Solutions of the Helmholiz
equation in a periodic waveguide :
asymptotic behaviour and radiation
condition.

Patrick Joly
POEMS (UMR 7231 CNRS/ENSTA/INRIA)

This course is mainly based on a joint work with Sonia Fliss



A periodic waveguide : the geometry

By definition, this is a domain

which is connected, bounded in zp = (23, - - -

Q) c R =

{z=(x1,27), 21 €V, 21 € ]Rd}

Tar1) - QC {($1,$T>a x| < R}

and periodic (with period 1 for simplicity) in the longitudinal z; variable
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), f-(x1) <x2 < fi(w1)} (f-,fy) periodic

Unit periodicity cell C = {(z1,27) €Q /0 <z <1} (1= U ' C+ (n,0)]
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A periodic waveguide : the geometry

By definition, this is a domain
which is connected, bounded in 7 = (z2,- -+ ,x411) :

and periodic (with period 1 for simplicity) in the longitudinal z; variable

A particular case : the perfect waveguide

QCR*™ = {(z1,27), 21 €V, 27 € R?}

(x1,27) € Q.  —
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A periodic waveguide : governing equations

By analogy with electromagnetism, we assume that the material properties of the
propagation medium are reduced to a periodic index of refraction

0<n_ <n(r,zr) <ng <400 n(xy + 1,x7) = n(xy, z7)

We assume that the unknown U(z,t) : Q x R — C satisfies the scalar wave equation

n?0;U — AU = F(z,t)

where F(xz,t) is the source term. Assuming that this source term is time harmonic
F(z,t) = f(z) e™™"  f(x) € L?(Q) (compactly supported) w > 0 given frequency

we look for a time harmonic solution U(z.t) = u(z) e~ **t which leads to
b

—Au —n*wu = f Helmholtz equation



Objective of the course

(P) —Au—n??u=f inQ, O,u=0 on 0.
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0<n_ <n(xry,zr) <ng <400 n(xy +1,z7) = n(xy, x7)

1. Define and construct properly the good solution of (77)

2. Describe the properties of this solution, in particular its behaviour at infinity

3. Find radiations condition at infinity that characterize this solution
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The underlying selfajoint operator

(P) —Au—n?wiu=f inQ, O,u=0 on 00.

In the Hilbert space L?(Q),n*dz) ,with scalar product (U, 0)p2 = / utn® dx
we consider the unbounded operator defined by Q

D(A) :{UEHl(Q)/AUELZ(Q),E?VU:OOH 89} Av = —n~2 Aw

Even though it is not necessary, for technical simplicity, we shall assume that 0€? is
smooth enough in order that

D(A) ={ve H*(Q) /d,v=0on 0N}
Theorem : A is a positive selfadjoint operator. Thus o(4) C R™.

The Helmholtz equation writes formally Au —w?u = f/n’

The existence of a solution in D(A) can only occur when: w?® ¢ o(A)

When w? € 0(A), we need to look for a solution in another framework.



The limiting absorption procedure

D(A)={ve H(Q) / Av e L*(Q),0,v =0 on 9} Av=—n"%Av

Formally Au—w?u=f/n? <+ u=(A-w?)"1g, g:=Ff/n°

The above formula makes sense in we replace w? by z ¢ R™ which suggests to
look at the existence of the following limit

lim (A—2)"1g

z— w?, z¢€R
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The limiting absorption procedure

D(A)={ve H(Q) / Av e L*(Q),0,v =0 on 9} Av=—n"%Av

Formally Au—w?u=f/n? <+ u=(A-w?)"1g, g:=Ff/n°
The above formula makes sense in we replace w? by z ¢ R™ which suggests to

look at the existence of the following limit

lim (A—2)"1g

z— w?, z¢€R

This is not sufficient : two different limits may exist depending on the sign of Zm z
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The limiting absorption procedure

D(A)={ve H(Q) / Av e L*(Q),0,v =0 on 9} Av=—n"%Av

Formally Au—w?u=f/n? <+ u=(A-w?)"1g, g:=Ff/n°

The above formula makes sense in we replace w? by z ¢ R™ which suggests to
look at the existence of the following limit

lim (A—2)"1g

z— w?, z¢€R

The physically relevant choice is to take z = (w* +iew) ,& >0 which amounts
to adding a small absorption term to the time dependent wave equation

n? (920° JBOE) — AU =0 £>0
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The limiting absorption procedure

D(A)={ve H(Q) / Av e L*(Q),0,v =0 on 9} Av=—n"%Av

Formally Au—w?u=f/n? <+ u=(A-w?)"1g, g:=Ff/n°

The above formula makes sense in we replace w? by z ¢ R™ which suggests to
look at the existence of the following limit

lim (A—2)"1g

z— w?, z¢€R

The physically relevant choice is to take z = (w* +iew) ,& >0 which amounts
to adding a small absorption term to the time dependent wave equation

n? (07U +e ,U°) — AU =0  €>0
This leads the Helmholtz equation with absorption

(Pe) —Au® —n?(w?*+icw)u=f in Q@ 9,u=0 on 99 ut € HZ(Q)
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Objective of the course

Homogeneous free space
5 P Data for the inverse problem
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Behaviour at infinity and radiation conditions



The case of the perfect waveguide
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Here, we assume that index of refraction only depends on the transverse variable
n(xy,xr) = n(xr)
—Aquf — 02 u® —n(zr)? (W +icw) u® = f

We use separation of variables by introducing the eigenfuntions of the transverse operator

_ 2 :
—Arbn = Apn” 0, in S g A >0, N\, — +0
0,0, =0 on 0S5 oS
We look for the solution in the form u°(z1,x7) Z us (1) On(xT)

— —(ue)"+()\n—(w2+isw))u220, 1 >0



The case of the perfect waveguide

Introducing (5 == (A, — (w” + iew))% with Rezz >0 w
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Since we look for u° € L*(Q), uf(z1,27) = Y 15 (0) Op(zy) e n ™
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The case of the perfect waveguide
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propagative modes evanescent modes
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The case of the perfect waveguide

4+ o0
y 2 __ _ — (2
371737T E : un Z\/w An T1 4+ E : un(()) Hn(:vT)e VAn—w= 1
n=N-+1
propagative modes evanescent modes

The propagative modes are outgoing : they propagate in the direction z1 > 0

tVw2—=\, x1 — twt

e e =expi(kry —wt) k:\/wz—)\n <— wz\/k2+)\n

dispersion relation
W a dispersion curve

group velocity :  Jxw > 0




Objective of the course

(P) —Au—n??u=f inQ, O,u=0 on 0.

/—WW
@ supp/f
N L S\ N\ NS N

0<n_ <n(xry,zr) <ng <400 n(xy +1,z7) = n(xy, x7)

1. Define and construct properly the good solution of (77)

2. Describe the properties of this solution, in particular its behaviour at infinity

3. Find radiations condition at infinity that characterize this solution

In periodic waveguides, the result is more complex and the analysis very technical.




Construction of the outgoing solution

Consider the (unique) solution of the Helmholtz equation with absorption

(Pe) —Auf —n? (W +iew)u=f in Q@ 9,u=0 on I u € H?(Q)

Find an appropriate representation (decomposition) of this solution

Technical tool : the Floquet-Bloch transform

Use this representation to pass to the limit when ¢ — 0

Technical tool : the Plemelj-Privalov theorem

P. Kuchment. Floquet theory for partial differential equations, Operator theory :
Advances and Applications, Birkhduser Verlag, (1993)




The Floquet-Bloch tranform

This is a unitary fransform between L?(Q) and L? (Cx] — m,m[) that can be seen
as an adequate version of the Fourier transform in the =1 variable.

Given u© € D(2), one constructs u(z,&) as the sum of the Fourier series
associated with the sequence {u(x1+n, zr),n €}

U2y, 27, 8) = (2m)77 > ulwy +n, xp) e
nez




The Floquet-Bloch tranform

u(xy, xT) w(xy +n,z7)

Given u € D(£2), one constructs u(x, &) as the sum oh the Fourier series
associated with the sequence {u(z1+n, 27),n €}

u(xy, xp, &) = (27‘(‘)_% Z u(xy +n, x7) PR
nez

Since {(277)_% e "t n € Z} form an hilbertian basis of L*(—, )

[ [t e o dg= 3 Jutwr+n, o)

- nez

and after integration over C FB Plancherel theorem

T R 5 B , . :
/C/_W‘u(thimf)‘ dﬁdm—% /C’u(wl + n, a:T)} dqj_/ﬁ‘u(m)} dr




The Floquet-Bloch tranform

ﬂ(3717 xT?f) — (27‘-)_% ZU(Qfl + n, :ET) e_ing
nez

We have thus shown that V4 € D(Q), HﬂHL2 (CX]—W,W[) = ||u|lL2()

As a consequence, the map F : u — 7 extends continuously into an isometry
from L?(Q?) into L?(Cx]— 7, n[) also defined by

a(,¢) = lim (2m)”= H;Nuc +ne)e ™ in L2(C)

The transformation F : © — u is one to one with the reconstruction formula :

T

VzeCl, um +n, )= (zw)%/ Wy, g €) € de

—1TT

Remark : the same proof as in the previous slide shows that the isometry result
remains valid with weighted L*spaces provided that the weight is a periodic function.

/C/_tT Uy, J;T,f)\Q n(r)? dé dx = /Q ’u(x)fn(x)g ”



Quasiperiodic functions

By definition, a function v : Q — C is said to be § — quasiperiodic if and only if

U(Zlfl =+ 17$T) — 67;5 /U('CvlaajT)

Given v :C — C, one defines its { —quasiperiodic extension to 2, F¢uv, by

S\

Eev(zy +n,x7) = e v(z1 +n, o7)

x e~ 2Pt

S

>< 6_?’p£

U

NS

S\

(v

N

VNG

x P

N

Link with the Floquet-Bloch transform
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(271')_% Z w(zy +n, op) e

Extending formula (1) to any (x1,z7) € Q, u(-,§) is § —quasiperiodic



The Floquet-Bloch tranform : properties

a(mlv xT?ﬁ) — (27‘-)_% ZU(CEl + n, CET) e—inf
nez °

1.The Floquet-Bloch transform commutes with differential operators

Vue HYQ), VE € (—m,m), F (55) (&) = 8?@ (Fu(+¢))

2.The Floquet-Bloch transform commutes with multiplication with periodic functions
Vuce L2(Q)7 \Vlf < (_7T77T)7 J (nQU) (75) — n2 (FU(,E))

3.The Floquet-Bloch transform diagonalizes the translations

Tou(xy, xp) = u(xy +n,x7), nEZ

VueL2(Q), VEe (—mm), F(mau) (€)= (Fu(+£))



The Floquet-Bloch tranform : properties

ﬂ(3717 xT?f) — (27‘-)_% ZU(Qfl + n, :ET) e_ing
nez

4. The Floquet-Bloch transform in Sobolev spaces

Forany s >0 and £ €| —m, |, we define @
H(C) :={ue H*(C) / Ecu € H},.(Q)}

H{(C) = {u € H'(C) / u(l,ar) = & u(0,27)}

H(C) :=={ue H*(C) /u(l,zr) = e u(0,z7)} 1/2<s<3)/2

H(C) :={ue H*(C)NH:(C) / Op,u(l,zr) = e’ 9y, u(0,z7)}

H(C) := {u € H(C)N HL(C) / Ouyu(l, 2r) = € Opyu(0,21)}  3/2 <5< 5/2




The Floquet-Bloch tranform : properties

a(3717 xT?f) — (27‘-)_% ZU(Qfl + n, CET) e_ing
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4. The Floquet-Bloch transform in Sobolev spaces

Forany s >0 and £ €| —m, |, we define @
H(C) :={ue H*(C) / Ecu € H},.(Q)}

H{(C) = {u € H'(C) / u(l,ar) = & u(0,27)}

HZ(C) :=={ue H*(C) /u(l,zp) = e“ u(0,a7)} 1/2<s<3/2

H(C) :={ue H*(C)NH:(C) / Op,u(l,zr) = e’ 9y, u(0,z7)}

HZ(C) = {ue H°(C)N Hg(C) | Op,u(l,x7) = €% O u(0,270)} 3/2<s<5/2

¢ —quasi-periodic boundary conditions




The Floquet-Bloch tranform : properties

ﬂ(3717 xT?f) — (27‘-)_% ZU(Qfl + n, :ET) e_ing
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4. The Floquet-Bloch transform in Sobolev spaces

Forany s >0 and £ €| —m, |, we define
H(C) :={ue H*(C) / Ecu € H},.(Q)}

Accordingly, we define

Hqsp(Cx] —7T,7T[) ‘= {UEL2(—7T,7T;HS(C)) [a.e €] —mm|,u(-§) EHE(C)}

Theorem : The Floquet-Bloch transform F defines an isomorphism between

H?(Q) and H; (Cx]—m,x)




The Floquet-Bloch tranform : properties

a(xlv xT?ﬁ) — (27‘-)_% ZU(Qfl + n, :ET) e—inﬁ
nez

5. Decay properties in x1 / Sobolev regularity in §
L2(Q) :={ue L*(Q) /(1 +2})2ue L*(Q)} s >0
we L)) = u:=FueH*(—mmL*C))

6. Analyticity properties of Floquet-Bloch transforms

Assume that, for some o > 0, e*V 111 4 ¢ H*(Q), then the function &~ u(-,§)
can be extended to complex values of £ in the strip

Im(¢)
Ba:{f/\lm§]<a} T

as an analytic function from B, with values in H°(C). Moreover u(-,€) is
27 periodic in B, .

In particular, if v is compactly supported, & — u(-,€) is an entire function in C.



Computation of the solution with absorption

(Pe) —Au® —n? (W’ +iew)u=f in Q 9,u°=0 on Of

uE € H2(Q)

Let us denote u°(x,&) the FB-transform of u°(z) and applying F to (P:), we
deduce that,for each ¢ €| —m, 7|, u°(-, &) satisfies

ut(l,xp) = e's u® (0, x7),

—AT( ) = 0 (W +iew) T (L&) = f(&)  in C

0,i°(,§) =0 on 0QNAC

Oy, U (1, z7) = €% 9,,u°(0, z7)

Boundary value problem in C ,in which £ plays the role of a parameter




The reduced cell operators

_Aaé(., g) o n2 (WQ + 7:564}) a€(7€) — ?(76) in C
0,0°(€)=0 on 90NAC

(1, zr) = e (0, z7), Oy, 0 (1,z7) = € 0,,0°(0, z7)

For ¢ € C, let A(¢) be the unbounded operator in the Hilbert space L*(C,n” dx)
such that ( note that A(§ + 27) = A(¢) )

D(A(f)) = {v c HS(C) / d,v=0o0n dCN 8&2} A)v=—n"?% Av

Theorem : A(¢) has a@ompact resolvent and is positive selfadjoint in L?(C, n* dz)
for real values of ¢ .

C bounded == H{(C) c L*(C) compact




The reduced cell operators

For ¢ € C, let A(¢) be the unbounded operator in the Hilbert space L?*(C,n* dx)
such that ( note that A(¢ + 27) = A(€))

D(A()) ={ve HEQ(C) / d,v =0 on dC N N} A)v=—-n"? Av

Theorem : A(¢) has a compact resolvent and is positive selfadjointin = L?(C, n” dz)
for real values of ¢ .

Proof of the hermitian positive nature of A(¢): (£ € R)

(Au,v) , = —/CAMW dx Green’s formula

:/VUVE dx—l—/@xlu(l,xfp)ﬁ(l,xrp) drr —/8x1u(0,xT)6(O,xT) dxr
C
Using quasi-periodicity conditions

Oz, u(1,z7)T(1, z7) = €% 0y, u(0, z7) e T(0, x7) = Op,u(0,z7) T(0, z7)



The reduced cell operators

For ¢ € C, let A(¢) be the unbounded operator in the Hilbert space L?*(C,n* dx)
such that ( note that A(¢ + 27) = A(€))

D(A()) ={ve HEQ(C) / d,v =0 on dC N N} A)v=—-n"? Av

Theorem : A(¢) has a compact resolvent and is positive selfadjointin = L?(C, n” dz)
for real values of ¢ .

Proof of the hermitian positive nature of A(¢): (£ € R)

(Au,v) , = —/Au@ dx Green’s formula

C
:/VUVde—I—WW—WT
C

Using quasi-periodicity conditions

Oz, u(1,z7)T(1, z7) = €% 0y, u(0, z7) e T(0, x7) = Op,u(0,z7) T(0, z7)

= (A(&u,v) , = /CVUV@ dx



The reduced cell operators

For ¢ € C, let A(¢) be the unbounded operator in the Hilbert space L*(C,n” dx)
such that ( note that A(¢ + 27) = A(¢))

D(A(§)) ={v e H?(C) / 8,0 =0 on 9C NN} A&)v=—-n"2 Av

Theorem : A(¢) has a compact resolvent and is positive selfadjoint in
for real values of ¢ .

Corollary : For ¢ € R, there exists an hilbertian basis {¢,(-,£) € H(C),n € N}
of L?(C,n*dz) and a non decreasing sequence \,(¢) > 0 such that

A(E) on(+5€) = An(E) wnl+§) An(§) — +00  (n — +00)



The reduced cell operators

— Ay (-, &) = A (§) n’ V(-5 §) Oythn(-,€) =0
axlwn('v‘g)yrl — €i£ 8x1¢n('a§)\Fo ¢n('af)‘1“1 — 6i€ ¢n('a§)’Fo

Theorem : A(¢) has a compact resolvent and is positive selfadjoint in
for real values of ¢ .

Corollary : For ¢ € R, there exists an hilbertian basis {¢,(-,£) € H(C),n € N}
of L?(C,n*dz) and a non decreasing sequence \,(¢) > 0 such that

A(E) on(5€) = An(§) ©n(+5§) An(§) — +00  (n — +00)
The functions ¢.(-,€) can be chosen in such a way that

E— (&) and € — p.(-, &) € H*(C) are Lipschitz continuous

)\n(€‘|'277) :An(f) Spn('a'f‘|—27'l') :Spn('vf)

)\n(_€> — )\n(g) Spn(° ) —f) — Spn(°7€)




The reduced cell operators

— Ay (-, &) = A (§) n’ V(-5 §) Oythn(-,€) =0
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Theorem : A(¢) has a compact resolvent and is positive selfadjoint in
for real values of ¢ .

Corollary : For ¢ € R, there exists an hilbertian basis {¢,(-,£) € H(C),n € N}
of L?(C,n*dz) and a non decreasing sequence \,(¢) > 0 such that

A(E) on(5€) = An(§) ©n(+5§) An(§) — +00  (n — +00)
The functions ¢.(-,€) can be chosen in such a way that

E— (&) and € — p.(-, &) € H*(C) are Lipschitz continuous

)\n(€‘|'277) :An(f) Spn('a'f‘|—27'l') :Spn('vf)

)\n(_€> — )\n(g) Spn(° ) —f) — Spn(°7€)




The reduced cell operators

— Ay (-, &) = A (§) n’ V(-5 §) Oythn(-,€) =0
aﬂ?lwn('vg)yrl :e—iﬁ ailhwn('af)‘ro @bn('af)‘l“l :e_ig ¢n('a§)’Fo

Theorem : A(¢) has a compact resolvent and is positive selfadjoint in
for real values of ¢ .

Corollary : For ¢ € R, there exists an hilbertian basis {¢,(-,£) € H(C),n € N}
of L?(C,n*dz) and a non decreasing sequence \,(¢) > 0 such that

A(E) on(5€) = An(§) ©n(+5§) An(§) — +00  (n — +00)
The functions ¢.(-,€) can be chosen in such a way that

E— (&) and € — p.(-, &) € H*(C) are Lipschitz continuous

)\n(€‘|'277) :An(f) Spn('a'f‘|—27'l') :Spn('vf)

)\n(_€> — )\n(g) Spn(° ) —f) — Spn(°7€)




Analytic families of unbounded operators

For our purpose, we shall use the theory of (possibly unbounded) operators
depending analytically of one scalar complex parameter (denoted £ here)

A§) :D(A()CcH —H H : Hilbert space

For bounded operators, one says that A(¢) is bounded analytic if

& A(E) is analytic from C into L(H)

In the case where D(A(¢)) = D (independent of ¢ ), one says that A(§) is
analytic of type (A) if

VoeD, &— A(&)v isanalyticfrom C into H

In the case where the domain depends on £ ,A(¢) is analytic of class (B) if it
Is analytically equivavent to an analytic family of class (A), i. e.

There exists (5S¢, S, ) bounded analytic and A(¢) analytic of class (A) such that

D(A(€) =S D A(¢) =S A¢) 8¢




The reduced cell operators : analyticity properties

For ¢ € C, let A(¢) be the unbounded operator in the Hilbert space L*(C,n” dx)
such that ( note that A(¢ + 27) = A(¢) )

D(A(§)) ={v e ng(C) / 8,0 =0 on 9C NN} A&)v=—-n"2 Av

Let us introduce S¢ € £L(L*(C,n*dz)) suchthat S.u(z) = e“"* v(z). Each Se
is an isomorphism, S = S_¢, unitary for real ¢ .

£eC— S e L(L?(C,n*dx)) isbounded analytic

Seve HAC) = veHL(C)  H(C)=HZo(C)
D(A(€)) = Se D D= {veH2,(C)/duv=0ondCNoN}
A
D(A(9)) &) » L*(C,n*dx)
5. [ ) l 5 A€) = Se A(€) 87
A

D » L*(C,n°dx)




The reduced cell operators : analyticity properties

For ¢ € C, let A(¢) be the unbounded operator in the Hilbert space L*(C,n” dx)
such that ( note that A(¢ + 27) = A(¢) )

D(A(§)) ={v e ng(C) / 8,0 =0 on 9C NN} A&)v=—-n"2 Av

D(A() =8¢ D D={veH (C)/duv=00ndCNIN} Sev(zx)=e"" y(x)

~ ~

A(E) = Se A(¢) Sgl A(€)v=—n"" (Av+ 2 Oy, v — E0)
Since for any v € D, &€ — A(¢)v € L*(C,n?dz) is analytic, A(€) is analytic of class (A)
Thus, A(¢) is analytic of class (B).

Since we already know that in addition the operators A(¢) have a compact
resolvent and are selfadjoint for real £, we can apply very useful theorems
from perturbation theory for linear operators.

T. Kato. Perturbation theory for linear operators.
Springer Verlag, (1994 , reprint od the edition of 1980)



The reduced cell operators : analyticity properties

For ¢ € C, let A(¢) be the unbounded operator in the Hilbert space L*(C,n” dx)
such that ( note that A(¢ + 27) = A(¢) )

D(A(§)) ={v e ng(C) / 8,0 =0 on 9C NN} A&)v=—-n"2 Av

D(A() =8¢ D D={veH (C)/duv=00ndCNIN} Sev(zx)=e"" y(x)

There exists a sequence D, of complex neighborhoods of the real axis
and two sequences of analytic functions

1n(€) : D, — C Un(,€) : Dy — H?(C)

which coincide for real ¢ to the eigenvalues and eigenvectors of A(¢)

{un(€),n e N} = {\,(¢),n € N} {n(-,€),n e N} = {p,(€),n € N}

A(f) wn(vf) — Mn(f) wn(af) (¢n(7§)7¢n<7€))n2 = Omn




The reduced cell operators : analyticity properties

For ¢ € C, let A(¢) be the unbounded operator in the Hilbert space L*(C,n” dx)
such that ( note that A(¢ + 27) = A(¢) )

D(A(§)) ={v e ng(C) / 8,0 =0 on 9C NN} A&)v=—-n"2 Av

D(A() =8¢ D D={veH (C)/duv=00ndCNIN} Sev(zx)=e"" y(x)

There exists a sequence D, of complex neighborhoods of the real axis
and two sequences of analytic functions

1n(€) : D, — C Un(,€) : Dy — H?(C)

which coincide for real ¢ to the eigenvalues and eigenvectors of A(¢)

{un(€),n e N} = {\,(¢),n € N} {n(-,€),n e N} = {p,(€),n € N}

|

still holds for € € Dy, no longer holds for § € D,




The reduced cell operators : analyticity properties

For ¢ € C, let A(¢) be the unbounded operator in the Hilbert space L*(C,n” dx)
such that ( note that A(¢ + 27) = A(¢) )

D(A(§)) ={v e ng(C) / 8,0 =0 on 9C NN} A&)v=—-n"2 Av

D(A() =8¢ D D={veH (C)/duv=00ndCNIN} Secv(zx)=e"" y(x)

There exists a sequence D, of complex neighborhoods of the real axis
and two sequences of analytic functions

1n(€) : D, — C Un(,€) : Dy — H?(C)

which coincide for real ¢ to the eigenvalues and eigenvectors of A(¢)

Remark : without any loss of generality, we can assume that the domains are
symmetric with respect to the real axis

T~ - Re()




Dispersion curves

For ¢ € C, let A(¢) be the unbounded operator in the Hilbert space L*(C,n” dx)
such that ( note that A(¢ + 27) = A(¢) )

D(A(§)) ={v e ng(C) / 8,0 =0 on 9C NN} A&)v=—-n"2 Av

D(A() =8¢ D D={veH (C)/duv=00ndCNIN} Secv(zx)=e"" y(x)

By definition the (smooth) curves ¢ — u,, (&) are the dispersion curves
of the periodic medium

As already seen, for fixed ¢, the set {1 (£),n € N} is simply a rearragement
of the set {\x(§).n € N}, Seen as functions of &, the two sets only differ due

to crossing points between different dispersion curves.
Using the relationships between the .,,’'s and the \,’s, one can prove that

lim  min  p,(§) =+

n—>+00 56[—7'(',7'(']

The functions #+(§) are not necessarily periodic nor even functions of &.



Dispersion curves




Dispersion curves

©.9) 0. @)

B 1+ N

pin(§)

> ¢

o ¢ 7

For each n, | — 7w, 7| is decomposed in a finite number of intervals along which
A, coincides with one function ., : A, is piecewise analytic .

A

/\




Dispersion curves

pn(§)

The functions #+(§) are not necessarily periodic nor even functions of €.



The fibered structure of the operator A

The link between the operator A and the reduced operators A(¢) is

u e D(A) < T(€) € D(A®E)), a. e. € Au(€) = A(§)T(8)




The spectrum of the operator A

A=F 1A F and 2:/69 A(&) d¢ —  0(A) = U o (A(6))

fe]_ﬂ-aﬂ-[
+00
oc(A€)) = {pn(€),n e N} — o(A) = U Imu,  Impu, :closed, bounded interval
n=0

The spectrum of A has a band structure. Gaps may exist.

tn (§)

a gap




The spectrum of the operator A

AN

A=F 1A F and 2:/@ A(&) d¢ —  0(A) = U o (A(6))

fE]—Ti‘,ﬂ'[
+00
oc(A€)) = {pn(€),n e N} — o(A) = U Imu,  Impu, :closed, bounded interval
n=0

= ,un( [—7, 7] )

The spectrum of A has a band structure. Gaps may exist. For the point spectrum
peoap(Ad) <= In>0/p(§)=p, §€]—mm|

i. e., the existence of eigenvalues is linked to the existence of flat dispersion curves

Theorem (Sobolev,Walthoe (2002), Suslina (2002))

When d =1, 0,(A) =0 i.e.the spectrum of A is absolutely continuous.

Conjecture : The above result is true whatever is d.



The forbidden frequencies

Definition : A forbidden frequency is a frequency w such that there exists n > 0
and ¢ € |—m, 7| satisfying :

pn(é) =w®  and () =0

0o := {w” / w is a forbidden frequency } set of thresholds of the spectrum

Theorem : oq is a discrete subset of R™

oo = {e}

The limiting absorption principle will hold only if w is not a forbidden frequency.



Computation of the solution with absorption

(Pe) —Au® —n? (W’ +icw)u® = f in Q

O,uf=0 on 0N u € H*(Q)

_Aae(vg) o n2 (w2 + z&:w) a6(°7 f) — /f\(a 5) in C
9,7°( &) =0 on ONNAC
ut (1, zr) = e’ U “(0,zp), Oy u(l,xp)= et Oy, u°(0,27) = U (&) € Hg(ﬂ)
D(A(g)) ={v € Hg(C) / d,v =10 on dC NN} A)v=—-n"?Av
AT (-, &) — (w? + iew) T (-, €) = f(-,€)/n’
To exploit the diagonalization of A(¢), we write u° Z

that we substitute into the above equation to obtam

[Mn(f) -

(W? + iew) |

&

u

n

AN

Fulé) = /C T In(E) da




Computation of the solution with absorption

(P:) —Au® —n?(W?+icw)u=f in Q Ju=0 on 9N u € H?*(Q)

_Aae(vg) o n2 (w2 + z&:w) a6(°7 f) — /f\(a 5) in C

0,7°(€)=0 on 9NNAC

W (1, z7) = €% (0, x7), Oy, 0°(1,z7) =€ 0,,05(0,z7) <= U (-,§) € Hg(ﬂ)

D(A(¢)) = {v e HZ(C) / d,v =0 on 9C N IN} Al§)v=—-n"?Av
_ ~— Fn(§)
We finally obtain us(+,§) = nz:% (6 — (0 T iew) (-5 €)

where the series converges in H*(C). By inverse FB-transform, we get

-+ 00
7&) )
= (2 PUZIP
wltpe) ) Z /Wun w2+zew) :



The limiting absorption principle

(P:) —Au® —n?(W?+icw)u=f in Q Ju=0 on 9N u € H?*(Q)

+0o0
o 1 75) Z'pﬁ
uf(-+per) = (2m) Z/ wQHw) d¢
It is natural to introduce I(w) ={n €N /w” €TImuy,} ( finite set)

I(w)=0 = w*¢o(A

For n € I(w), we introduce the finite set =, (w) = {£ € [-m,7[ / pn(£) = w?}

ny — I(w) = {n1,ns}
'\\\/  E@=0)
/

T 2w =)

>




The limiting absorption principle

(P:) —Au® —n?(W?+icw)u=f in Q Ju=0 on 9N u € H?*(Q)

+o00
ut(-+peyp) = (2m) __Z/ n(6) e'PS dg

w2 + icw)
For n € I(w), we introduce the finite set =, (w) = {¢ € [-m,7[ / un(€) = w?}

=Z(w) = U =,(w) : the setof propagative wave numbers at frequency
nel(w)

( the union being understood in the sense {1,822} U {1,863} = {£1,&1,62,83})

A

ng — I(w) = {n1,n2}
'\\\/ Z (W) = {0}
M — () = {o}
/

S(w) = {+ o}




The limiting absorption principle

(P:) —Au® —n?(W?+icw)u=f in Q Ju=0 on 9N u € H?*(Q)

+o00
ut(-+peyp) = (2m) __Z/ n(6) e'PS dg

w2 + icw)
For n € I(w), we introduce the finite set =, (w) = {¢ € [-m,7[ / un(€) = w?}

=Z(w) = U =,(w) : the setof propagative wave numbers at frequency
nel(w)

( the union being understood in the sense {1,822} U {1,863} = {£1,&1,62,83})

A

ny — I(w) = {n1,ns}

\/"\\/ = (@) = {0}
m— (w) = {o}
:

S(w) = {+ o}

>



Convergence : the evanescent part

(P.) —Au® —n?(w* +icw)u®=f in Q@ §,us=0 on 0N u° € H=(Q)

+00
1 7€) )
= (2 BUZIP |
wltpe) ) Z /W,un w2+25w) :
I(w)y={neN/w’ €Impuy,}
U= Uoan + U Uevan = ) Uprop = D
né¢l(w) nel(w)

For n ¢ I(w), one can define tecvan € H*(Q) , cell by cell, as

Uepan (- + per) : —% Z &) V(- 725) ip€ d¢
ng¢l(w) Hn, (5) — W
and one can prove that [tGvan — Uevan|la2(2) < C' €
: : : 2 Im iy,
Key argument : nérll(fw) ge[lgfm] | (§) — w?| >0 2 n ¢ I(w)

W

D 0




Convergence : the evanescent part

Proof of the L? estimate : we use FB-Plancherel’s theorem

1S s — ttevan]|s = / (@5 — Tevan) (4 )|Ps  where by definition
uc ( 5) — Z /f\n(é-) wn(ag) aevan('vg) — Z /f\n(é.) wn(af)
R S P =) 2 () - @

so that ||| @yan — aevan}('ag)’fz = Y |d5 (9P 72(6)]*  where we have set

n¢l(w)

B6) = (m(©) = (P 4 iew)) ™ = (mn©) =) = (T i) () =Y

In particular |d; (¢)] < ihad < Ce since inf inf ] 1 (€) — w?| >0

e —w?F T n¢l(w) E€[—m,m

|8 0an = Tevan ] (552 < €2 D~ [Fal&P < €7 ]9l
nél(w)

After integration in &, we get (Plancherel) [— uevanHig < C? e |IfI°




Convergence : the propagative part w® ¢ o

(P:) —Au® —n?(W?+icw)u=f in Q Ju=0 on 9N u € H?*(Q)

75) 'pf
E 'PS d
pmp( trey) /_71' fin, (€ w2 + ze:w) S

nel(w)

W)= {neN/w? €Tmu,}  Eulw)={€€[-mal/ pn(€) = *)

For nel(w), [ 12Eva(-O)

e’ d¢  does not exist but we can define

—TT ,un(f)—cuz
T a0 e e i Fo© a8 e o e B2(C
PU @ =2 B T Ja @ —w2 ©
where by definition Rw)=]—mm7] \ U [€F — 6,6 + 4]
§*eEn, (w)
L o o A
0 0 0 0

Key point : 1,(*) #0, V& €En(w) (w? ¢ o)



Plemelj-Privalov theorem

Let I be an open bounded interval of R containing 0 and X a Banach space.

Let V € C"(I; X) for some r € ]0,1],which means that (Holder continuity)

vV (t,t) eI, V() =V <C|t—t]
Vit Vit
Then p.v./L dt := lim L dt existsin X and for £ >0
I t 0—0 I\ [—3,5] t

Vit V(t _ .
H/It_(i)g dt — (p.v./j% dt+Z7TV(O)> H < Ce¢ HV‘CT(I’X)

. V(@) = VOl
or(I,X) " St‘éll) [V (t)|| + sup

where by definition ||V O]
(t,t)ET —

Remark : Holder regularity and € > 0 are important. For ¢ < 0

+irV(0) —  —irV(0)



Plemelj-Privalov theorem

Let I be an open bounded interval of R containing 0 and X a Banach space.

Let V € C"(I; X) for some r € |0,1], which means that (Holder continuity)

vV (t,t) eI, V() =V <C|t—t]
Vit Vit
Then p.v./L dt := lim L dt existsin X and for £ >0
I t 0—0 I\ [—3,5] t

Vit V(t _ .
H/It_(@')g dt — (p.v./j% dt+Z7TV(O)> H < Ce¢ HV‘CT(I’X)

Corollary : if V € H(I; X), s > 1/2 ( HS(I,X) G C* %(I, X))

| [t (oo [ SRt vimv) | < ooty

t—1¢e

Hs(I,X)




Proof of the theorem : without ant loss of generality 1 =] —a,a]

/a V) dt:/a 440 dt+z’€/a V) g

Jl—ie . 12+ e? P 2 o

! !
p.v./I@ dt 7wV (0)




Proof of the theorem : without ant loss of generality | =

/“ V(é) dt:/“ tV(t) i

]—CL,CL[

g t—e B
|
t
p.v./mdt
;o t
1 [F V(T * (0)
1
= d —
/ t2+e2 - ° /272+1 " ™ V(0) /_OOT2—|—1dT
= V(er) = V(0) / dr
- d
/ 5 dt —mV(0) = /‘; " T+ V(0) T
V(0) . oo g
H/ T2 +1 dTH S € (/_OO 2+ 1 dT) Vler,x)

vo) [ s 22 WVl
H |7_|>a 1—|—7- ( )




Proof of the theorem : without ant loss of generality 7 =] —a,a|

/ V) g =
_ga tte

c L' since V € C"(I; X)

By a symmetry argument we observe that

/ @dt:/ Vi -ve) , p_u/@dt:/-dt
n[-s55] ¢t I\ [=5,5] t 7t I

Using again the symmetry argument, we can write

/a Vi) dt—pv/a@dt :/a t(V(®) = V(0) dt—/a ) = Vo)
v. t

o 4 4y t2 + 2 a t

We compute that [t/(t*> +¢2) — 1/t| = [t| " [¢?/(t> +<?)] which implies

v “ V() ([ !
| /—a t2 _|_€2 dt—pv/ ; dt S E (/a t2 —|—g2 dt) HVHCT‘(I’X)

_a -




Proof of the theorem : without ant loss of generality 7 =] —a,a|

[

1 i T(T.
By a symmetry argument we observe that € L" since V e C"(I; X)

o e, 5 e
n\[-s5] U I\ [-6,0] t ;o t I

© V() 0
dt — p.v. —= dt
|/at2+62 p”/a !

To conclude, it suffices to notice that (7 =c¢t)

a |gr—1 < r—1 +o00 r—1
52/ i dt = & / 7| dr < C, ", C, ::/ | dr

R




Plemelj-Privalov theorem

" }En(‘S) wn(,f) eipf . ] y
/—7r pn (&) — (W? + tew) g < I(w)

N

Application to u, (- +p,e1) == (27)~

The problems only come from the points £ in the set

Zn(w) = {€ e [-m,7[ [ un(§) = w?}

One decomposes the integral into integrals over small neighborhoods of such ¢*
plus the rest that does not pose any difficulty

I
In the neighborhood I of €%,  j1,(§) —w® ~ p (£) (€ — &%)

> 1 }En(f) wn(ag) 1p& d

i, (§7) /1(6—5*) —iewpl,(€) 1" :

To apply the Plemelj-Privalov’s theorem with X = H?(C) it suffices to check that

£ Ful€) tu(- ) Tl €) = /C P €) (o ) da

belongs to H*( — m,m; H*(C)) for some s> 1/2



Plemelj-Privalov theorem

AN

Application to u; (- + p,e1) := (27)—% /W ’ é“)(f) (@ig(;i)gw) e’ d¢, mn e l(w)

AN

1 Fal©tn(,6)  ipe
T T e

To apply the Plemelj-Privalov’s theorem with X = H?(C) it suffices to check that

AN

& — (&) Vn(-€) ful§) =

S

belongs to H*( — m,m; H*(C)) for some s> 1/2

Since ¢ (-, &) : Dp — H?(C) is analytic, the only limitation in regularity comes
from f,,(£).More precisely, the desired regularity will be obtained as soon as

f(-€) € H*(— 7, L*(C))

According to the properties of the Floquet-Bloch transform, this is guaranteed if

fe Ly, s>%



Plemelj-Privalov theorem

Nl

Application to ui( + p, 61) — (27.()— L /W fn(g) wn(v ‘S)
—m Mn

() = (w? + iew)

., 1 Fa@vn(+8) e
W€ /z(f—ﬁ*)—iewufn(f*)‘le f

1
Assuming that f € L2(Q), s> 5 it follows that setting

e’ d¢, mn e l(w)

tn (- 4 p,e1) = (27) 72 pov. B f;ff()g;bi(wf) ePE d¢ + i (g)%

fn(g )van(v f*) ez'pf*
2 (€")]

=t 1!,

we have the following convergence estimate

|us, (- +p,e1) — un(- + p, 61)HH2(C) < C(n,p) e’ 2 HfHLg(Q)




Plemelj-Privalov theorem

AN

,‘S) eipf df’ n c I(Cd)

Application to (- +p,e1) := (27-‘-)—%/7T . (fg(f)(%;(

+ tew)

AN

pi, (€F) /.r (€ —€") — B e :

The rigorous proof uses the change of variable

T = Mn(f) — w?

valid if the interval I is small enough

1

Assuming that f € L2(Q), s> 5 it follows that setting

[T I (09

' TN 5 }n(g*)¢n(7€*) 1pE”
Un(-+p,e1) :=(2m)” 2 p.o. ePS d¢ +i(=)? - e'P
Epa) = EnER |6 - 2" 2 e
we have the following convergence estimate
|us, (- +p,e1) — un(- + p, 61)HH2(C) < C(n,p) e’ 2 HfHLg(Q)

The convergence of ¢ towards wu, only holdsin H? ().

We shall see later that u, does not belong to L*(1) .




Convergence : the propagative part

Since by definition .., = Z Uy, , defining  Uprop = Z Un

nel(w) nel(w)

we have thus shown the convergence of u,,.,, towards Uprop in HE ()



Convergence : the propagative part
Since by definition .., = Z Uy, ,defining  Uprop = Z U
nel(w) nel(w)

we have thus shown the convergence of u,,.,, towards Uprop in HE ()

More precisely, for any R > 0,setting Qr = {z = (z1,27) € Q / |21] < R}

_1
Hu;frop _UPTOPHH2(QR) < CR(w) e’ 2 Hf

L2(2)

R ! R
> <




The limiting absorption principle : final theorem

Assume w” ¢ oy and f € L?(Q), s > 1/2.Define cell by cell, for each n > 0, the function

[T An nl*, : — -3 ' }En(g) wn(’g) ip
tn( Fper)i=(2m)72 [ fufjgp—(w? eEdg | | il pe) = @m0 e |5 T e o




The limiting absorption principle : final theorem

Assume w” ¢ oy and f € L?(Q), s > 1/2.Define cell by cell, for each n > 0, the function

[T An nl*, : — -3 ' }En(g) wn(’g) ip
tn( Fper)i=(2m)72 [ fufj)ﬁip—(w? eEdg | | il pe) = @m0 e |5 T e o

Then the function « given by

2
U = Uprop T Uevan s Uprop = § Unp & Hloc y Uevan — E Up € H
nel(w) né¢l(w)




The limiting absorption principle : final theorem

Assume w” ¢ oy and f € L?(Q), s > 1/2.Define cell by cell, for each n > 0, the function

[T An nl*, : — -3 ' }En(g) wn(’g) ip
tn( Fper)i=(2m)72 [ fufj)ﬁip—(w? eEdg | | il pe) = @m0 e |5 T e o

Then the function « given by

2
U = Uprop T Uevan s Uprop = § Unp & Hloc y Uevan — E Up € H
nel(w) né¢l(w)

is well-defined in and is a solution, in the sense of distributions, of

(P) —Au-n??u=f inQ, 9u=0 on 9.




The limiting absorption principle : final theorem

Assume w” ¢ oy and f € L?(Q), s > 1/2.Define cell by cell, for each n > 0, the function

[T An e ' L _1 " ?n(g) ¢n(a§) ip
Un(-+pep) = (2m)" 2 - f,ufi)ﬁip—(w? e'Ps d¢ un(-+p,€1) = (2m)77 po. T —w? e'Ps d¢

n € 1) gl (0 Y ! ”(TMEZZ()"‘)@M*
£*€E, (w) n

Then the function « given by

2
U = Uprop T Uevan s Uprop = § Unp & Hloc y Uevan — E Up € H
nel(w) né¢l(w)

is well-defined in and is a solution, in the sense of distributions, of

(P) —Au-n??u=f inQ, 9u=0 on 9.

It is the limit when ¢ >0 — 0 of the solution u° of the damped Helmholtz equation

(Pe) —Au® —n? (W? +iew)u=f in Q@ §,us=0 on 90N u® € HQ(Q)

with the error estimates |1 — ul|g2(a,) < Cr(w) €72 [fllzz(), YV R>0,



The limiting absorption principle : final theorem

Assume w” ¢ oy and f € L?(Q), s > 1/2.Define cell by cell, for each n > 0, the function

[T An nl*, : — -3 ' ?n(é) wn(’g) ip
tn( Fper)i=(2m)72 [ fufj)ﬁip—(w? eEdg | | il pe) = @m0 e |5 T e o

Then the function « given by

2
U = Uprop T Uevan s Uprop = § Unp & Hloc y Uevan — E Up € H
nel(w) né¢l(w)

is well-defined in and is a solution, in the sense of distributions, of

(P) —Au-n??u=f inQ, 9u=0 on 9.

By definition u is the outgoing solution of (73)




Objective of the course

(P) —Au—n?iu=f in Q, O,u=0 on 00Q.

N\ \

N\ S S S\
@ suppf

S

.

N\ S S S

N\

O<n_ <

n(xy,xr) < ng < 400 n(ry +1,27) = n(x1, rr)

2. Describe the properties of this solution, in particular its behaviour at infinity

Complex variable methods, contour integrals

3. Find radiations condition at infinity that characterize this solution

Energy like arguments



The propagative wave numbers

||

For n € I(w), we introduce the finite set =, (w) = {£ € [-m, 7] / pn(§) = w?}

=(w) = U =.(w) : the set of propagative wave numbers at frequency
nel(w)

=5 (W) = {€ € En(w) / 1, (€) > 0} =, (W) = {£ € Enlw) / 1, (€) < 0}
ny — I(w) ={ni,no}

=, (W) = {0}

o sy (W) = {0}

T~ — S(w) = {o o}




The propagative wave numbers

For n € I(w), we introduce the finite set =, (w) = {£ € [-m, 7] / pn(§) = w?}

[1]

En(w) =7 (W) UE, (w)




The propagative wave numbers

For n € I(w), we introduce the finite set =

—*n(w) — {‘S < [_ﬂ-?ﬂ-[ / ,un(f) — w2}

=(w) = U =n(w) (propagative wave numbers) = (W)

nel(w) "
Z(w) =ET (w) UZ" (w)
=tw) = |J =W
nel(w)
== U =
nel(w)
ny — I(w) = {n1 77,2}
VARERN =+(w) = {2
ny —- SN—— -




The propagative wave numbers

||

For n € I(w), we introduce the finite set =, (w) = {£ € [-m, 7] / pn(§) = w?}

=(w)

[1]

n (W) UE, ()

]
-

[1]
s
&

(propagative wave numbers) = (w) =

| |
et

Property : the set =Z(w) is symmetric in the sense that
eZf(w) = (€& (w)
Proof : use the A,’s instead of the u.,’s and the evenness of A, (§)

() =w® and  A,(§) >0 (=€) =w® and A, (=€) <0

E+(W):{€T,€;—77£j\_f} E+(w):{§1—,§2_,,§;,} Sﬁ_z_g

+
14




The propagative wave numbers I(w) = {n,m}




Asymptotic behaviour at infinity

Theorem : Assume that w? ¢ oy and e®®tl f € L%(Q), a > 0.

Asymptotic behaviour at +o0 :

u(-+pei) = i (277)% Z Z fn(é‘“*gzb;()-‘, ) e?s +t(- +per)
ncl(w) gxes (w) Hon

where w™ € H; .(C) is[eXponentially'decaying'at Fod in the sense that

J0< B <a suchthat |w™(-+pe1)|lmze) < Ce PPl wvp>o.

Asymptotic behaviour at —oo :

u(-+per) = i(QW)% Z Z fn(??éZ().’g*) e+l +per)
nel(w) £+ €=, (w) Hn

where w™ € H7 (C) is €Xponentially’'deécayingat"™=&d in the sense that

J0< f<a suchthat |w™ (-+per)|m < Ce PP vp<o.




Asymptotic behaviour at infinity

Proof when w? ¢ o(A): we have to prove that u is exponentially decreasing at 4o

Since I(w) = (), we have

100 r
B ~1 " fn(€) Yn (- €) 7 2S
u(- +per) = (2m) ;O e e

which can be rewritten in an abstract way

-+ per) = 2ok [ T A©) =) T T E) e de

—TT

We shall use again results from the theory of analytic families of operators

T. Kato. Perturbation theory for linear operators.

\\v«ﬁ

) — Springer Verlag, (1994 , reprint od the edition of 1980)

For the proof, we shall make the (inessential) technical assumption that

—7m ¢ Ew) and 7 ¢ E(w)



Fredholm analytic theory

Let A(§) denote an analytic family of operators ( of class (B) ) in H

Theorem 1 : Assume that

o A(&y) isinvertible <= 0¢ U(A(fo))
o A(£) has a compact resolvent for all §

Then, there exists a complex neighborhood V(&;) of o such that

o A(&) is invertible for all £ € V(&)

e & A(6)™" is bounded analytic in V(&)

Corollary 1 : Assume that A(&p) is invertible for all £ in K, compact c C, then
there exists a complex neighborhood V(K) of K such that

& A()~" is bounded analytic in V(K)




Asymptotic behaviour at infinity

Proof when w? ¢ o(A): we have to prove that u is exponentially decreasing at oo

-1 =

u+pe) = @07 [ (A© =) T e dg
Applying the corollary with H := L?(C;n*dx), A(¢) := A(§) —w”,and K = [—7, 7]

& (A(E) —w?) " f(,€) €™ isanalytic in Dg

Q
|
N
B
o
? =

Re(¢)

F(-,€) is analytic | e*™l f e L*(Q), a > 0.




Asymptotic behaviour at infinity
Proof when w? ¢ o(A): let us prove that u is exponentially decreasing at +oc

[ @ -

AN

f(-,6) e de p>0

N

u(-+peyp) = (2m)~

AN

We can use complex variable techniques : / (A(f) _ cuz)—l F(-,2) e dz =0
I's

F(-,€) is analytic | el f e L*(Q), a > 0.

Re(¢)



Asymptotic behaviour at infinity

Proof when w? ¢ o(A): let us prove that u is exponentially decreasing at +oc

N

[ - 700 a5 9o

—TT

u(-+peyp) = (2m)~

—1 =

We can use complex variable techniques : / (A(f) _ wz) F(-,2) e dz =0
I's

Then using the periodicity argument

u(-+pey) = (27‘(‘)_% / (A(z) — w2)

[_7777-‘-]_'_7:6

One concludes noticing that along Im z = 3 : |e'?*| < ¢ #I7!

|O‘ n 8 m

|

7(-,€) is analytic

Re(¢)




Asymptotic behaviour at infinity

Proof when w? ¢ o(A): to prove that u is exponentially decreasing at —oo

N

u(-+per) = (2m)" / C(A© —w?) T emde p<O

—TT

We simply have to change the contour I'y — T'_g

f(., £) is analytic

Re(¢)



Asymptotic behaviour at infinity

Proof when w? € 0(A): we first look at the evanescent part

—T :un(g) — w? eipg df

Uevan(-+per) = 2m) 72
n¢l(w)

Let us introduce the orthogonal projectors in L*(C; n’dx)

P Y (f

nel(w) ¢

@¢n<7§) n2 dx) wn(vg) @(5) =1 — P(ﬁ)

By construction of Q(¢)

0 ¢ a(A(OQ(E) —w?) = {pn(§) —w’,n ¢ I(w)} U {~w’}

and we can write

N

uevan(' —I—p61) — (27‘-)_

/_ W (A(OQ(E) — w?)

We wish to apply the corollary with A(¢) = A(£)Q(&) — w?



Asymptotic behaviour at infinity

Proof when w? € 0(A): we first look at the evanescent part

T

tevan +per) = 2m) 7 [ (4©Q(E) - o)

—TT

—1

QE)f(-,€) e de

where we have introduced the orthogonal projectors in L*(C; n’dz)

Pe7 = Y (00600 &) va) QO =T-B(E)

nel(w)

We wish to apply the corollary with A(¢) = A(£)Q(§) — w?

Introducing D, = ﬂ D,,,a symmetric neighborhood of the real axis, we define
nel(w)
PO > ([T 0n( ) de) vnls6) Q) =1 - P(&)
nel(w) ¢

as bounded analytic families of operators in IJ,, and can assume that D, D Dg.

D, 4

e T~

° ® >

—\ ‘>(_Re(f)
D




Asymptotic behaviour at infinity

Proof when w? € 0(A): we first look at the evanescent part

T

tevan +per) = 2m) 7 [ (4©Q(E) - o)

—TT

—1

QE)f(-,€) e de

where we have introduced the orthogonal projectors in L*(C; n’dz)

Pe7 = Y (00600 &) va) QO =T-B(E)

nel(w)

We wish to apply the corollary with A(¢) = A(£)Q(§) — w?

Introducing D, = ﬂ D,,,a symmetric neighborhood of the real axis, we define
nel(w)
PO > ([T 0n( ) de) vnls6) Q) =1 - P(&)
nel(w) ¢

as bounded analytic families of operators in IJ,, and can assume that D, D Dg.

Key point: a(z) analytic = a(z) analytic ( Zan Zt Z an 2" )



Asymptotic behaviour at infinity

Proof when w? € 0(A): we first look at the evanescent part

T

tevan- +per) = @07 [ (A©QE) -7 QEOT. 7 dg

—TT

where we have introduced the orthogonal projectors in L*(C; n’dz)

Pe7 = Y (00600 &) va) QO =T-B(E)

nel(w)

We wish to apply the corollary with A(¢) = A(£)Q(§) — w?

Introducing D, = ﬂ D,,,a symmetric neighborhood of the real axis, we define
nel(w)
PO = 3 ([ T0n(-E)n® da) dnl16) Q) =1 - P(&)
nel(w) ¢

as bounded analytic families of operators in IJ,, and can assume that D, D Dg.

Note that these are no longer orthogonal projectors as soon as ¢ is



Asymptotic behaviour at infinity

Proof when w? € 0(A): we first look at the evanescent part

T

tevan +per) = 2m) 7 [ (4©Q(E) - o)

—TT

—1

QE)f(-,€) e de

where we have introduced the orthogonal projectors in L*(C; n’dz)

Pe7 = Y (00600 &) va) QO =T-B(E)

nel(w)

We wish to apply the corollary with A(¢) = A(£)Q(§) — w?

Introducing D, = ﬂ D,,,a symmetric neighborhood of the real axis, we define
nel(w)
POTi= 3 ([ T0n(-E) " do) dul16) Q) =1 - P(¢)
nel(w) ¢

as bounded analytic families of operators in IJ,, and can assume that D, D Dg.

Moreover P(£) and Q(&) are not 27 - periodic.



Asymptotic behaviour at infinity

Proof when w? € 0(A): we first look at the evanescent part

vevan(+per) = @) E [ (4O - ) QOT(,E) €7 de

—1

where ¢ (A(O)Q(E) —w?) ~ and £ — Q(§) are analytic in Dg

Vowan (- + per) = (27)3 / - ) =) T QOT(LE) e de
1 —1 AN
-3 QEF(.€) &P de
/++
s y Im()

Re(¢)



Asymptotic behaviour at infinity

Proof when w” € 0(A): we next look at the propagative part .o, = Z un, where
nel(w)

Fn(€) n(€) e
2 1, (€7)]

§*€=, (w)

F(S
p Im() ’
é-/




Asymptotic behaviour at infinity

Proof when w? € o(A): we next look at the propagative part o, = Z u, where
nel(w)

_1 ° /f\n(f)lbn(',f) wE g (T2 Fr(€) n( ) iper
- —Tr ﬂn(f)_c‘ﬂ : £+Z(2) £*€;(w) ‘M;L(f*)‘ )

(¢ € Z,(w)} = zeroes of (in(€) —w? = poles of (1n(§) — w2)_1 .They are simple.

IO e g [ IO e g [ DOV e g
[—7,7]

oo —1Tr :un(g)_WZ —7,7]|+18 Mn(g)_WQ \{, ,Lbn(f)—WQ
1. n 7 ngd
+51_r>% Z( )[Yé(f) 'un _w2 :
)
yime) F
5/




Asymptotic behaviour at infinity

Proof when w” € 0(A): we next look at the propagative part .o, = Z un, where
nel(w)

E*e€E, (w) n

{¢ € E,(w)} = zeroes of un(§) —w® = poles of (e () — w2)_1 .They are simple.

“Tal€) Un8) e g Fn©n(+8) e ge [ Tl Vn8) g
. - Mn(f)—uﬂ e df /[WW] € df € d€

iy () — 2 INZIGEr:
Lemma:if g(&) has a simple pole at ¢/, lim L 9 dE =i Jim (€~ €) ()
Corollary:  lim /%m ?Zfiiibi(;? o€ e — i ?n(?f,,, @éﬂ,gg) vt



Asymptotic behaviour at infinity

Proof when w? € 0(A):  Uprop = Z Unp,
| _ s " O Un(E) e T Fa€)n(,€) e
wlApe)=@n e | ST et TiG) g*eEZn(w) PRSI

T OO e,
e —r () —w? R

Fn©¥n(-8) e o [ InlUn8) e
/[W,WHZ'B Mn(f)—w2 y de \{,'*\ Mn(f)—aﬂ € f
n Fu(E)n(€) e

{p> (e "

§'€En(w)

After summation over n € I(w) , we get

Fa(€) 0n(6%) | Fnl€) enl: €% ) ere
117, (€7)

nel(w) £*€En (w)




Asymptotic behaviour at infinity

Proof when w? € 0(A):  Uprop = Z Unp,

| RPN " Fa(€) Un () e Ty Fal€)0n(,E%) e
un( ot pre) = Q07 po |5 G G et de +i(G) g*eEZn(w) PG

[—m,7]

—n bn(§) —w? _ral4ig Hn(§) —w? \{, pn (§) — w?

- fn ¢n(,§) z'g’
— g Z p
v &)

After summation over n € I(w) , we get

_ (27_‘_)% Z Z f’n(g )wn( & )eipf*

nel(w) ¢ Gﬁj{(w) "un




Asymptotic behaviour at infinity

Proof when w? € o(A):

- (271.)% Z Z Sn(&") (-, ") i€’

nel(w) ¢xes7 (w) 15 ()]




Asymptotic behaviour at infinity

Proof when w? € o(A) :

u(-+pey) = 75(27T)% Z Z fn(f?ﬁ(”;()'v‘g*) oiPE” —|—w+(.—|—p61)
nel(w) ¢xe=F (w) Pn

N

+ (2m) /* (A€) — ) L F6) P de

4

Lemma : There exists two balls centered at —7 and +7 inside which

—1

() (A(€) —w?)

is well defined and bounded analytic

—1

(ii) (A©QE) —w?®) ™ Q&) + (A(H)Q(E) — w?)

By periodicity of & A(€), (A(iA+7)—w?) ' = (A@A—7) —w?) " for A <P



Asymptotic behaviour at infinity

(i) (A(€) — )

(ii) (A(©Q(E) — w?)

—1

—1

Lemma : There exists two balls centered at —7 and +7 inside which

is well defined and bounded analytic

Q(€) + (A(6)Q(E) — w?)

T¢Ew) = A(r)—w? and A(—7m)—w? areinvertible

g Im(¢)

&

(A(§) — w?)

—1

is bounded analytic

The identity (ii) holds along the red real segments : applied to ¥, (-, &)
both left and right hand sides give (1, (&) — w?)™! ¥, (-, &)

By analyticity, (ii) also holds inside the two balls

Re(¢)



Propagative Floquet modes

Given n # 0, §{ € [—m, 7 |, we still denote ¢ (-, &) = Ectpn(+,§)

S\

2N

X e 28

e

VNG

X e_zpf

T

S

U

AN

>< ell’pg

S\

\—/

\_/

N/




Propagative Floquet modes

Given n #0, ¢ € [—m, 7 |, we still denote ¥, (-, &) = E¢top (-, &)

Ve e U U U e U e

N S N\ N\ N

Wn(xl =+ 17$T7€) — eig wn(xlaxTag)

Un (21,27, ) = €7 1y, (21, 27, €) (-, &) periodic

Thanks to the equations and boundary conditions satisfied by ¥, (:,§) in C,
it is easy to see that

%,(75) S H?oc(ﬂ) A¢n(7£) T Nn(g) n2 @%(,f) =

As a consequence,if V(w):={ve H.,/Av+n’v=0inQ,0,v on IO}

span {@n(8),n € I(w),& € Ex(w) } C V(w) propagative Floquet modes




Propagative Floquet modes

Given n #0, ¢ € [—m, 7 |, we still denote ¥, (-, &) = E¢top (-, &)

Ve e U U U e U e

N S N\ N\ N

Wn(xl =+ 17$T7€) — eig wn(xlaxTag)

Un (21,27, ) = €7 1y, (21, 27, €) (-, &) periodic

Thanks to the equations and boundary conditions satisfied by ¥, (:,§) in C,
it is easy to see that

wn(vg) S Hl2c)c(9> A¢n(7£) T Nn(g) n2 %,(,f) =

As a consequence,if V(w):={ve H.,/Av+n’v=0inQ,0,v on IO}

span {1, (-, &), & € Z(w)} = V(w) N L>(Q) propagative Floquet modes




Propagative Floquet modes

The sesquilinear form q(u, v)

q(s;u,v) = / (02,0 T — 85,0 u) dar
I's
Lemma : For (u,v) € V(w), q(s;u,v)=q(u,v) is independent of s.

Proof : Using Green’s formula
q(s';u,v) — q(s;u,v) = / (Auv — AT u) da
Q.

/ ncu uv—nzwzvu)da::()
Q,



Propagative Floquet modes

The sesquilinear form q(u, v)

q(s;u,v) = / (02,0 T — 85,0 u) dar
I's
Lemma : For (u,v) € V(w), q(s;u,v)=q(u,v) is independent of s.

The sesquilinear form ¢(u, v)"orthogonalizes" the propagative Floquet modes :

Theorem : Let (n,m) € I(w), £€Z,(w), £ € Z,,(w)
If n#m or ‘S#‘S,’ Q(wn(af)awm(agl)) =0
Otherwise, Q<¢n(7§)7¢n(7€)) — ZM%(?&)




Propagative Floquet modes

Proof of the theorem (I)

According to the lemma, q(¢,(+,€), ¥m (-, &) is given indifferently by one of the
following two expressions

— (57 = 1) q(Pn(-€), Um(-€)) =0

which proves  q(¢n(-€), ¥m(-,€)) =0 for EFE



Propagative Floquet modes

Proof of the theorem (2)

The idea is to differentiate in £ the equations in ¢n(-,§) W, (-, ¢) :=

aﬁwn('vg)

a$1¢n( 75)‘F1 — 6@5 8331¢n< ) )’FO
Un (5 E)ry = € Yn(-€)Ir,

\Ifn(-,f)h"l — 62'5 \Pn('ag)lro —i_ieig wn(Wg)‘Fo
8331\Ijn('7€)|f‘1 — ei&' 8901\1171('75)“‘0 +i€i€ 05131wn(°7€)‘ro

_A\Ijn(af) — ,LLn(f) n2 \Ijn(vg) + M%(f) n2 wn(vf) aV\Ij”(7§) =0

Q(la \Ijn(a 6)7 wm(a 6)) o Q(Oa qlﬂ(? f)? 'Qbm(, f)) — Green’s formula

- /C (AT (&) P (€)= Al (+,€) U (-, €)) d
= 1 (€) / U (- €) T () n2d = 11,(€)
C



Propagative Floquet modes

Proof of the theorem (2)

Q(l; \Pn(7£)7wm(7£)) T Q((); \Ijn(ag)7¢m(7€)) = ,u;%(f) 5nm

To conclude it suffices to observe that we also have

which results from a direct computation using

%Dn('af)’n — eif wn('ag)h‘o \Ijn(Wg)’Pl — 6i£ \Ijn(°7€)’]-—‘o _I_ieif ¢n('7£)‘Fo

Oy n () Iry = € 0, Un (I | | 0ea Un(, E)lry = €% 00y Ui, €)1y + 7€ Dy (-, €)1,




Propagative Floquet modes

{n(,&),n € I(w),& € E,(w)}

/ N\

{n(-,€)n e l(w), & € Ef(w)} {0 ( &) € I(w), & € Z; (w))

right propagating modes left propagating modes

New notation

Using the fact that

fw= U

nel(w)

_("‘J): U E;(w):{gl_vfgvvéf;f}

nel(w)

[1]
[1]

Ay CU) — {gf—ag;v 75]—'\}}

[1]

we can write accordingly

{tn(- &) nel(w), & €55 (w)} = {7,205, -+, O}

{(Un(€)nel(w), ¢ €E,(w)} ={7,25, -, PN}



The radiation condition

Homogeneous free space There exists A(©), |©| = 1, such that

o(r0) - @y < (1+ 0(1))

r-as r

— Ortt +iwu = O(r~?)

shows that the outgoing solution wu satisfies the outgoing radiation conditions

(CR+) Outgoing radiation condition at +oo

There exists coefficients {@; .1 < ¢ < N} and ‘w?' exponentially decreasing at +oc

such that u=>Y lag 7 +w"

(CR-) Outgoing radiation condition at —oc

There exists coefficients {a,,1 </ < N} and w exponentially decreasing at —oo

such that « = Z a, ¢, +w”




The radiation condition

u(-+per) = i (2m)3 Z Z fn(ig éz() &) ePs +wt(-+peq)
nel(w) ¢* €= (w) "
(
)

wrpe)= it Yy Ll )z(p ) e (o pey
nel(w) ¢xe=,, (w) "un €
{% 3 nEI( ), f’EE:(w)} :{(I)ir7(1);,-.- 7(1)?\7}

{% ; nEI( ) 5 EE;(W)} :{CI)I,CI)Q_,---,(I)R,

shows that the outgoing solution wu satisfies the outgoing radiation conditions

(CR+) Outgoing radiation condition at +oo

There exists coefficients {a;,1 </ < N}and w* exponentially decreasing at +oc

such that u=>Y af &7 +w"

(CR-) Outgoing radiation condition at —oc

There exists coefficients {a,,1 </ < N} and w exponentially decreasing at —oo

such that « = Z a, ¢, +w”




The uniqueness resuilt

Theorem : Assume that w” ¢ oy, edlml g L*(Q), a >0 and 0,(4)=10.
There exists a unique function u € H},.(2) satisfying
(P) —Au—n*wfu=7f in Q O,u=0 on 0f)

as well as the two outgoing radiation conditions (CR-) and (CR+)

Proof : The existence result has been proven by construction (by limiting absorption).
Only the uniqueness result remains to be shown.

Assuming f =0 means u € V(w) so that for any integer N > 0
q(N;u,u) =q(—N;u,u) q(s;u,v) = /F (02,0 T — 03,0 u) dar
Using u=)» af ®f +wand u=) a; &, +w™ ,we deduce that
q(N;u,u) Z af |7 q(®), @)+ q(N;wt, w )—I—Zqu(N fw+z )

a(—Niu,u) =Y ag [P q(@,, @) +q(—N;w™,w™) +2Zm q(—N;w‘,Zaz @z)



The uniqueness resuilt

Theorem : Assume that w” ¢ oy, edlml g L*(Q), a >0 and 0,(4)=10.
There exists a unique function u € H},.(2) satisfying
(P) —Au—n*wfu=7f in Q O,u=0 on 0f)

as well as the two outgoing radiation conditions (CR-) and (CR+)
Proof : q(N;u,u) =q(—N;u,u) u= Za} OfF +wt  u= Za; ®, +w”

q(N;u,u) Z af 12 q(®F,®)) +q(N;wh, wh)+2Zm q(]\f;uﬁ“,ZaéF @Z)

—

— 0 (N — +00)
a(=Niww) = Y lag [ (@7, 97) +a(~N;w™w >+2zmq( Niw™, Y ap ®; )

— 0 (NH—FOO)

Y afPa@f, o) =) la; P q(®;, ;) ’

g@F, o) =iql, ¢f >0 q(®;, ;) =1iq;, q <0 |




The uniqueness resuilt

Theorem : Assume that w” ¢ oy, edlml g L*(Q), a >0 and 0,(4)=10.
There exists a unique function u € H},.(2) satisfying

(77) —Au—n*wu=Ff in Q J,u =0 on 0f)
as well as the two outgoing radiation conditions (CR-) and (CR+)
Proof : u:ZaZCI)Z+w+ u:ZaE_CI)Z—I—w_ af =a;, =0, 1<{<N
thus ©=w" =w™ is exponentially decreasing at both +oo , which implies © € D(A).
If « were not identically 0, © would be an eigenvector of A ( for the eigenvalue w?*)

This is impossible since ¢,(A) = 0.Thus « = 0 , which concludes the proof.



