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A periodic waveguide : the geometry

periodic

Unit periodicity cell C =
�
(x1, xT ) 2 ⌦ / 0 < x1 < 1

 
⌦ =

[

n2Z

⇥
C + (n, 0)

⇤

which is connected, bounded in                                : ⌦ ⇢
�
(x1, xT ), |xT | < R

 
xT = (x2, · · · , xd+1)

and periodic (with period    for simplicity) in the longitudinal      variable x1

(x1, xT ) 2 ⌦ �! (x1 + 1, xT ) 2 ⌦

1

Example (         ) : ⌦ =
�
(x1, x2), f�(x1) < x2 < f+(x1)

 
(f�, f+)d = 1

C

By definition, this is a domain  ⌦ ⇢ Rd+1 =
�
x = (x1, xT ), x1 2 V, xT 2 Rd
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A periodic waveguide : the geometry

By definition, this is a domain  ⌦ ⇢ Rd+1 =
�
(x1, xT ), x1 2 V, xT 2 Rd

 

which is connected, bounded in                                : ⌦ ⇢
�
(x1, xT ), |xT | < R

 
xT = (x2, · · · , xd+1)

and periodic (with period    for simplicity) in the longitudinal      variable x1

(x1, xT ) 2 ⌦ �! (x1 + 1, xT ) 2 ⌦

1

A particular case : the perfect waveguide ⌦ = R⇥ S

S



A periodic waveguide : governing equations
By analogy with electromagnetism, we assume that the material properties of the 
propagation medium are reduced to a periodic index of refraction

0 < n� < n(x1, xT ) < n+ < +1
n(x1 + 1, xT ) = n(x1, xT )

where             is the source term.  Assuming that this source term is time harmonic                                       

We assume that the unknown                                   satisfies the scalar wave equation

F (x, t)

n

2
@

2
tU ��U = F (x, t)

U(x, t) : ⌦⇥ R �! C

! > 0 given frequency(compactly supported)f(x) 2 L2(⌦)

we look for a time harmonic solution                                 which leads to
U(x, t) = u(x) e�i!t

F (x, t) = f(x) e�i!t

��u� n2 !2u = f Helmholtz equation



Objective of the course

0 < n� < n(x1, xT ) < n+ < +1
n(x1 + 1, xT ) = n(x1, xT )

��u� n2 !2u = f in ⌦ @⌦@⌫u = 0 on, .
�
P
�

supp f

2. Describe the properties of this solution, in particular its behaviour at infinity

3. Find radiations condition at infinity that characterize this solution

1. Define and construct properly the good solution of 
�
P
�
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The underlying selfajoint operator

The Helmholtz equation writes formally Au� !2 u = f/n2

Theorem :      is a positive selfadjoint operator.  Thus                  . �(A) ⇢ R+A

The existence of a solution in           can only occur when : !2 /2 �(A)D(A)

��u� n2 !2u = f in ⌦ @⌦@⌫u = 0 on, .
�
P
�

Av = �n�2 �v

L

2(⌦, n2
dx) (u, v)n2 :=

Z

⌦
u v n

2
dxIn the Hilbert space                      , with scalar product

we consider the unbounded operator defined by 

D
�
A
�
=

�
v 2 H1

(⌦) / �v 2 L2
(⌦), @⌫v = 0 on @⌦

 

When                 , we need to look for a solution in another framework.!2 2 �(A)

D
�
A
�
=

�
v 2 H2

(⌦) / @⌫v = 0 on @⌦
 

Even though it is not necessary, for technical simplicity, we shall assume that       is 
smooth enough in order that

@⌦



Re z

Imz

The limiting absorption procedure

Av = �n�2 �v.
D
�
A
�
=

�
v 2 H1

(⌦) / �v 2 L2
(⌦), @⌫v = 0 on @⌦

 

Formally Au� !2 u = f/n2 () u = (A� !2)�1 g, g := f/n2

The above formula makes sense in we replace       by             which suggests to 
look at the existence of the following limit  

!2 z /2 R+

lim
z!!2, z /2R

(A� z)�1g

z

!2
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D
�
A
�
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�
v 2 H1
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The above formula makes sense in we replace       by             which suggests to 
look at the existence of the following limit  

!2 z /2 R+

lim
z!!2, z /2R

(A� z)�1g

!2

This is not sufficient : two different limits may exist depending on the sign of  Imz



The limiting absorption procedure

Av = �n�2 �v.
D
�
A
�
=

�
v 2 H1

(⌦) / �v 2 L2
(⌦), @⌫v = 0 on @⌦

 

Formally Au� !2 u = f/n2 () u = (A� !2)�1 g, g := f/n2

The above formula makes sense in we replace       by             which suggests to 
look at the existence of the following limit  

!2 z /2 R+

lim
z!!2, z /2R

(A� z)�1g

and to look at the limit when " ! 0

Re z

Imz
!2

The physically relevant choice is to take                                    which amounts 
to adding a small absorption term to the time dependent wave equation

z � (!2 + i "!) , " > 0=

n2
�
@2
tU

" + " @tU
"
�
��U" = 0 " > 0



The limiting absorption procedure

Av = �n�2 �v.
D
�
A
�
=

�
v 2 H1

(⌦) / �v 2 L2
(⌦), @⌫v = 0 on @⌦

 

Formally Au� !2 u = f/n2 () u = (A� !2)�1 g, g := f/n2

The above formula makes sense in we replace       by             which suggests to 
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!2 z /2 R+

lim
z!!2, z /2R

(A� z)�1g

.This leads the Helmholtz equation with absorption 

��u" � n2 (!2 + i"!)u" = f in ⌦ @⌦on@⌫u
" = 0(P") u" 2 H2(⌦)
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? ?

Objective of the course

supp f

Behaviour at infinity and radiation conditions

Homogeneous free space

Waveguide

@ru+ i!u = O(r�2)

Sommerfeld condition

u(r⇥) ⇠ A(⇥)
ei!r

r
d�1
2

r ! +1

Data for the inverse problem 



The case of the perfect waveguide

S

Here, we assume that index of refraction only depends on the transverse variable

n(x1, xT ) = n(xT )

��
T

u

" � @

2
x1
u

" � n(x
T

)2 (!2 + i"!)u" = f

We use separation of variables by introducing the eigenfuntions of the transverse operator

��T ✓n = �n n
2 ✓n

@⌫✓n = 0

S

@Son

in
S

@S

⌫
�n > 0, �n �! +1

u

"(x1, xT ) =
+1X

n=0

u

"
n(x1) ✓n(xT )We look for the solution in the form

x1 = 0

�
�
u

"
n

�00
+
�
�n � (!2 + i " !)

�
u

"
n = 0, x1 > 0=)

S



The case of the perfect waveguide

S

u

"(x1, xT ) =
+1X

n=0

u

"
n(x1) ✓n(xT )We look for the solution in the form

�
�
u

"
n

�00
+
�
�n � (!2 + i " !)

�
u

"
n = 0, x1 > 0

x1 = 0

�0 �1 �N �N+1

!2

u

"(x1, xT

) =
+1X

n=0

u

"

n

(0) ✓
n

(x
T

) e�⇣

"
n x1Since we look for                  ,  u" 2 L2(⌦)

⇣"n :=
�
�n � (!2 + i " !)

� 1
2 Re z

1
2 > 0Introducing with

z
z

1
2



The case of the perfect waveguide

S

x1 = 0

⇣"n :=
�
�n � (!2 + i " !)

� 1
2 Re z

1
2 > 0

�0 �1 �N �N+1

!2

u

"(x1, xT

) =
+1X

n=0

u

"

n

(0) ✓
n

(x
T

) e�⇣

"
n x1

z

z
1
2

⇣"n �!
p
�n � !2n > N

n  N ⇣"n �! � i
p

!2 � �n

Passage to the limit when " ! 0

propagative modes evanescent modes

u(x1, xT

) =
NX

n=0

u

n

(0) ✓
n

(x
T

) ei
p
!

2��n x1 +
+1X

n=N+1

u

n

(0) ✓
n

(x
T

) e�
p
�n�!

2
x1=)
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The case of the perfect waveguide

S

x1 = 0

propagative modes evanescent modes

u(x1, xT

) =
NX

n=0

u

n

(0) ✓
n

(x
T

) ei
p
!

2��n x1 +
+1X

n=N+1

u

n

(0) ✓
n

(x
T

) e�
p
�n�!

2
x1

ei
p
!

2��n x1 e� i!t k =
p

!2 � �n () ! =
p
k2 + �n= exp i (k x1 � ! t)

dispersion curve!

k

The propagative modes are outgoing : they propagate in the direction x1 > 0

dispersion relation

@k! > 0group velocity :



Objective of the course

0 < n� < n(x1, xT ) < n+ < +1
n(x1 + 1, xT ) = n(x1, xT )

��u� n2 !2u = f in ⌦ @⌦@⌫u = 0 on, .
�
P
�

supp f

2. Describe the properties of this solution, in particular its behaviour at infinity

3. Find radiations condition at infinity that characterize this solution

1. Define and construct properly the good solution of 
�
P
�

In periodic waveguides, the result is more complex and the analysis very technical.



Construction of the outgoing solution

.Consider the (unique) solution of the Helmholtz equation with absorption 

��u" � n2 (!2 + i"!)u" = f in ⌦ @⌦on@⌫u
" = 0(P") u" 2 H2(⌦)

Find an appropriate representation (decomposition) of this solution

Technical tool : the Floquet-Bloch transform

Technical tool : the Plemelj-Privalov theorem

P. Kuchment. Floquet theory for partial differential equations, Operator theory : 
Advances and Applications, Birkhäuser Verlag, (1993)

Use this representation to pass to the limit when " ! 0



The Floquet-Bloch tranform

This is a unitary fransform between           and                          that can be seen
as an adequate version of the Fourier transform in the       variable.  

L2(⌦) L2
�
C⇥]� ⇡,⇡[

�

x1

⇡

�⇡

⇠

x1

xT

(x1, xT )

u(x1, xT ) u(x1 + n, xT )

Given                , one constructs             as the sum of the Fourier series 
associated with the sequence 

u 2 D(⌦) bu(x, ⇠)�
u(x1 + n, xT ), n 2 Z

 

C
⌦

bu(x, ⇠)Fu(x)

bu(x1, xT , ⇠) = (2⇡)�
1
2

X

n2Z
u(x1 + n, xT ) e

�in⇠

bu(·, ⇠)



The Floquet-Bloch tranform

(x1, xT )

u(x1, xT ) u(x1 + n, xT )

Given                , one constructs             as the sum oh the Fourier series 
associated with the sequence 

u 2 D(⌦) bu(x, ⇠)�
u(x1 + n, xT ), n 2 Z

 

bu(x1, xT , ⇠) = (2⇡)�
1
2

X

n2Z
u(x1 + n, xT ) e

�in⇠

Since                                    form an hilbertian basis of 
�
(2⇡)�

1
2 e�in⇠, n 2 Z

 
L2(�⇡,⇡)

Z ⇡

�⇡

��bu(x1, xT , ⇠)
��2

d⇠ =
X

n2Z

��
u(x1 + n, xT )

��2

Z

C

Z ⇡

�⇡

��bu(x1, xT , ⇠)
��2

d⇠ dx =
X

n2Z

Z

C

��
u(x1 + n, xT )

��2
dx ⌘

Z

⌦

��
u(x)

��2
dx

and after integration over C FB Plancherel theorem



The Floquet-Bloch tranform

We have thus shown that

bu(x1, xT , ⇠) = (2⇡)�
1
2

X

n2Z
u(x1 + n, xT ) e

�in⇠

8 u 2 D(⌦), kbuk
L2
�
C⇥]�⇡,⇡ [

� = kukL2(⌦)

Remark : the same proof as in the previous slide shows that the isometry result 
remains valid with weighted     spaces provided that the weight is a periodic function.

Z

C

Z ⇡

�⇡

��bu(x1, xT , ⇠)
��2

n(x)2 d⇠ dx =

Z

⌦

��
u(x)

��2
n(x)2 dx

L2

The transformation                    is one to one with the reconstruction formula :F : u �! bu

8 x 2 C, u(x1 + n, xT ) = (2⇡)�
1
2

Z ⇡

�⇡
bu(x1, xT , ⇠) e

in⇠
d⇠

As a consequence, the map                    extends continuously into an isometry
from            into                          also defined by

F : u �! bu
L2(⌦) L2

�
C⇥]� ⇡,⇡[

�

bu(·, ⇠) = lim
N�!0

(2⇡)�
1
2

X

|n|N

u(·+ n e1) e
�in⇠

L2(C)in



Quasiperiodic functions

By definition, a function                    is said to be       quasiperiodic if and only ifv : ⌦ ! C ⇠�

v(x1 + 1, xT ) = e

i⇠
v(x1, xT )

E⇠vGiven                 , one defines its       quasiperiodic extension to    ,        , by⇠�v : C ! C ⌦

E⇠v(x1 + n, xT ) = e

in⇠
v(x1 + n, xT ) 8 n 2 Z

⇥ eip⇠ ⇥ e2ip⇠ ⇥ e3ip⇠⇥ e�2ip⇠ ⇥ e�ip⇠ · · ·· · ·

bu(x1, xT , ⇠) = (2⇡)�
1
2

X

n2Z
u(x1 + n, xT ) e

�in⇠(1)

Extending formula       to any                    ,            is(1) (x1, xT ) 2 ⌦ bu(·, ⇠)      quasiperiodic⇠�

Link with the Floquet-Bloch transform

v



The Floquet-Bloch tranform : properties

bu(x1, xT , ⇠) = (2⇡)�
1
2

X

n2Z
u(x1 + n, xT ) e

�in⇠

1. The Floquet-Bloch transform commutes with differential operators

8 u 2 H1(⌦), 8 ⇠ 2 (�⇡,⇡), F
✓

@u

@xi

◆
(·; ⇠) = @

@xi

�
Fu(·; ⇠)

�

2. The Floquet-Bloch transform commutes with multiplication with periodic functions

8 u 2 L2(⌦), 8 ⇠ 2 (�⇡,⇡), F
�
n2u

�
(·; ⇠) = n2

�
Fu(·; ⇠)

�

3. The Floquet-Bloch transform diagonalizes the translations

⌧nu(x1, xT ) := u(x1 + n, xT ), n 2 Z

8 u 2 L2(⌦), 8 ⇠ 2 (�⇡,⇡), F (⌧nu) (·; ⇠) = ein⇠
�
Fu(·; ⇠)

�



The Floquet-Bloch tranform : properties

4.  The Floquet-Bloch transform in Sobolev spaces

bu(x1, xT , ⇠) = (2⇡)�
1
2

X

n2Z
u(x1 + n, xT ) e

�in⇠

Hs

⇠

(C) :=
�
u 2 Hs(C) / E

⇠

u 2 Hs

loc

(⌦)
 

For any           and                     , we defines � 0 ⇠ 2 ]� ⇡,⇡ [

Hs
⇠ (C) :=

�
u 2 Hs(C) / u(1, xT ) = ei⇠ u(0, xT )

 
1/2 < s < 3/2

H1
⇠ (C) :=

�
u 2 H1(C) / u(1, xT ) = ei⇠ u(0, xT )

 

Hs

⇠

(C) :=
�
u 2 Hs(C) \H1

⇠

(C) / @
x1u(1, xT

) = ei⇠ @
x1u(0, xT

)
 

3/2 < s < 5/2

H2
⇠

(C) :=
�
u 2 H2(C) \H1

⇠

(C) / @
x1u(1, xT

) = ei⇠ @
x1u(0, xT

)
 



quasi-periodic boundary conditions⇠�

The Floquet-Bloch tranform : properties
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The Floquet-Bloch tranform : properties

bu(x1, xT , ⇠) = (2⇡)�
1
2

X

n2Z
u(x1 + n, xT ) e

�in⇠

Hs

⇠

(C) :=
�
u 2 Hs(C) / E

⇠

u 2 Hs

loc

(⌦)
 

Hs
qp

�
C⇥]� ⇡,⇡[

�
Hs(⌦)

Theorem :  The Floquet-Bloch transform      defines an isomorphism between

and

F

Hs
qp

�
C⇥]� ⇡,⇡[

�

Accordingly, we define

:=
�
u 2 L2

�
� ⇡,⇡;Hs(C)

�
/ a. e. ⇠ 2 ]� ⇡,⇡[ , u(·, ⇠) 2 Hs

⇠ (C)
 

For any           and                     , we defines � 0 ⇠ 2 ]� ⇡,⇡ [

4.  The Floquet-Bloch transform in Sobolev spaces



    5. Decay properties in      / Sobolev regularity in ⇠x1

The Floquet-Bloch tranform : properties

bu(x1, xT , ⇠) = (2⇡)�
1
2

X

n2Z
u(x1 + n, xT ) e

�in⇠

    6.  Analyticity properties of Floquet-Bloch transforms

u 2 L2
s(⌦) =) bu := Fu 2 Hs

�
� ⇡,⇡;L2(C)

�
L

2
s(⌦) :=

�
u 2 L

2(⌦) / (1 + x

2
1)

s
2
u 2 L

2(⌦)
 

s > 0

CIn particular, if     is compactly supported,                   is an entire function in    . ⇠ 7! bu(·, ⇠)u

e↵
p

1+x

2
1 u 2 Hs(⌦) ⇠ 7! bu(·, ⇠)

B↵ =
�
⇠ / |Im ⇠| < ↵

 

can be extended to complex values of     in the strip⇠
Assume that, for some           ,                               , then the function↵ > 0

as an analytic function from       with values in           .B↵ Moreover           isHs(C) bu(·, ⇠)
    periodic in      .     B↵2⇡

Re(ξ)

Im(ξ)



C

Computation of the solution with absorption

��u" � n2 (!2 + i"!)u" = f in ⌦ @⌦on@⌫u
" = 0(P")

Let us denote               the FB-transform of           and applying      to        , we
deduce that, for each                     ,             satisfies

bu"(x, ⇠) u

"(x) (P")F
⇠ 2 ]� ⇡,⇡[ bu"(·, ⇠)

u" 2 H2(⌦)

bu"(1, x
T

) = e

i⇠ bu"(0, x
T

), @

x1bu"(1, x
T

) = e

i⇠

@

x1bu"(0, x
T

) () bu"(·, ⇠) 2 H2
⇠ (⌦)

@⌫bu"(·, ⇠) = 0 on @⌦ \ @C

��bu"(·, ⇠)� n2 (!2 + i"!) bu"(·, ⇠) = bf(·, ⇠) in C
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Analytic families of unbounded operators

For our purpose, we shall use the theory of (possibly unbounded) operators
depending analytically of one scalar complex parameter (denoted    here)⇠
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The reduced cell operators : analyticity properties
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The reduced cell operators : analyticity properties

A(⇠)Since we already know that in addition  the operators        have a compact 
resolvent  and are selfadjoint for real    , we can apply very useful theorems
from perturbation theory for linear operators.

⇠

T. Kato. Perturbation theory for linear operators.
Springer Verlag,  (1994 , reprint od the edition of 1980)
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The reduced cell operators : analyticity properties
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Remark : without any loss of generality, we can assume that the domains are
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By definition the (smooth) curves                     are the dispersion curves
of the periodic medium
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to crossing points between different dispersion curves.
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The fibered structure of the operator
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The link between the operator      and the reduced operators          is    A A(⇠)

A
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i. e. , the existence of eigenvalues is linked to the existence of flat dispersion curves

Theorem (Sobolev, Walthoe (2002), Suslina (2002)) 
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The forbidden frequencies
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set of thresholds of the spectrum

Theorem :        is a discrete subset of �0 R+

�0 = { }

The limiting absorption principle will hold only if      is not a forbidden frequency.!
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Convergence : the evanescent part
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Plemelj-Privalov theorem
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The limiting absorption principle : final theorem
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The limiting absorption principle : final theorem
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Floquet-Bloch transform,  Plemelj-Privalov theorem

Objective of the course

0 < n� < n(x1, xT ) < n+ < +1 n(x1 + 1, xT ) = n(x1, xT )

��u� n2 !2u = f in ⌦ @⌦@⌫u = 0 on, .
�
P
�

supp f

2. Describe the properties of this solution, in particular its behaviour at infinity

3. Find radiations condition at infinity that characterize this solution

1. Define and construct properly the good solution of 
�
P
�

Complex variable methods, contour integrals

Energy like arguments



The propagative wave numbers
we introduce the finite set ⌅n(!) =
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⌅(!) =
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⌅n(!) :    the set of propagative wave numbers at frequency

I(!) = {n1, n2}

n1

n2

⌅n1(!) = { }

⌅n2(!) = { }

⌅(!) = { }
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The propagative wave numbers

−π π

⌅n(!)

−π π

⌅m(!)

−π π

⌅(!)

I(!) = {n,m}



Asymptotic behaviour at infinity
Theorem :  Assume that               and   e↵|x1| f 2 L2(⌦), ↵ > 0.!2 /2 �0

u(·+ p e1) = i (2⇡)
1
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X

n2I(!)
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⇠⇤2⌅+
n (!)
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+ w+(·+ p e1)

where                       is exponentially decaying at         in the sense thatw+ 2 H2
loc
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Asymptotic behaviour at         :+1

kw+(·+ p e1)kH2(C)  C e�� |p|, 8 p > 0.9 0 < � < ↵ such that

i (2⇡)
1
2

X

n2I(!)

X

⇠⇤2⌅�
n (!)

bfn(⇠⇤) n(·, ⇠⇤)��µ0
n(⇠

⇤)
�� eip⇠

⇤
+ w�(·+ p e1)u(·+ p e1) =

w� 2 H2
loc

(C) �1where                       is exponentially decaying at         in the sense that

Asymptotic behaviour at         :�1

kw�(·+ p e1)kH2(C)  C e�� |p|, 8 p < 0.9 0 < � < ↵ such that



Asymptotic behaviour at infinity
Proof when                 :  we have to prove that    is exponentially decreasing at !2 /2 �(A) u

We shall use again results from the theory of analytic families of operators

T. Kato. Perturbation theory for linear operators.
Springer Verlag,  (1994 , reprint od the edition of 1980)

u(·+ p e1) = (2⇡)�
1
2

+1X

n=0

Z ⇡

�⇡

bfn(⇠) n(·, ⇠)
µn(⇠)� !2

eip⇠ d⇠

Since              , we haveI(!) = ;

which can be rewritten in an abstract way

u(·+ p e1) = (2⇡)�
1
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Z ⇡

�⇡

�
A(⇠)� !2

��1 bf(·, ⇠) eip⇠ d⇠

For the proof, we shall make the (inessential) technical assumption that

�⇡ /2 ⌅(!) ⇡ /2 ⌅(!)and

±1



Fredholm analytic theory
Let           denote an analytic family of operators ( of class (B) ) in  A(⇠) H

there exists a complex neighborhood           of      such that  
is invertible for all     in    ,  compact        , thenK

V(K)

Corollary 1 :   Assume that A(⇠0) ⇠0 ⇢ C
K

⇠ 7! A(⇠)�1 is bounded analytic in V(K)

⇠

Theorem 1 :   Assume that 

A(⇠0) is invertible () 0 /2 �
�
A(⇠0)

�

A(⇠) has a compact resolvent for all 

Then, there exists a complex neighborhood           of      such that

is invertible for allA(⇠)

⇠ 7! A(⇠)�1 is bounded analytic in V(⇠0)

V(⇠0) ⇠0

⇠ 2 V(⇠0)



Asymptotic behaviour at infinity
Proof when                 :  we have to prove that    is exponentially decreasing at !2 /2 �(A) u
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is analytic e↵|x1| f 2 L2(⌦), ↵ > 0.



Asymptotic behaviour at infinity
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Asymptotic behaviour at infinity
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Asymptotic behaviour at infinity
Proof when                 :  to prove that     is exponentially decreasing at !2 /2 �(A) u
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Asymptotic behaviour at infinity
Proof when                 :  we first look at the evanescent part!2 2 �(A)

P(⇠)bv :=
X

n2I(!)

⇣Z

C
bv  n(·, ⇠)n2

dx

⌘
 n(·, ⇠) Q(⇠) := I � P(⇠)

Let us introduce the orthogonal projectors in L2(C;n2
dx)

0 /2 �
�
A(⇠)Q(⇠)� !2

�
=
�
µn(⇠)� !2, n /2 I(!)

 
[ {�!2}

By construction of   Q(⇠)
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�
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We wish to apply the corollary with A(⇠) = A(⇠)Q(⇠)� !2
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Asymptotic behaviour at infinity
Proof when                 :  we first look at the evanescent part!2 2 �(A)
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Asymptotic behaviour at infinity
Proof when                 :  we next look at the propagative part                             where!2 2 �(A)
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Asymptotic behaviour at infinity
Proof when                 :                            !2 2 �(A)
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Asymptotic behaviour at infinity
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By analyticity, (ii) also holds inside the two balls



 n(·, ⇠) ⇥ eip⇠ ⇥ e2ip⇠ ⇥ e3ip⇠⇥ e�2ip⇠ ⇥ e�ip⇠ · · ·· · ·

n 6= 0, ⇠ 2 [�⇡,⇡ ]Given                             , we still denote  n(·, ⇠) ⌘ E⇠ n(·, ⇠)

Propagative Floquet modes 



Propagative Floquet modes 
Given                             , we still denote n 6= 0, ⇠ 2 [�⇡,⇡ ]  n(·, ⇠) ⌘ E⇠ n(·, ⇠)

 n(·, ⇠) ⌦ ! C
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Propagative Floquet modes 
Given                             , we still denote n 6= 0, ⇠ 2 [�⇡,⇡ ]  n(·, ⇠) ⌘ E⇠ n(·, ⇠)
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Propagative Floquet modes 

The sesquilinear form 
x1 = s

�s

Lemma :  For                    ,                              is independent of    .q(s;u, v) = q(u, v)(u, v) 2 V(!) s
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Proof : Using Green’s formula
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Propagative Floquet modes 

Theorem :  Let                    (n,m) 2 I(!), ⇠ 2 ⌅n(!), ⇠
0 2 ⌅m(!)
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The sesquilinear form           "orthogonalizes"  the propagative Floquet modes :q(u, v)

Lemma :  For                    ,                              is independent of    .q(s;u, v) = q(u, v)(u, v) 2 V(!) s



According to the lemma,                                is given indifferently by one of the
following two expressions

Propagative Floquet modes 
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Propagative Floquet modes 
Proof of the theorem (2)
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Propagative Floquet modes 
Proof of the theorem (2)
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Propagative Floquet modes 
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Using the fact that

we can write accordingly

New notation



There exists coefficients                          and         exponentially decreasing at 

The radiation condition 

w�
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u =
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` + w+such that

(CR+)  Outgoing radiation condition at 
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+1

such that
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The uniqueness result 
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X
a�` ��

`

⌘

q(�+
` ,�

+
` ) = i q+` , q

+
` > 0 q(��

` ,�
�
` ) = i q�` , q

�
` < 0

{



If     were not identically 0,      would be an eigenvector of      ( for the eigenvalue      )

The uniqueness result 

Theorem :  Assume that              ,                                      and                 .e↵|x1| f 2 L2(⌦), ↵ > 0.!2 /2 �0 �p(A) = ;

There exists a unique function                    satisfying u 2 H2
loc

(⌦)

as well as the two outgoing radiation conditions (CR-) and (CR+)

��u� n2 !2u = f in ⌦ @⌦@⌫u = 0 on

,

�
P
�

Proof :                                           u =
X

a+` �+
` + w+ u =

X
a�` ��

` + w� a+` = a�` = 0, 1  `  N

u ⌘ w+ ⌘ w�thus                        is exponentially decreasing at both          , which implies               . u 2 D(A)

!2Au u

This is impossible since                 . Thus           , which concludes the proof.�p(A) = ; u = 0
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