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(A) A Scattering Problem
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Wave propagationn in frequency domain: incident wave uinc satisfies the
reduced wave equation; that is, Helmholtz equation

∆uinc + k2uinc = 0 in R2 .

uinc is scattered by
a (bounded) medium and
generates scattered field us.
Here, k = ω

c > 0 wave number.

Total field: u = uinc + us

us

D

uinc

Requirement: us is radiating; that is, satisfies radiation condition

∂us(r x̂)
∂r

− ikus(r x̂) = O(r−3/2) , r = |x | → ∞ ,

uniformly wrt x̂ = x/|x | ∈ S1 = {y ∈ R2 : |y | = 1}.



A Scattering Problem, cont.
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Radiation condition implies asymptotic form

us(x) =
exp(ikr )√

8πkr
u∞(x̂) + O

(
1

r3/2

)
, |x | → ∞ ,

uniformly wrt x̂ ∈ S1.
u∞(x̂) ∈ C is called far field or scattering amplitude of us.
Important for uniqueness:
Lemma of Rellich: If u∞ = 0 on S1 then us = 0 in exterior of D.
Still missing: type of scattering medium. Examples:
(A) Sound soft obstacle (or perfect conductor in E-mode):

∆u + k2u = 0 in R2 \D , u = 0 auf ∂D or

(B) Inhomogeneous medium with contrast q (= 0 in R2 \D)

∆u + k2(1 + q)u = 0 in R2 , u,∇u continuous in R2 .



A Scattering Problem, cont.
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Direct scattering problem:

Given: Incident plane wave uinc(x) = eik θ̂·x with θ̂ ∈ S1 and open
bounded set D ⊂ R2 (Lipschitz boundary, exterior connected) and
contrast q (in example (B)).
Determine: Scattered field us and far field u∞ with:
(A) ∆u + k2u = 0 in R2 \D and u = 0 auf ∂D or
(B) ∆u + k2(1 + q)u = 0 in R2, respectively,
for total field u = uinc + us, and us satisfies radiation condition.
For q ∈ L∞(D) these direct problems are uniquely solvable in
H1

loc(R
2 \D) or H1

loc(R
2), respectively.

Inverse scattering problem:
Given: Far field u∞(x̂ , θ̂) for all directions of observation x̂ ∈ S1 and
some or all directions θ̂ ∈ S1 of incident plane waves uinc .
Determine: Form of D!



Two Examples
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Which scattering media D ⊂ R2 belong to these far field patterns?
u∞(φ, θ), φ, θ ∈ [0,2π]?

Re u∞ Im u∞ Re u∞ Im u∞

Left example simple:
Theorem of Karp: If u∞(φ, θ) = f (φ− θ) for some function f then D is a
disk.
Proof is consequence of uniqueness result:
Theorem: Let u∞

j far field corresponding to Dj for j = 1,2. If
u∞

1 (x̂ , θ̂) = u∞
2 (x̂ , θ̂) for all x̂ , θ̂ ∈ S1, then D1 = D2.



The Far Field Operator
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Define F : L2(S1)→ L2(S1) by

(Fg)(x̂) =
∫

S1
u∞(x̂ , θ̂) g(θ̂) ds(θ̂) , x̂ ∈ S1 ,

for the scattering under Dirichlet boundary conditions or by an
inhomogeneous medium. This is far field corresponding to incident field

v inc
g (x) =

∫
S1

eik θ̂·x g(θ̂) ds(θ̂) , x ∈ R2 .

Properties of F :
F is compact and normal, S = I + ik

8π2 F is unitary.

F is one-to-one if k2 is no eigenvalue of “corresponding” evp.
Idea of proof for Dirichlet b.c.: If Fg = 0 then far field corresponding to
scattered wave vs

g and incident wave v inc
g vanishes. Lemma of Rellich

implies that vs
g = 0 in R2 \D; thus 0 = v inc

g + vs
g = v inc

g on ∂D. Therefore,
∆v inc

g + k2v inc
g = 0 in D, v inc

g = 0 on ∂D; i.e. k2 is Dirichlet
eigenvalue of −∆. By assumption v inc

g = 0 in D and thus g = 0.



The Interior Transmission Eigenvalue Problem
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Analogously for scattering by an inhomogeneous medium:
Theorem: F one-to-one if (u,w) = (0,0) is the only solution of

∆u + k2(1 + q)u = 0 in D , ∆w + k2w = 0 in D ,

u = w on ∂D ,
∂u
∂ν

=
∂w
∂ν

on ∂D .

This is the corresponding interior transmission eigenvalue problem.
Proof: If Fg = 0 then far field corresponding to scattered wave vs

g and
incident wave v inc

g (x) =
∫

S1 exp(ik θ̂ · x) g(θ̂) ds(θ̂) vanishes. Lemma of
Rellich implies that vs

g = 0 in R2 \D, thus u := v inc
g + vs

g and w := v inc
g

satisfy interior transmission eigenvalue problem. By assumption v inc
g

vanishes in D and thus also g.
Note: The converse does not hold, i.e. F can be one-to-one even if k2 is
eigenvalue (e.g. if D has corners, see Blasten/Pävärinta/Sylvester 2013)



(B) The Linear Sampling Method and the
Factorization Method
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Consider simultanously: Scattering by sound soft obstacle or
inhomogeneous medium.
Inverse Problem: Given far field operator F , determine D!
Remember: (Fg)(x̂) =

∫
S1 u∞(x̂ , θ̂) g(θ̂) ds(θ̂), x̂ ∈ S1, is far field

corresponding to vs
g outside of D.

For z ∈ R2 define φ ∈ L2(S1) by φz(x̂) = exp(−ikz · x̂), x̂ ∈ S1 .

φz is far field pattern of x 7→ Φ(x , z) = i
4H(1)

0 (k |x − z|), x 6= z.
1. case: z ∈ D. Lemma of Rellich implies:

Fg = φz ⇐⇒ vs
g = Φ(·, z) outside of D ⇐⇒

Dirichlet boundary conditions: v inc
g = −Φ(·, z) on ∂D

Transmission conditions: Let u = vs
g + v inc

g total field. Then
u − v inc

g = Φ(·, z) on ∂D and ∂
∂ν (u − v inc

g ) = ∂
∂ν Φ(·, z) on ∂D .



The Linear Sampling Method, cont.
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Recall Herglotz function v inc
g (x) =

∫
S1 exp(ik θ̂ · x)g(θ̂) ds(θ̂) , x ∈ R2.

Therefore, Fg = φz is equivalent to v := v inc
g and u satisfying

(1) ∆v + k2v = 0 in D , v = −Φ(·, z) on ∂D , or, resp.,

(2)
{

∆v + k2v = 0 in D , ∆u + k2(1 + q)u = 0 in D ,

u − v = Φ(·, z) on ∂D , ∂
∂ν (u − v) = ∂

∂ν Φ(·, z) on ∂D ,

}
These problems are uniquely solvable if k2 is not an eigenvalue (clear?).
2. case: z /∈ D. Fg = φz ⇔ vs

g = Φ(·, z) outside of D ∪ {z}. But vs
g

smooth at z /∈ D and Φ(·, z) singular at z. Therefore, Fg = φz not
solvable for z /∈ D.
Drawback: Even if z ∈ D the solution v of (1) or (2) is almost never of the
form v = v inc

g with some g ∈ L2(S1)! However:
Theorem: The space {v inc

g |D : g ∈ L2(S1)} is always dense in
{v ∈ H1(D) : ∆v + k2v = 0 in D}.



The Linear Sampling Method, cont.
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Fg = φz is improperly posed because F : L2(S1)→ L2(S1) is compact.
Recall from previous page: For z /∈ D equation never solvable, for z ∈ D
“sometimes”. In any case use Tikhonov regularization; that is, solve

ε gz,ε + F ∗F gz,ε = F ∗φz

which is uniquelly solvable for all ε > 0 and z ∈ R2. With the help of the
Factorization Method one can prove (later!):
Theorem: Let k2 be not an eigenvalue (either Dirichlet eigenvalue in case
of Dirichlet boundary conditions or interior transmission eigenvalue in
case of transmission conditions). Then z ∈ D if, and only if, the mapping

ε 7→ (gz,ε, φz)L2(S1) = v inc
gz,ε(z)

is bounded from R>0 to C.
This gives method to visualize D by plotting contour lines of z 7→ v inc

gz,ε(z)
for small values of ε.



The Factorization Method
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Theorem 1: Let k2 be no eigenvalue of the corresponding eigenvalue
problem. Then F can be factorized in the form F = H∗T H.

H1/2(∂D) H−1/2(∂D)

L2(S1) L2(S1)-

-
?

6

H H∗

T

F

L2(D) L2(D)

L2(S1) L2(S1)-

-
?

6

H H∗

T

F

Furthermore, T is a compact perturbation of a coercive operator and H is
compact, more precicely:



The Factorization Method, cont.
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(Hg)(x) =
∫

S1
eik θ̂·x g(θ̂) ds(θ̂) , x ∈ ∂D bzw. x ∈ D .

Theorem 2: For z ∈ R2 define φz ∈ L2(S1) by

φz(x̂) := e−ikz·x̂ , x̂ ∈ S1 .

Then: z ∈ D ⇐⇒ φz ∈ R
(
H∗
)

Remember: F = H∗T H

Theorem 3: (Range identity) Let k2 be no correponding eigenvalue.
Then:

R(H∗) = R
(
(F ∗F )1/4)

Combined: z ∈ D ⇐⇒ φz ∈ R
(
(F ∗F )1/4)

FM studies solvability of (F ∗F )1/4g = φz , LSM of: Fg = φz !



The Factorization Method, cont.

13 August 2015 - Inverse Scattering and Interior Transmission Eigenvalue Problems for Isotropic Media

KIT

φz(x̂) = e−ikz·x̂ , x̂ ∈ S1 , z ∈ D ⇐⇒ φz ∈ R
(
(F ∗F )1/4)

F : L2(S1)→ L2(S1) compact, normal and one-to-one. Therefore, there
exists complete ONS

{
ψj
}

of eigenfunctions of F with corresponding
eigenvalues λj ∈ C.

Condition φz ∈ R
(
(F ∗F )1/4) is equivalent to

z ∈ D ⇐⇒ ∑
j∈N

∣∣〈φz ,ψj 〉
∣∣2

|λj |
< ∞

⇐⇒ w(z) =

[
∑

j∈N

∣∣〈φz ,ψj 〉
∣∣2

|λj |

]−1

> 0

Therefore, sign w is characteristic function of D.



Simulations

14 August 2015 - Inverse Scattering and Interior Transmission Eigenvalue Problems for Isotropic Media

KIT

The following numerical simulations show contour plots of

w(z) =

[
32

∑
j=1

∣∣〈φz ,ψj 〉
∣∣2

|λj |

]−1

, z ∈ R2 ,

for 32 incident directions and 32 directions of observations (replace
operator F by matrix F ∈ C32×32 and φz by vector φz ∈ C32).
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A Link between Linear Sampling and
Factorization Method
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General functional analytic situation:
Let F : X → Y compact and injective operator between Hilbert spaces X
and Y . Let {σn,ψn, ϕn} be a singular system of F ; that is, {ψn : n ∈N}
and {ϕn : n ∈N} are complete ONS in X and Y , resp., and F ψn = σn ϕn
and F ∗ϕn = σnψn for all n.
Define J : Y → X by ∑n αn ϕn 7→ ∑n αnψn. Then J : Y → X is an
isometry and:
Theorem: Let φ ∈ Y and gε ∈ X be the Tikhonov regularization of
Fg = φ; that is, εgε + F ∗Fgε = F ∗φ for ε > 0.
Then φ ∈ R

(
(F ∗F )1/4) if, and only if, the mapping ε 7→ (gε, Jφ)X is

bounded.
Theorem: Let k2 be not an eigenvalue and εgz,ε + F ∗Fgz,ε = F ∗φz . Then
z ∈ D if, and only if, the mapping

ε 7→ (gz,ε, φz)L2(S1) = v inc
gz,ε(z)

is bounded. Proof on blackboard!



(C) The Interior Transm. Eigenvalue Problem
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Classical formulation (setting λ = k2):

∆u + λ(1 + q)u = 0 in D , ∆w + λw = 0 in D ,

u = w on ∂D ,
∂u
∂ν

=
∂w
∂ν

auf ∂D .

Variational formulation? Solution space?

(1) Ultra Weak Formulation: Let u,w ∈ L2(D) and (ψ, φ) ∈ V where

V =
{
(ψ, φ) ∈ H2(D)×H2(D) : ψ = φ on ∂D and ∂ψ/∂ν = ∂φ/∂ν on ∂D

}
.

Green’s second theorem:

0 =
∫

D
[∆u + λ(1 + q)u]ψ dx

=
∫

D
[∆ψ + λ(1 + q)ψ]u dx +

∫
∂D

[
ψ

∂u
∂ν
− u

∂ψ

∂ν

]
ds

∫
D
[∆ψ + λ(1 + q)ψ]u dx =

∫
D
[∆φ + λφ]w dx ∀ (ψ, φ) ∈ V .



The Interior TEVP, cont.
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(2) Semi Weak Formulation: Set v = w − u. Then v ∈ H2
0 (D) and

w ∈ L2(D) and ∆w + λw = 0 in D and

(∗) ∆v + λ(1 + q)v = λq w in D .

Variational formulation (replace λw by w):∫
D
[∆v + λ(1 + q)v − q w ]φ dx = 0 for all φ ∈ L2(D) ,∫

D
[∆ψ + λψ]w dx = 0 for all ψ ∈ H2

0 (D) .

Here, (v ,w) ∈ H2
0 (D)× L2(D) and (ψ, φ) ∈ H2

0 (D)× L2(D).
(3) H2

0 (D)−Formulation: Assume: q ∈ L∞(D) and q(x) ≥ q0 > 0 on D.

From (∗): [∆ + λ]
1
q
[
∆v + λ(1 + q)v

]
= 0 ; that is, v ∈ H2

0 (D) and∫
D

[
∆v + λ(1 + q)v

] [
∆ψ + λψ

] dx
q

= 0 for all ψ ∈ H2
0 (D) .



Discreteness
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Assumption: q ∈ L∞(D) and q(x) ≥ q0 > 0 on R where R ⊂ D is some
open subdomain with ∂D ⊂ R.
Semi Weak Formulation: Determine λ > 0 and non-trivial
(v ,w) ∈ X := H2

0 (D)× L2(D) with

aλ(v ,w ;ψ, φ) :=
∫

D
[∆ψ + λψ]w dx +

∫
D
[∆v + λ(1 + q)v − qw ] φ dx = 0

for all (ψ, φ) ∈ X . Define also the symmetric form

âλ(v ,w ;ψ, φ) :=
∫

D
[∆ψ + λψ]w dx +

∫
D

{
[∆v + λv ] φ− qwφ

}
dx

Lemma: There exist ĉ > 0 and α > 0 such that for all λ < 0:∫
D\R
|w |2dx ≤ ĉ e−2α

√
|λ|
∫

R
|w |2dx

for all solutions w ∈ L2(D) of ∆w + λw = 0 in D.



Proof of Lemma (in R3 for simplicity)
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Let λ = −k2 and R′ ⊂ R with ∂D ⊂ R′ and α = dist(D \R,R′) > 0 and
ρ ∈ C∞(D) with compact support in D and ρ = 1 in D \R′. Green’s
representation theorem to ρw in D where ∆w − k2w = 0 in D:

ρ(x)w(x) = −
∫

D

[
∆(ρw)(y)− k2(ρw)(y)

] exp(−k |x − y |)
4π|x − y | dy

= 2
∫

R′
w(y) divy

(
∇ρ(y)

exp(−k |x − y |)
4π|x − y |

)
dy

−
∫

R′
∆ρ(y)

exp(−k |x − y |)
4π|x − y | w(y) dy .

For x ∈ D \R:∣∣w(x)
∣∣ ≤ c1 e−αk

∫
R′

∣∣w(y)
∣∣ dy ≤ c1 e−αk

∫
R

∣∣w(y)
∣∣ dy , thus∣∣w(x)

∣∣2 ≤ c2
1 e−2αk |R|

∫
R

∣∣w(y)
∣∣2 dy .

Integration with respect to x over D \R yields the assertion.



Theorem (inf-sup condition)
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âλ(v ,w ;ψ, φ) :=
∫

D
[∆ψ + λψ]w dx +

∫
D

{
[∆v + λv ]φ− q w φ

}
dx

There exists λ0 < 0 and c > 0 such that for all λ ≤ λ0

sup
(ψ,φ) 6=0

∣∣âλ(v ,w ;ψ, φ)
∣∣

‖(ψ, φ)‖X
≥ c ‖(v ,w)‖X for all (v ,w) ∈ X .

Proof (sketch): Fix λ0 < 0 with (by Lemma!)∫
D

q|w |2 dx =
∫

D\R
q|w |2 dx +

∫
R

q|w |2 dx ≥ q0
2

∫
R
|w |2 dx

for all solutions w of ∆w + λw = 0 in D and all λ ≤ λ0.
Proof by contradiction: Otherwise there exist (vj ,wj ) ∈ X with
‖(vj ,wj )‖X = 1 and sup(ψ,φ) 6=0

∣∣âλ(vj ,wj ;ψ, φ)
∣∣→ 0 as j → ∞. There

exist weakly convergence subsequences (vj ,wj ) ⇀ (v ,w) in X . Then
âλ(v ,w ;ψ, φ) = 0 ∀(ψ, φ) ∈ X , thus ∆w + λw = 0 in D.



Theorem, Proof cont.
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0 = âλ(v ,w ;ψ, φ) =
∫

D
[∆ψ + λψ]w dx +

∫
D

{
[∆v + λv ]φ− qwφ

}
dx

Set ψ = −v and φ = w , then
∫

D q w2dx = 0, thus w = 0 in R. From this:
w = 0 in D. With ψ = 0 and φ = v also v = 0 follows.
Choose ρ ∈ C∞(D) with ρ = 1 in neighborhood R′ of ∂D and ρ = 0 in
D \R. Set ψ = ρvj and φ = −ρwj . Then∫

R

[
∆(ρvj )− λρvj

]
wj dx −

∫
R
(∆vj − λvj ) ρwj − q ρw2

j dx

tends to zero. Because vj → 0 in H1(D) we have
∫

R q ρ|wj |2 dx → 0,
thus

∫
R′ |wj |2dx → 0. Similar arguments yield wj → 0 in L2(D) and

vj → 0 in H2(D). Contradition to ‖(vj ,wj )‖X = 1!



Theorem on Discreteness
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aλ(v ,w ;ψ, φ) =
∫

D
[∆ψ + λψ]w dx +

∫
D
[∆v + λ(1 + q)v − qw ]φ dx

âλ(v ,w ;ψ, φ) =
∫

D
[∆ψ + λψ]w dx +

∫
D

[
∆v + λv − qw ]φ dx

Theorem of Riesz yields existence of bounded Aλ, Âλ : X → X with(
Âλ(v ,w), (ψ, φ)

)
X = âλ(v ,w ;ψ, φ),

(
Aλ(v ,w), (ψ, φ)

)
X = aλ(v ,w ;ψ, φ)

for all (v ,w), (ψ, φ) ∈ X = H2
0 (D)× L2(D). Generalized Theorem of

Lax-Milgram yields that Âλ is isomorphism from X onto itself.
Furthermore, Âλ − Aµ and Aλ − Aµ are compact (simple) and Aλ

one-to-one for λ ≤ λ1 for some λ1 ≤ λ0 (complicated).
Therefore, also Aλ is isomorphism from X onto itself for λ ≤ λ1.
Rewrite Aλ(v ,w) = 0 into (v ,w) + A−1

λ1
(Aλ − Aλ1)(v ,w) = 0. Also

Aλ − Aλ1 = (λ− λ1)K and K compact. Thus:
Theorem: The set of transmission eigenvalues is discrete with infinity as
the only accumulation point.



Existence of Eigenvalues
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Assumption: q ∈ L∞(D) and q(x) ≥ q0 > 0 on D.
H2

0 (D)−Formulation: Determine λ > 0 and non-trivial v ∈ H2
0 (D) with

hλ(v ,ψ) :=
∫

D

[
∆v +λ(1+q)v

] [
∆ψ+λψ

] dx
q

= 0 for all ψ ∈ H2
0 (D) .

hλ(v ,ψ) = a(v ,ψ) + λ b(v ,ψ) + λ2 c(v ,ψ) for all ψ ∈ H2
0 (D), where

a(v ,ψ) =
∫

D
∆v ∆ψ

dx
q

, c(v ,ψ) =
∫

D

1 + q
q

v ψ dx ,

b(v ,ψ) =
∫

D

[
(1 + q) v ∆ψ + ψ ∆v

] dx
q

.

This is a quadratic eigenvalue problem (not self–adjoint!)
Theorem: (Colton/K./Päivärinta 1989, Päivärinta/Sylvester 2009,
Cakoni/Gintides/Haddar 2009)
The set of eigenvalues λ forms a discrete set, and there is a sequence of
real eigenvalues which converge to infinity.



Sketch of Proof, Part 1

28 August 2015 - Inverse Scattering and Interior Transmission Eigenvalue Problems for Isotropic Media

KIT

First: Let D be a disk centered at 0 with radius R > 0, and q constant.
Let again λ = k2 and ρ =

√
1 + q. For fixed n ∈N the functions

u(r , φ) = a Jn(kρr ) einφ , w(r , φ) = b Jn(kr ) einφ ,

r ∈ [0,R], φ ∈ [0,2π], are solutions of the differential equations. The
constants a, b are determined from boundary conditions:

a Jn(kρR)− b Jn(kR) = 0 , a ρ J ′n(kρR)− b J ′n(kR) = 0 .

Nontrivial solutions exist if

det
[

Jn(kρR) −Jn(kR)
ρ J ′n(kρR) −J ′n(kR)

]
= Jn(kR) ρ J ′n(kρR)− Jn(kρR) J ′n(kR) = 0 .

Asymptotic behaviour of Jn(t) for t → ∞ yields assertion.
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Treat λ as parameter and consider the (real valued) function

f (λ) = inf
‖u‖H2

0 (D)
=1

hλ(u,u) . It is f (0) > 0 because a is coercive.

Lemma: f is continuous on R≥0. Every zero λ > 0 of f is an interior
transmission eigenvalue.

Goal: Determine λ̂ > 0 and û ∈ H2
0 (D) with û 6= 0 and hλ̂(û, û) ≤ 0.

Choose disk B in D and interior TEV λ̂ with eigenfunction û ∈ H2
0 (B) in B

corresponding to constant q0 (possible by part 1!). Extend û by 0 into D,
then û ∈ H2

0 (D).

hλ̂(û, û) =
∫

D

[
∆û + λ̂(1 + q)û

] [
∆û + λ̂û

] dx
q

=
∫

D
|∆û + λ̂û|2 dx

q
+ λ̂

∫
D

û(∆û + λ̂û) dx

≤
∫

B
|∆û + λ̂û|2 dx

q0
+ λ̂

∫
B

û(∆û + λ̂û) dx = 0 .
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This ends the lecture! Fioralba will continue with more advanced and
recent results.

Thank you for your attention!


