz can be expanded as

γ(x) = γ(0)− γ̄2|x|2 + o(|x|2) for small |x|.
- scattering is strong:

γ(0)ω2
0
L

c2
0

> 1 (→ mean wave is damped).
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Imaging below an overburden: analysis in the paraxial regime

b
bef f

L

b
bef f

L

Homogeneous medium Random medium

Effective source aperture:

beff = b beff =
(

b2 +
γ̄2L

3

3

)1/2
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Imaging below an overburden: analysis in the paraxial regime

a
aef f

b
bef f

Ly − L

L
a

aef f

b
bef f

Ly − L

L

Homogeneous medium Random medium

Effective source aperture:

beff = b beff =
(

b2 +
γ̄2L

3

3

)1/2

Effective receiver aperture:

aeff = b
Ly − L

Ly
aeff = beff

Ly − L

Ly
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Imaging below an overburden: analysis in the paraxial regime

• The imaging function for the search point ~yS is

I(~yS) =
1

N2
r

Nr
∑

r,r′=1

C
(

T (~xr, ~y
S) + T (~yS , ~xr′), ~xr, ~xr′

)

• The imaging function is statistically stable (λ0 ≪ b ≪ L).

• The lateral resolution is
λ0(Ly − L)

aeff
. The range resolution is

c0
B

.

Here: λ0 is the carrier wavelength, B is the bandwidth.

• Since aeff |rand> aeff |homo, this shows that scattering helps.

- physical reason: scattering enhances the angular diversity of the illumination.
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Randomly layered medium

• Random medium model (~x = (x, z)):

1

c2(~x)
=

1

c20

(

1 + µ(z)
)

c0 is a reference speed,

µ(z) is a zero-mean random process.

• Consider the time-harmonic form of the scalar wave equation (~x = (x, z))

(∂2
z +∆⊥)û+

ω2

c20

(

1 + µ(z)
)

û = 0

Consider the scaled regime “lc ≪ λ ≪ L”:

ω → ω

ε
, µ(z) → µ

( z

ε2
)

The moments of the random Green’s function are known in the limit ε → 0 [1].

→֒ exponential decay of the mean field; exponential decay of the mean intensity

(localization regime).

[1] J.-P. Fouque, J. Garnier, G. Papanicolaou, and K. Sølna, Wave propagation ..., Springer, 2007.



Imaging below an overburden: analysis in the layered regime

−Ly

−L

0

z x~xs

~xr

~yref

• Consider the regime “lc ≪ λ ≪ L”.

• Assume that:

- the source aperture is b and the receiver aperture is a.

- there is a point reflector at ~yref = (y,−Ly).

- the localization length Lloc is smaller than L (strong scattering, mean wave is

damped):

Lloc =
4c20
γω2

0

, γ =

∫ ∞

−∞

E[µ(0)µ(z)]dz
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Imaging below an overburden: analysis in the layered regime

b
bef f

L

b
bef f

L

Homogeneous medium Randomly layered medium

Effective source aperture:

beff = b b2eff = 4LlocL (≪ b2)
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Imaging below an overburden: analysis in the layered regime

a
aef f

b
bef f

Ly − L

L
a

aef f

b
bef f

Ly − L

L

Homogeneous medium Randomly layered medium

Effective source aperture:

beff = b b2eff = 4LlocL (≪ b2)

Effective receiver aperture:

aeff = b
Ly − L

Ly
aeff = beff

Ly − L

Ly
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Imaging below an overburden: analysis in the layered regime

• The imaging function for the search point ~yS is

I(~yS) =
1

N2
r

Nr
∑

r,r′=1

C
(

T (~xr, ~y
S) + T (~yS , ~xr′), ~xr, ~xr′

)

• The imaging function is statistically stable (λ0 ≪ b, L).

• The lateral resolution is
λ0(Ly − L)

aeff
. The range resolution is

c0
B

(

1 +
B2L

4ω2
0Lloc

)1/2
.

• Since aeff |rand< aeff |homo, this shows that scattering does not help.

- physical reason: scattering reduces the angular and frequency diversity of the

illumination.
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Further results

• Use of other imaging functions based on cross correlations (or Wigner distribution

functions).

• Use of ambient noise sources.

One can apply correlation-based imaging techniques to signals emitted by ambient

noise sources.

→֒ Useful for applications in seismology (travel time tomography, volcano monitoring,

oil reservoir monitoring).

• Use of higher-order correlations.

One can apply imaging techniques based on special fourth-order cross correlations.

→֒ Useful when the statistics of the wave fluctuations is not Gaussian.
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Passive sensor imaging of a reflector

• Ambient noise sources (◦) emit stationary random signals.

• The signals (u(t, ~xr))r=1,...,Nr
are recorded by the receivers (~xr)r=1,...,Nr

(N).

• The cross correlation matrix is computed and migrated:

I(~yS) =

Nr
∑

r,r′=1

CT

(

T (~xr′ , ~y
S) + T (~xr, ~y

S), ~xr, ~xr′
)

with CT (τ, ~xr, ~xr′) =
1

T

∫ T

0

u(t+ τ, ~xr′)u(t, ~xr)dt
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1

Provided the ambient noise illumination is long (in time) and diversified (in angle and

frequency): good stability [1].

[1] J. Garnier and G. Papanicolaou, SIAM J. Imaging Sciences 2, 396 (2009).



Conclusions

~xs

~xr

~yref

• In scattering media one should migrate well chosen cross correlations of data, not

data themselves.

• Method can be applied with ambient noise sources instead of controlled sources.

• Scattering can be mitigated, and even sometimes can help ! Already noticed for

time-reversal experiments, but far from clear in imaging problems.
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