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In this talk: correlation-based imaging is useful when the medium is scattering.
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Conventional reflector imaging through a homogeneous medium

T : T,
N
Uk s

e Sensor array imaging of a reflector located at yer. €5 iS a source, &, is a receiver.
Measured data: {u(t,@,;&s),r=1,...,Ny,s=1,..., Ng}.

e Mathematical model:

(C_2 —1_ CQ 1Brof (m o yref)) W(t7 £, wS) - Ag‘jU(t, L CBS) — f(t)5(33 — ws)
0 ref

e Purpose of imaging: using the measured data, build an imaging function Z(%°) that

would ideally look like 15, (§° — %ref), in order to extract the relevant
Cref

re

information (¥,er, Bref, Cror) about the reflector.

Ecole Polytechnique august 2015



e Classical imaging functions:

1) Least-Squares imaging: minimize the quadratic misfit between measured data and

synthetic data obtained by solving the wave equation with a candidate (¥, B, ¢)test-

2) Linearized Least-Squares imaging: simplify Least-Squares imaging by

“linearization” of the forward problem (Born).

3) Reverse Time imaging: simplify Linearized Least-Squares imaging by forgetting

the normal operator.

4) Kirchhoff Migration: simplify Reverse Time imaging by substituting travel time

migration for full wave equation.
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e Classical imaging functions:

1) Least-Squares imaging: minimize the quadratic misfit between measured data and

synthetic data obtained by solving the wave equation with a candidate (¥, B, ¢)test-

2) Linearized Least-Squares imaging: simplify Least-Squares imaging by

“linearization” of the forward problem (Born).

3) Reverse Time imaging: simplify Linearized Least-Squares imaging by forgetting

the normal operator.

4) Kirchhoff Migration: simplify Reverse Time imaging by substituting travel time

migration for full wave equation.

e Kirchhoff Migration function:

ST ) S (it A A

—, S T — —
IKM(y ) = u( + c awr3w8>
r=1 s=1 co 0

It forms the image with the superposition of the backpropagated traces.

|ﬁs — &|/cp is the travel time from & to T

[1] H. Ammari, J. Garnier, and K. Sglna, Wawves in Random and Complex Media 22, 40 (2012).



Kirchhoft Migration:

N, Ng

IKM ZZ j)s,y +T(gS;£T),CBT;CBs)

r=1 s=1

e Resolution analysis:
e Lateral resolution: AL /a, where )\ is the central wavelength, L is the distance from
the array to the reflector, and a is the array diameter (paraxial regime A < a < L).

e Range resolution: co/B, where ¢¢ is the background velocity and B is the
bandwidth.

[1] H. Ammari, J. Garnier, and K. Sglna, Wawves in Random and Complex Media 22, 40 (2012).



Kirchhoftf Migration:

N, Ng
Ten(§°) = > > u(T (@, §°) + T(F, &), Br; &)

r=1 s=1

e Resolution analysis:
e Lateral resolution: AL/a, where )\ is the central wavelength, L is the distance from
the array to the reflector, and a is the array diameter (paraxial regime A < a < L).

e Range resolution: co/B, where c¢g is the background velocity and B is the
bandwidth.

e Stability analysis:
e Very robust with respect to additive measurement noise [1].
e Sensitive to medium noise: If the medium is scattering, then Kirchhoff Migration

(usually) does not work.

[1] H. Ammari, J. Garnier, and K. Sglna, Wawves in Random and Complex Media 22, 40 (2012).



Conventional reflector imaging through a scattering medium

e Sensor array imaging of a reflector located at yret. €s iS a source, &, is a receiver.
Data: {u(t,@,;@s),r=1,...,Ny,s =1,..., Ng}.

1 1 . . N\%u,, S L
(oo o 1o (@ = Geat) ) S (6,85 80) — Agult, & &) = [()3(@ — @)

c2(x) 2, ot?

e Random medium model: 10, 98 ‘5“_- -.s‘ : 0-:'
1 B 1 . 5\ .. v .. '4' ’. ..- o
2@ ~ a2 @) T GL 5 G GRS

' ference speed S P8 S o

co is a re , ¢ vl

5 .'. “', 0"7‘.‘ .
((x) is a zero-mean random process. N S e N ,

-10;-'4.- - /‘
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Conventional reflector imaging through a scattering medium

e Sensor array imaging of a reflector located at yret. €s iS a source, &, is a receiver.
Data: {tu(w,®,;&s),r=1,...,Ny,s=1,..., Ng}.

1 1 I . S . S - o
CU2 (C2 T 2 1Bref (CC o yref))U(w, €L, mS) + A@’U(w, €I ws) — _f((U)é(CL' — ws)

(i) Cref

e Random medium model: 109" ‘ll ‘.3 . “" :'
R BPS Co I\ e
2@ ~ 2L rE) L U QR

0 N O. = . ‘ > <5 -
co is a reference speed, 5 .‘_ ~ "_?5.7_‘; 3

5L A

((@) is a zero-mean random process. ‘e -
-10 - - - \/ .
W S -
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Strategy: Stochastic and multiscale analysis

e Remark: The medium noise @ — 1o (where 4o is the data that would be obtained in

a homogeneous medium) is very different from an additive measurement noise !

e A detailed analysis is possible in different regimes of separation of scales (small
wavelength, large propagation distance, small correlation length, ...).

— Analysis of the moments of .

e Compute the mean and variance of an imaging function Z(4°).

— resolution and stability analysis.

e The resolution analysis of the mean imaging function ]E[I (§° )} gives lateral and
range resolutions.

e Criterium for statistical stability:

E[Z(5°)]
Var (Z(g5))"/*

SNR := > 1

— design the imaging function to get good trade-off between stability and resolution.
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e General results obtained by a stochastic analysis:

e The mean (coherent) wave is small.
—> The Kirchhoff Migration function (or Reverse Time imaging function) is unstable

in randomly scattering media.

E([Zxm(§°)]
Var (IKM (’]js))

<1

1/2

e The wave fluctuations at nearby points and nearby frequencies are correlated.
The wave correlations carry information about the medium and the reflector.

—> One should use local cross correlations for imaging.

Ecole Polytechnique august 2015



Wave propagation in the random paraxial regime

e Consider the time-harmonic form of the scalar wave equation (€ = (x, 2))

2

(92 + AL)i+ =5 (L+ (@, 2)) i = 0.
0

Consider the paraxial regime “A\ < [ < L”:
W 3 r =z
w—>€—4, u(x,z) — ¢ 'u(g_2’5_2)

The function ¢° (slowly-varying envelope of a plane wave) defined by

) Cwz T
4% (w, @, 2) = e =ic0 §° (w z)

78_27
satisfies ,
Nz LW = Nz w1 AN
1020° + <2z—az¢ + A"+ 5 —p(z, =)o ) = 0.
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Wave propagation in the random paraxial regime

e Consider the time-harmonic form of the scalar wave equation (£ = (x, 2))

2

(02 + AL)a+ —(1 + p(zx, 2))a = 0.
€0
Consider the paraxial regime “A < [ < L”:
W 3 r =z
w—>€—4, u(x,z) — ¢ ,u(g—2,€—2)

The function ¢° (slowly-varying envelope of a plane wave) defined by

€ G e £
U (w,x,z) =€ "0 ¢ (w,—Q,z)
€

satisfies

. 21 .
48§¢8—|— (22— qu —|—AL¢ —|———,u(a:,€%)gb€> = 0.

Co Cpy €
e In the regime ¢ < 1, the forward-scattering approximation in direction z is valid
and ¢ = lim._,0 ¢° satisfies the [t6-Schrodinger equation 1]

2
2= d.d + Aﬂ/ﬁ—l— — B(, z)cﬁ =
Co O
with B(x, z) Brownian field E[B(x, z) B(x',2")] = v(x — ') min(z, 2'),
= [°. E[u(0,0)u(x, 2)]dz.

[1] J. Garnier and K. Sglna, Ann. Appl. Probab. 19, 318 (2009).



Wave propagation in the random paraxial regime

e Consider the time-harmonic form of the scalar wave equation (£ = (x, 2))

2

(0% + AL )i+ ‘;’—2 (1+ (e, 2))a = 0.
0

Consider the paraxial regime “A\ < . < L”:

w

W= =, wlx, z) = e p(=

The function ¢° (slowly-varying envelope of a plane wave) defined by

c 'L wz Ag w
0 (w, e, 2) = e =0 ¢° (w, =, 2)
£

satisfies ,
Te . Te Te 1 Te
20247 + (mﬂang +ALP + (=) d ) —0.
Co ch € €

e In the regime ¢ < 1, the forward-scattering approximation in direction z is valid

and ¢ = lim._,0 ¢° satisfies the [t6-Schrodinger equation 1]
iﬂ
2w
with B(x, z) Brownian field E[B(x, 2) B(x', 2')] = v(x — ') min(z, 2'),
V() = [ Elu(0,0)u(w, 2)|dz.

[1] J. Garnier and K. Sglna, Ann. Appl. Probab. 19, 318 (2009).

dd = A | pdz + ;—wggodB(m,z)
Co



Wave propagation in the random paraxial regime

e Consider the time-harmonic form of the scalar wave equation (€ = (x, 2))

2

(02 + AL)a+ —(1 + p(zx, 2))a = 0.
€0
Consider the paraxial regime “A < [ < L”:
w 3 L 2
w—>€—4, u(x,z) — ¢ 'u(g_2’5_2)

The function ¢° (slowly-varying envelope of a plane wave) defined by

w2 x
0 (w, e, 2) = e =0 ¢ (w, =, 2)
£

satisfies

. 21 .
48§¢8—|— (27,— qu —|—AL¢ —|———,u(a:,€%)gb€> = 0.

Co cs €

e In the regime ¢ < 1, the forward-scattering approximation in direction z is valid

and ¢ = lim._,0 ¢° satisfies the [t6-Schrodinger equation 1]

do = @Amdz i —quB( 2) — wQ'V(O)quz

2¢o 8¢
with B(«, z) Brownian field E[B(x, z) B(x', 2')] = v(x — ') min(z, 2’),
= [7. E[u(0,0)u(z, 2)]dz.

[1] J. Garnier and K. Sglna, Ann. Appl. Probab. 19, 318 (2009).




e We introduce the fundamental solution G’(w, (z, 2), (x0, 20)):

dG = A Gdz + 22—“’(; o dB(z, 2)

2w Co
starting from G’(w, (z,z = 20), (®0, 20)) = 6(x — o).
e In a homogeneous medium (B = 0) the fundamental solution is

ex iw|e—xg|?
A P\ 2¢olz=20]

Go(w, (z, 2), (X0, 20)) =

2imcy lz—z0]
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e We introduce the fundamental solution G’(w, (z, 2), (x0, 20)):

dG = A Gdz + S—wé odB(x, z2)

- % Co
starting from é’(w, (z, 2 = 20), (z0, 20)) = §(x — x0).
e In a homogeneous medium (B = 0) the fundamental solution is

iw|e—mxg|?

é’o (w, (a:, z), (azo, zo)) _ exXp ( 2¢q|z—20] ) .

241 Co lz—z0]

e In a random medium,

E[G(w, (x, 2), (o, zo))} — Go (w, (x, 2), (xo, zo)) exp ( — 7(0)w7|z = 20 ),

2
8c§

where (@) = [, E[u(0, 0)u(, 2)]d=
e Strong damping of the coherent wave if |z — 20| > zsca 1= 8¢5/ (7(0)w?).
—> Coherent imaging methods (such as Kirchhoff migration) fail.
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e In a random medium,

A A

E[G(w, (x,2), (20, 20)) G (w, (&', 2), (0, 20))]

_ éo (w, (w7 Z), (wO, ZO))GO (w, (CB’, Z), (CUO; ZO)) exp ( _ 72(% — w;)c(g ’Z — ZO’);

where 2 (x fo v(xs)ds (note y2(0) = 0).
If |z — zo| > Zsca 1= 800/(7(O)w ), then

G (w, (#',2), (w0, 20))]

. - W2w2|z — 20| /2
= Go(W,(w,Z),(wo,Zo))Go(w,(CU/,Z),(CE(),Z())) exp <_ 122 |CB—CU | >7
0

E[G’(w, (x, 2), (%0, 20)

where y(x) = v(0) — Aa|x|* + o(|x|*) for small |x|.
e The fields at nearby points (closer than X. := v/12¢¢/(1/72w)) are correlated.
e Same results in frequency: The fields at nearby frequencies are correlated.

—> One should migrate local cross correlations for imaging.
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e In a random medium,

A A

E[G(w, (x,2), (20, 20)) G(w, (2', 2), (20, 20))]

_ éo (w, (a:, Z), (wO, ZO))GO (w, (CB/, Z), (CUO; ZO)) exp ( _ 72(% — w;l)c(g |Z — ZO|>7

where 2 (x fo v(xs)ds (note y2(0) = 0).
If |z — zo| > Zsca 800/(7(O)w ), then

G (w, (@', 2), (0, 20) )]

A A ’72W2|Z — ZO| 712
= GO(W,(%,Z),(wO,ZO))Go(w,(ai'/,Z),(a?o,Zo)) exp <_ 1202 ’w_w | >7
0

E[G(w, (z, 2), (zo, 20)

where v(z) = 7(0) — A2|x|* + o(|z|?) for small |z|.
e The fields at nearby points (closer than X. := v/12¢¢/(1/y2w)) are correlated.
e Same results in frequency: The fields at nearby frequencies are correlated.

—> One should migrate local cross correlations for imaging.

e In a random medium, one can write a closed-form equation for the n-th order
moment.
Depending on the statistics of the random medium, the wave fluctuations may have

Gaussian statistics or not [1].

[1] J. Garnier and K. Sglna, Comm. Part. Differ. Equat. 39 (2014), 626.



Imaging through a scattering medium

yr‘e f

Sensor array imaging of a reflector located at yrer. €5 is a source, &, is a receiver.
Data: {u(t,@,;&s),r=1,...,Ny,s=1,..., Ng}.
If the medium is scattering, then Kirchhoff migration does not work:

Bod®) = D3 u( T o )

s=1r=1
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Imaging through a scattering medium

—

yr‘e f

Sensor array imaging of a reflector located at yrer. €5 is a source, &, is a receiver.
Data: {u(t,@,;&s),r=1,...,Ny,s=1,..., Ng}.

If the medium is scattering, then Kirchhoff migration does not work:

s o [ 1@ = g% g% — &
Txm(g”) = ZZ/u(w,wr;ms)exp{zw[ + - }}dw

Co

s=1r=1
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Imaging through a scattering medium

Sensor array imaging of a reflector located at y,er. €5 is a source, &, is a receiver.
Data: {u(t,@,;&s),r=1,...,Ny,s=1,..., Ng}.
If the medium is scattering, then full migration of cross correlations does not work:

Trance (§°) = Z Z //dwdw t(w, Br; Bs)U(W', Bpr; Byr)

s,s'=1r,r’'=

- =S z, — = =S - =S
Xexp{_w 1&g 12—y I]Hw/[lwr gyl 1@~y !”
Co Co Co Co
— ZZ/ U(w, Tr; Ts) €Xp {zw[lws v’ + Y wrl}}dw| - ’IKM(gS)’2
Co
s=1r=1

If one migrates all cross correlations, one gets the same image as with Kirchhoff !
Ecole Polytechnique august 2015



Imaging through a scattering medium

Sensor array imaging of a reflector located at 4.er. €s iS a source, @, is a receiver.
Data: {u(t,Z,;@s),r=1,...,Ny,s =1,..., Ng}.

If the medium is scattering, then use Coherent Interferometric Imaging (CINT):

Ny
ICINT(gS> = Z Z // dwdw”&(w,.’ﬁr;szs)&(w’,ﬁw;zf:’sx)

/
_ s =1 . mr=l je—w![<0g
|Bs =&/ |[<Xq |Er—F ./ |<Xqg

L O S
Co Co Co Co

]

Xexp{—z’w{

It forms the image with the superposition of the backpropagated local cross

correlations of the traces.

[1] L. Borcea, J. Garnier, G. Papanicolaou, and C. Tsogka, Inverse Problems 27, 085004 (2011).



Coherent Interferometric Imaging (CINT):

Ns

Tewt () = Z Z // dwdw 4w, Br; &5 )0(w’, Ty Tor)

s,8' =1 rr’ =1 lw—w’|<Qq
|€s—E /| <Xg |€B7~—€B 11 <Xq

xexp { — iw[T (@, §°) + T (@, §%)] + i [T(E,5°) + T(@, 5°)] }

e Resolution analysis:
Lateral resolution: AL/ Xy (for Xq < a, where a is the array diameter).
Range resolution: ¢o/Qq (for Q4 < B, where B is the bandwidth).

[1] L. Borcea, J. Garnier, G. Papanicolaou, and C. Tsogka, Inverse Problems 27, 085004 (2011).



Coherent Interferometric Imaging (CINT):

Ns

Zent(§°) = Z Z // dwdw’ 4w, Br; &5 )0(w’, T ; Tor)

ss—l ’r”r’—l |w w’| Qq

X exp { — W [T(£r7 g ) + T(fs, gs)] + iw/ [T(CB’F’ ) y—»S) + T(CBS’ ) gs)] }

e Resolution analysis:
Lateral resolution: AL/ X4 (for X4 < a, where a is the array diameter).
Range resolution: co/€q (for 24 < B, where B is the bandwidth).

e Statistical stability:

E[Z Thd X
SNReiNT = Lo (¢7)) > 1 when =2 < 1,

4 B
<l,=>1
Var (Zemvr (§5)) Xe Xe

e " Qe

> 1 and/or

where X, is the decoherence length (distance between sensors beyond which the
signals are not correlated) and 2. is the decoherence frequency (frequency gap
beyond which the frequency components of the recorded signals are not correlated).

[1] L. Borcea, J. Garnier, G. Papanicolaou, and C. Tsogka, Inverse Problems 27, 085004 (2011).



Coherent Interferometric Imaging (CINT):

Ns

_)S A —_ e d
Zoint(Y”) = E E // dwdw’ 4(w, Br; &5 )0(w’, T, Tor)
s,8' =1 ST —1 lw—w’|<Qq
|Bs —@,/ [<Xq [&r—@,./[<Xg

xexp { — [T, 5°) + T(@:, )] + i [T(@.5°) + T(@.5°)] }

e Resolution analysis:
Lateral resolution: AL/ X4 (for X4 < a, where a is the array diameter).
Range resolution: co/Qq (for Q24 < B, where B is the bandwidth).

e Statistical stability:

E[Z j° X Q B
SNRcinT = [ ot (¥ ﬂ > 1 when 22 < 1, 2> and /or A, =1

Var (Zomnr (55)) Xe Xo Qe 7 Qe

where X, is the decoherence length (distance between sensors beyond which the
signals are not correlated) and 2. is the decoherence frequency (frequency gap
beyond which the frequency components of the recorded signals are not correlated).

e Optimal values 24 = {2 and X4 = X.. They can be determined by
- a statistical analysis of the data.
- an adaptive procedure minimizing a suitable norm of the image.

- a good a priori choice !

[1] L. Borcea, J. Garnier, G. Papanicolaou, and C. Tsogka, Inverse Problems 27, 085004 (2011).
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Imaging below an “overburden”

o
e R

-3¢ -|Sources

Overburden

_________ Receivers
Underburden :

x=0

From van der Neut and Bakulin (2009)
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Imaging below an overburden

I
3 YA
¢ N . ‘“0’
" ov o e, .

Array imaging of a reflector at y.et. €5 is a source, &, is a receiver located below the

scattering medium. Data: {u(t,&,;&s),r=1,..., Ny, s =1,..., Ns}.

If the overburden is scattering, then Kirchhoff Migration does not work:

i° S =
Tou(®) = Yo S u(IB T =8 5 )

r=1 s=1
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Numerical simulations

-1500 [z
-200
; -1600
-400
-600 -1700 |
-800
1000 -1800 [
-1200
-1800 |
-1400 "
-1600 -2000 [~
-1800
-2100 ' ,
2300 -200 -100 0 100 200 300
Computational setup Kirchhoff Migration

(simulations carried out by Chrysoula Tsogka)
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Imaging below an overburden

-
L s
3 NS
¢ N . “..o’
" ov o, .

&5 is a source, &, is a receiver. Data: {u(t,&,;@s),r=1,...,Ny,s=1,..

Image with migration of the special cross correlation matrix:

B AL il B s 1 R
I(y°) = Z C( o + ,a:,,a,azrl),
1

!/ — CO
with N nr=
C(t, &y, &) = Z/u(t,:ﬁr,:ﬁs)u(t + 7, & @s)dt ror’ =1,
s=1

Ecole Polytechnique
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Imaging below an overburden

L s
3 NI
¢ N . ‘..o’
" ov o, .

Zs is a source, &, is a receiver. Data: {u(t, &,;@s),r=1,...,Ny,s=1,..., N}

Image with migration of the special cross correlation matrix:

I(—»S)_ i C(li)r_y—)s|_|_ |gs_£r” T T )
. y _ ~ o o 9 Ty T ,
with . ’
C(r, &r, &) = Z/u(t, Tr; Ls)u(t + 7, &, ; Ts)dt ror’ =1,..., N,
s=1
It is a special CINT function:
L5~ ¢ e SNE =G |5 @]
I(g°) = %Z Z /dw'&(w,wr;ws)f&(w,ww;ws)exp {zw[ - - }}

s=1 ’l",’l" =1
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Remark: General CINT function:

N, N,
Towt(§°) = Z > / / dwdw i(w, T T ) U, By Bt
| ss'=l ryr’=1 jw—w’|<Qq
[ ®s -,/ [<Xq |&,—&, ., |<X]
_ = 7S = =S = =S
xexp{—z’w[|w y |—I—ICBS q—l—iw/[mr, Y |_|_|:133/ Y q}
Co Co Co Co

2

o [f X4 = Xé = g = o0, then ICINT(gS) = }IKM(gS)} .
o If Xq =0, X} =00, Q4 =0, then Zcint(y”) is the special CINT.
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Numerical simulations

-200
400
600 ]
-800 |
-1000 |
1200 |
1400 72 =
-1600

1800

-1500 = -1500

-1509.‘ -1600
1700 [E— -1700
1800 -1800

-1800

2000 [Ee— —— ——— -2000

— 5 -2100
-300 -200 -100 0 100 200 300 -300 -200 -100 0 100 200 300

Kirchhoftf Migration Cross Correlation Migration
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Analysis in randomly scattering media

e Does the cross correlation imaging function give good images in scattering media 7
— It is possible to analyze the resolution and stability of the imaging function in

randomly scattering media.

e General results:
Imaging function is stable provided the bandwidth is large enough and/or the source

array is large enough.

e Detailed results:
If there are sources everywhere at the surface: scattering plays no role.
If the source distribution is spatially limited: scattering is important.
- in the random paraxial regime, scattering helps (it enhances the angular diversity of
the illumination).
- in the randomly layered regime, scattering does not help (it reduces the angular

diversity of the illumination).

[1] J. Garnier and G. Papanicolaou, Inverse Problems 28 075002 (2012).



Imaging below an overburden: analysis in the paraxial regime

2 —
O L s x
3 P08 ? . 0-0-6,0-0
’e \)’0»‘ s ¢ LS A
o v NS ¥ .
. AR RN s
ST R L
YRy ‘o 0:’0‘
v ¢ 0‘ * ° " R *
AU IR oy ¢
0 .
. > ¢ M s ¢
$. . ¢ .
. ¢

e Consider the regime “\ < [, < L”.

e Assume that:
- the source aperture is b and the receiver aperture is a.

- there is a point reflector at g = (y,—Ly).
- the covariance function () = [ E[u(0,0)u(x, 2)]dz can be expanded as
v(®) =7(0) — F2|z|* + o(||* ) for small |z|.

- scattering is strong: W(C)—woL > 1 (— mean wave is damped).
0

Ecole Polytechnique august 2015



Imaging below an overburden:

b
beyys
0-0—-0—0—-0—0—0—-0—0-0—-0—0—-0—-0—0-0—0-0

Homogeneous medium

analysis in the paraxial regime

be gy
S N, 7
N / S— 7
N | \ /
N s
N I | s
\ \ IL/
AR
N 7
S /
N 4
A\ /
ADAAANANNNNANNA
N 7
AN 7
AN 7
N s
\ s
N s
N
™

Random medium

Effective source aperture:
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Imaging below an overburden:

beyy
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Homogeneous medium

analysis in the paraxial regime

e ¢
S N, 7
N / e 7/
N | \ /
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N I | ’
N\ \ ! Ve
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N /
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AN 7
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. ) L,— L
\ s
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™

Random medium

Effective source aperture:

— L3
Effective receiver aperture:
L, — L L,— L
. — by— e — be y—
Qeff I Qeff fF T

Ecole Polytechnique

august 2015



Imaging below an overburden: analysis in the paraxial regime

e The imaging function for the search point 4 is

Ny
I(gs> - Z C(T('rﬁ’f’vgs) +T(gsa£7“’)a£m£r’)
1

r,r/=

1
Ny
e The imaging function is statistically stable (Ao < b < L).

L, — L
Ao(Ly ) The range resolution is «©.
Aeff B

Here: Ag is the carrier wavelength, B is the bandwidth.

e The lateral resolution is

® Since Geff |rand> Geff |homo, this shows that scattering helps.

- physical reason: scattering enhances the angular diversity of the illumination.

Ecole Polytechnique august 2015



Randomly layered medium

e Random medium model (& = (x, 2)): 10=
1 1

=@ ~ g THe) 5

Co

co is a reference speed,

((z) is a zero-mean random process.

-10 -5 0 5 10
X

e Consider the time-harmonic form of the scalar wave equation (£ = (x, 2))

2
W

(02 4+ A L)t + 6—2(1 +u(z)a=0
0
Consider the scaled regime “l. < A < L”:

w

W=, p(z) — p(

z
=
The moments of the random Green’s function are known in the limit ¢ — 0 [1].
— exponential decay of the mean field; exponential decay of the mean intensity

(localization regime).

[1] J.-P. Fouque, J. Garnier, G. Papanicolaou, and K. Sglna, Wave propagation ..., Springer, 2007.



Imaging below an overburden: analysis in the layered regime

O_ S
re—

—L,| in

e Consider the regime “l. <K A < L”.

e Assume that:
- the source aperture is b and the receiver aperture is a.

- there is a point reflector at yrer = (y, —Ly).
- the localization length Ljo is smaller than L (strong scattering, mean wave is

damped):
462 o'e)
Loe= 2%, 7= [ E(On()d:

fywO — 00
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Imaging below an overburden:
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analysis in the layered regime
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Effective source aperture:
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Imaging below an overburden: analysis in the layered regime

b b

ey bers
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Effective source aperture:
beff =b bgﬁ' — 4LIOCL (<< b2)

Effective receiver aperture:
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Imaging below an overburden: analysis in the layered regime

e The imaging function for the search point 4 is

Iy £T7g5)+7-(gsafr’)7£r7£r’)

N2

’I"’I"—

e The imaging function is statistically stable (Ao < b, L).

-~ B*L
AolLy L). The range resolution is © (1 + —— )1/2.
4(4{)0.[/]_0(3

e The lateral resolution is
Aoff B

e Since deff |rand< Geff |nomo, this shows that scattering does not help.
- physical reason: scattering reduces the angular and frequency diversity of the

illumination.
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Further results

e Use of other imaging functions based on cross correlations (or Wigner distribution

functions).

e Use of ambient noise sources.

One can apply correlation-based imaging techniques to signals emitted by ambient
noise sources.

— Useful for applications in seismology (travel time tomography, volcano monitoring,

oil reservoir monitoring).

e Use of higher-order correlations.
One can apply imaging techniques based on special fourth-order cross correlations.

< Useful when the statistics of the wave fluctuations is not Gaussian.
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Passive sensor imaging of a reflector

e Ambient noise sources (o) emit stationary random signals.
e The signals (u(t,&,))r=1,... n, are recorded by the receivers (&,),=1,...n, (A).
e The cross correlation matrix is computed and migrated:

S — —»S — —
E CT Y )+T(w7“7y )7537“7387“’)
r,r’ =
1 T
. — — — —
with  Cr(7,&,, %) = —/ u(t + 7, &, )u(t, &,)dt
T 0
1
0.5 signal recorded at X,
0
-0.5 : : :
0 100 200 300
t
o 1 .
| | signal recorded at x
a2 3 ¢ : oMWMWMMW\/WNMW =
A | | —05 L I L
A e 0 100 200 300 §
AX
1
coda correlation X X
50 100 05
YA _150 _100 _ 80 85 90 95 100 105 110 115 120

Provided the ambient noise illumination is long (in time) and diversified (in angle and
frequency): good stability [1].

[1] J. Garnier and G. Papanicolaou, SIAM J. I'maging Sciences 2, 396 (2009).



Conclusions
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e In scattering media one should migrate well chosen cross correlations of data, not

data themselves.

e Method can be applied with ambient noise sources instead of controlled sources.

e Scattering can be mitigated, and even sometimes can help ! Already noticed for

time-reversal experiments, but far from clear in imaging problems.
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