

Inverse Scattering and Interior Transmission Eigenvalue Problems for Isotropic Media

Andreas Kirsch

Ecole Polytechnique 2015

Department of Mathematics, Karlsruhe Institute of Technology (KIT)

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Plan

- (A) A Scattering Problem
- (B) The Linear Sampling Method and the Factorization Method
- (C) The Corresponding Interior Transmission Eigenvalue Problem

Literature:

- F. Cakoni, D. Colton: A Qualitative Approach to Inverse Scattering Theory. Springer, 2013.
- D. Colton. R. Kress: Inverse Acoustic and Electromagnetic Scattering Theory. 3rd Edition. Springer, 2013.
- A. Kirsch, F. Hettlich: Maxwell's Equations. Springer, 2014.
- A. Kirsch, N. Grinberg: The Factorization Method for Inverse Problems. Oxford University Press, 2008.
- F. Cakoni, H. Haddar (guest editors): Special Issue by *Inverse Problems* on transmission eigenvalue problems (2013)

(A) A Scattering Problem

Wave propagation in frequency domain: incident wave u^{inc} satisfies the reduced wave equation; that is, Helmholtz equation

 $\Delta u^{inc} + k^2 u^{inc} = 0 \text{ in } \mathbb{R}^2.$

 u^{inc} is scattered by a (bounded) medium and generates scattered field u^s . Here, $k = \frac{\omega}{c} > 0$ wave number. Total field: $u = u^{inc} + u^s$

Requirement: *u^s* is radiating; that is, satisfies radiation condition

$$\frac{\partial u^{s}(r\hat{x})}{\partial r} - iku^{s}(r\hat{x}) = \mathcal{O}(r^{-3/2}), \quad r = |x| \to \infty,$$

uniformly wrt $\hat{x} = x/|x| \in \mathcal{S}^1 = \{y \in \mathbb{R}^2 : |y| = 1\}.$

A Scattering Problem, cont.

Radiation condition implies asymptotic form

$$u^{s}(x) = \frac{\exp(ikr)}{\sqrt{8\pi kr}} u^{\infty}(\hat{x}) + \mathcal{O}\left(\frac{1}{r^{3/2}}\right), \quad |x| \to \infty,$$

uniformly wrt $\hat{x} \in S^1$.

 $u^{\infty}(\hat{x}) \in \mathbb{C}$ is called far field or scattering amplitude of u^{s} . Important for uniqueness:

Lemma of Rellich: If $u^{\infty} = 0$ on S^1 then $u^s = 0$ in exterior of *D*. Still missing: type of scattering medium. Examples:

(A) Sound soft obstacle (or perfect conductor in E-mode):

$$\Delta u + k^2 u = 0$$
 in $\mathbb{R}^2 \setminus \overline{D}$, $u = 0$ auf ∂D or

(B) Inhomogeneous medium with contrast q (= 0 in $\mathbb{R}^2 \setminus D$)

$$\Delta u + k^2(1+q)u = 0$$
 in \mathbb{R}^2 , $u, \nabla u$ continuous in \mathbb{R}^2

A Scattering Problem, cont.

Direct scattering problem:

Given: Incident plane wave $u^{inc}(x) = e^{ik\hat{\theta}\cdot x}$ with $\hat{\theta} \in S^1$ and open bounded set $D \subset \mathbb{R}^2$ (Lipschitz boundary, exterior connected) and contrast q (in example (B)).

Determine: Scattered field u^s and far field u^{∞} with:

(A)
$$\Delta u + k^2 u = 0$$
 in $\mathbb{R}^2 \setminus \overline{D}$ and $u = 0$ auf ∂D or

(B)
$$\Delta u + k^2(1+q)u = 0$$
 in \mathbb{R}^2 , respectively,

for total field $u = u^{inc} + u^s$, and u^s satisfies radiation condition.

For $q \in L^{\infty}(D)$ these direct problems are uniquely solvable in $H^{1}_{loc}(\mathbb{R}^{2} \setminus \overline{D})$ or $H^{1}_{loc}(\mathbb{R}^{2})$, respectively.

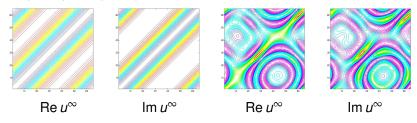
Inverse scattering problem:

Given: Far field $u^{\infty}(\hat{x}, \hat{\theta})$ for all directions of observation $\hat{x} \in S^1$ and some or all directions $\hat{\theta} \in S^1$ of incident plane waves u^{inc} .

Determine: Form of D!

Two Examples

Which scattering media $D \subset \mathbb{R}^2$ belong to these far field patterns? $u^{\infty}(\phi, \theta), \phi, \theta \in [0, 2\pi]$?



Left example simple:

Theorem of Karp: If $u^{\infty}(\phi, \theta) = f(\phi - \theta)$ for some function *f* then *D* is a disk.

Proof is consequence of uniqueness result:

Theorem: Let u_j^{∞} far field corresponding to D_j for j = 1, 2. If $u_1^{\infty}(\hat{x}, \hat{\theta}) = u_2^{\infty}(\hat{x}, \hat{\theta})$ for all $\hat{x}, \hat{\theta} \in S^1$, then $D_1 = D_2$.

The Far Field Operator

Define $F: L^2(\mathcal{S}^1) \to L^2(\mathcal{S}^1)$ by

$$(Fg)(\hat{x}) = \int_{\mathcal{S}^1} u^\infty(\hat{x},\hat{ heta}) g(\hat{ heta}) \, ds(\hat{ heta}) \,, \quad \hat{x} \in \mathcal{S}^1 \,,$$

for the scattering under Dirichlet boundary conditions or by an inhomogeneous medium. This is far field corresponding to incident field

$$v_g^{inc}(x) = \int_{\mathcal{S}^1} e^{ik\hat{ heta}\cdot x} g(\hat{ heta}) \, ds(\hat{ heta}), \quad x \in \mathbb{R}^2.$$

Properties of *F*:

• F is compact and normal, $S = I + \frac{ik}{8\pi^2}F$ is unitary.

• *F* is one-to-one if k^2 is no eigenvalue of "corresponding" evp. Idea of proof for Dirichlet b.c.: If Fg = 0 then far field corresponding to scattered wave v_g^s and incident wave v_g^{inc} vanishes. Lemma of Rellich implies that $v_g^s = 0$ in $\mathbb{R}^2 \setminus D$; thus $0 = v_g^{inc} + v_g^s = v_g^{inc}$ on ∂D . Therefore, $\Delta v_g^{inc} + k^2 v_g^{inc} = 0$ in D, $v_g^{inc} = 0$ on ∂D ; i.e. k^2 is Dirichlet eigenvalue of $-\Delta$. By assumption $v_g^{inc} = 0$ in D and thus g = 0.

The Interior Transmission Eigenvalue Problem

Analogously for scattering by an inhomogeneous medium: Theorem: *F* one-to-one if (u, w) = (0, 0) is the only solution of

$$\Delta u + k^2 (1+q)u = 0$$
 in *D*, $\Delta w + k^2 w = 0$ in *D*,

$$u = w ext{ on } \partial D$$
, $\frac{\partial u}{\partial v} = \frac{\partial w}{\partial v} ext{ on } \partial D$.

This is the corresponding interior transmission eigenvalue problem. Proof: If Fg = 0 then far field corresponding to scattered wave v_g^s and incident wave $v_g^{inc}(x) = \int_{S^1} \exp(ik\hat{\theta} \cdot x) g(\hat{\theta}) ds(\hat{\theta})$ vanishes. Lemma of Rellich implies that $v_g^s = 0$ in $\mathbb{R}^2 \setminus D$, thus $u := v_g^{inc} + v_g^s$ and $w := v_g^{inc}$ satisfy interior transmission eigenvalue problem. By assumption v_g^{inc} vanishes in D and thus also g.

Note: The converse does not hold, i.e. F can be one-to-one even if k^2 is eigenvalue (e.g. if D has corners, see Blasten/Pävärinta/Sylvester 2013)

(B) The Linear Sampling Method and the Factorization Method

Consider simultanously: Scattering by sound soft obstacle or inhomogeneous medium.

Inverse Problem: Given far field operator *F*, determine *D*!

Remember: $(Fg)(\hat{x}) = \int_{S^1} u^{\infty}(\hat{x}, \hat{\theta}) g(\hat{\theta}) ds(\hat{\theta}), \hat{x} \in S^1$, is far field corresponding to v_a^s outside of *D*.

For
$$z \in \mathbb{R}^2$$
 define $\phi \in L^2(\mathcal{S}^1)$ by $\phi_{\mathcal{Z}}(\hat{x}) = \exp(-ikz \cdot \hat{x}), \, \hat{x} \in \mathcal{S}^1$

 ϕ_z is far field pattern of $x \mapsto \Phi(x, z) = \frac{i}{4}H_0^{(1)}(k|x-z|), x \neq z.$ **1. case:** $z \in D$. Lemma of Rellich implies:

$$Fg = \phi_z \iff v_g^s = \Phi(\cdot, z) \text{ outside of } D \iff$$

Dirichlet boundary conditions: $v_g^{inc} = -\Phi(\cdot, z) \text{ on } \partial D$ Transmission conditions: Let $u = v_g^s + v_g^{inc}$ total field. Then $u - v_g^{inc} = \Phi(\cdot, z) \text{ on } \partial D$ and $\frac{\partial}{\partial v}(u - v_g^{inc}) = \frac{\partial}{\partial v}\Phi(\cdot, z) \text{ on } \partial D$.

The Linear Sampling Method, cont.

Recall Herglotz function $v_g^{inc}(x) = \int_{S^1} \exp(ik\hat{\theta} \cdot x)g(\hat{\theta}) \, ds(\hat{\theta})$, $x \in \mathbb{R}^2$. Therefore, $Fg = \phi_z$ is equivalent to $v := v_g^{inc}$ and u satisfying

(1)
$$\Delta v + k^2 v = 0$$
 in D , $v = -\Phi(\cdot, z)$ on ∂D , or, resp.,

(2)
$$\begin{cases} \Delta v + k^2 v = 0 \text{ in } D, \quad \Delta u + k^2 (1+q)u = 0 \text{ in } D, \\ u - v = \Phi(\cdot, z) \text{ on } \partial D, \quad \frac{\partial}{\partial v} (u - v) = \frac{\partial}{\partial v} \Phi(\cdot, z) \text{ on } \partial D, \end{cases}$$

These problems are uniquely solvable if k^2 is not an eigenvalue (clear?). **2. case:** $z \notin D$. $Fg = \phi_z \Leftrightarrow v_g^s = \Phi(\cdot, z)$ outside of $D \cup \{z\}$. But v_g^s smooth at $z \notin D$ and $\Phi(\cdot, z)$ singular at z. Therefore, $Fg = \phi_z$ not solvable for $z \notin D$. Drawback: Even if $z \in D$ the solution v of (1) or (2) is almost never of the

Drawback: Even if $z \in D$ the solution v of (1) or (2) is almost never of the form $v = v_g^{inc}$ with some $g \in L^2(S^1)$! However: Theorem: The space $\{v_a^{inc}|_D : g \in L^2(S^1)\}$ is always dense in

 $\{v \in H^1(D) : \Delta v + k^2 v = 0 \text{ in } D\}.$

The Linear Sampling Method, cont. $Fg = \phi_z$ is improperly posed because $F : L^2(S^1) \to L^2(S^1)$ is compact. Recall from previous page: For $z \notin D$ equation never solvable, for $z \in D$ "sometimes". In any case use Tikhonov regularization; that is, solve

$$\varepsilon g_{z,\varepsilon} + F^* F g_{z,\varepsilon} = F^* \phi_z$$

which is uniquelly solvable for all $\varepsilon > 0$ and $z \in \mathbb{R}^2$. With the help of the Factorization Method one can prove (later!):

Theorem: Let k^2 be not an eigenvalue (either Dirichlet eigenvalue in case of Dirichlet boundary conditions or interior transmission eigenvalue in case of transmission conditions). Then $z \in D$ if, and only if, the mapping

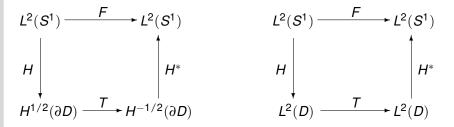
$$\varepsilon \mapsto (g_{z,\varepsilon},\phi_z)_{L^2(S^1)} = v_{g_{z,\varepsilon}}^{inc}(z)$$

is bounded from $\mathbb{R}_{>0}$ to \mathbb{C} .

This gives method to visualize *D* by plotting contour lines of $z \mapsto v_{g_{z,\varepsilon}}^{inc}(z)$ for small values of ε .

The Factorization Method

Theorem 1: Let k^2 be no eigenvalue of the corresponding eigenvalue problem. Then *F* can be factorized in the form $F = H^*TH$.



Furthermore, T is a compact perturbation of a coercive operator and H is compact, more precicely:

The Factorization Method, cont.

$$(Hg)(x) = \int_{S^1} e^{ik\hat{\theta} \cdot x} g(\hat{\theta}) \, ds(\hat{\theta}) \,, \quad x \in \partial D \quad \text{bzw.} \quad x \in D \,.$$

Theorem 2: For $z \in \mathbb{R}^2$ define $\phi_z \in L^2(S^1)$ by
 $\phi_z(\hat{x}) := e^{-ikz \cdot \hat{x}} \,, \quad \hat{x} \in S^1 \,.$
Then: $z \in D \iff \phi_z \in \mathcal{R}(H^*)$

Remember: $F = H^*TH$

12

Theorem 3: (Range identity) Let k^2 be no correponding eigenvalue. Then:

$$\mathcal{R}(H^*) = \mathcal{R}((F^*F)^{1/4})$$

Combined: $z \in D \iff \phi_z \in \mathcal{R}((F^*F)^{1/4})$

FM studies solvability of $(F^*F)^{1/4}g = \phi_Z$, LSM of: $Fg = \phi_Z$!

The Factorization Method, cont.

$$\phi_{Z}(\hat{x}) = e^{-ikz\cdot\hat{x}}$$
, $\hat{x} \in S^{1}$, $z \in D \iff \phi_{Z} \in \mathcal{R}((F^{*}F)^{1/4})$

 $F: L^2(S^1) \to L^2(S^1)$ compact, normal and one-to-one. Therefore, there exists complete ONS $\{\psi_j\}$ of eigenfunctions of F with corresponding eigenvalues $\lambda_j \in \mathbb{C}$.

Condition $\phi_z \in \mathcal{R}((F^*F)^{1/4})$ is equivalent to

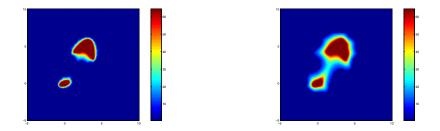
$$z \in D \iff \sum_{j \in \mathbb{N}} \frac{\left| \langle \phi_z, \psi_j \rangle \right|^2}{|\lambda_j|} < \infty$$
$$\iff w(z) = \left[\sum_{j \in \mathbb{N}} \frac{\left| \langle \phi_z, \psi_j \rangle \right|^2}{|\lambda_j|} \right]^{-1} > 0$$

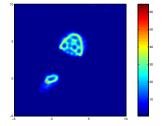
Therefore, sign *w* is characteristic function of *D*.

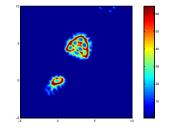
The following numerical simulations show contour plots of

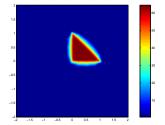
$$oldsymbol{w}(z) \;=\; \left[\sum_{j=1}^{32} rac{\left|\langle \phi_{z},\psi_{j}
ight
angle
ight|^{2}}{\left|\lambda_{j}
ight|}^{-1}
ight]^{-1}$$
 , $z\in\mathbb{R}^{2}$,

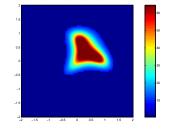
for 32 incident directions and 32 directions of observations (replace operator *F* by matrix $F \in \mathbb{C}^{32 \times 32}$ and ϕ_z by vector $\phi_z \in \mathbb{C}^{32}$).

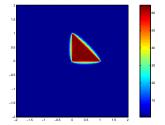


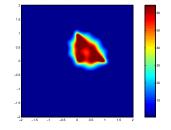


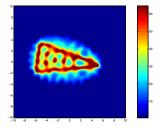












A Link between Linear Sampling and Factorization Method

General functional analytic situation:

Let $F : X \to Y$ compact and injective operator between Hilbert spaces Xand Y. Let $\{\sigma_n, \psi_n, \varphi_n\}$ be a singular system of F; that is, $\{\psi_n : n \in \mathbb{N}\}$ and $\{\varphi_n : n \in \mathbb{N}\}$ are complete ONS in X and Y, resp., and $F\psi_n = \sigma_n\varphi_n$ and $F^*\varphi_n = \sigma_n\psi_n$ for all n.

Define $J: Y \to X$ by $\sum_n \alpha_n \varphi_n \mapsto \sum_n \alpha_n \psi_n$. Then $J: Y \to X$ is an isometry and:

Theorem: Let $\phi \in Y$ and $g_{\varepsilon} \in X$ be the Tikhonov regularization of $Fg = \phi$; that is, $\varepsilon g_{\varepsilon} + F^*Fg_{\varepsilon} = F^*\phi$ for $\varepsilon > 0$. Then $\phi \in \mathcal{R}((F^*F)^{1/4})$ if, and only if, the mapping $\varepsilon \mapsto (g_{\varepsilon}, J\phi)_X$ is bounded.

Theorem: Let k^2 be not an eigenvalue and $\varepsilon g_{z,\varepsilon} + F^*Fg_{z,\varepsilon} = F^*\phi_z$. Then $z \in D$ if, and only if, the mapping

$$\varepsilon \mapsto (g_{z,\varepsilon}, \phi_z)_{L^2(S^1)} = v_{g_{z,\varepsilon}}^{inc}(z)$$

is bounded. Proof on blackboard!

(C) The Interior Transm. Eigenvalue Problem Classical formulation (setting $\lambda = k^2$):

$$\Delta u + \lambda (1+q)u = 0 \text{ in } D, \quad \Delta w + \lambda w = 0 \text{ in } D,$$
$$u = w \text{ on } \partial D, \quad \frac{\partial u}{\partial \nu} = \frac{\partial w}{\partial \nu} \text{ auf } \partial D.$$

Variational formulation? Solution space?

(1) Ultra Weak Formulation: Let $u, w \in L^2(D)$ and $(\psi, \phi) \in V$ where

 $V = \{(\psi, \phi) \in H^2(D) \times H^2(D) : \psi = \phi \text{ on } \partial D \text{ and } \partial \psi / \partial \nu = \partial \phi / \partial \nu \text{ on } \partial D \}.$ Green's second theorem:

$$0 = \int_{D} [\Delta u + \lambda (1+q)u]\psi \, dx$$

=
$$\int_{D} [\Delta \psi + \lambda (1+q)\psi]u \, dx + \int_{\partial D} \left[\psi \frac{\partial u}{\partial v} - u \frac{\partial \psi}{\partial v}\right] \, ds$$
$$\int_{D} [\Delta \psi + \lambda (1+q)\psi]u \, dx = \int_{D} [\Delta \phi + \lambda \phi]w \, dx \quad \forall \ (\psi, \phi) \in V.$$

The Interior TEVP, cont.

ŀ

(2) Semi Weak Formulation: Set v = w - u. Then $v \in H_0^2(D)$ and $w \in L^2(D)$ and $\Delta w + \lambda w = 0$ in *D* and

(*)
$$\Delta \mathbf{v} + \lambda (1+q)\mathbf{v} = \lambda q \mathbf{w} \text{ in } D.$$

Variational formulation (replace λw by w):

$$\begin{split} \int_{D} [\Delta v + \lambda (1+q)v - q \, w] \phi \, dx &= 0 \quad \text{for all } \phi \in L^2(D) \,, \\ \int_{D} [\Delta \psi + \lambda \psi] w \, dx &= 0 \quad \text{for all } \psi \in H_0^2(D) \,. \\ \text{Here, } (v, w) \in H_0^2(D) \times L^2(D) \text{ and } (\psi, \phi) \in H_0^2(D) \times L^2(D). \\ \text{3) } H_0^2(D) - \text{Formulation: Assume: } q \in L^{\infty}(D) \text{ and } q(x) \geq q_0 > 0 \text{ on } D. \\ \text{From } (*): \quad [\Delta + \lambda] \frac{1}{q} [\Delta v + \lambda (1+q)v] = 0 \,; \text{ that is, } v \in H_0^2(D) \text{ and} \\ \int_{D} [\Delta v + \lambda (1+q)v] \, [\Delta \psi + \lambda \psi] \, \frac{dx}{q} \,= \, 0 \quad \text{for all } \psi \in H_0^2(D) \,. \end{split}$$

Ardisruhe Institute of Technology

Discreteness

Assumption: $q \in L^{\infty}(D)$ and $q(x) \ge q_0 > 0$ on R where $R \subset D$ is some open subdomain with $\partial D \subset \overline{R}$.

Semi Weak Formulation: Determine $\lambda > 0$ and non-trivial $(v, w) \in X := H_0^2(D) \times L^2(D)$ with

$$a_{\lambda}(\mathbf{v},\mathbf{w};\psi,\phi) := \int_{D} [\Delta\psi + \lambda\psi] \mathbf{w} \, d\mathbf{x} + \int_{D} [\Delta\mathbf{v} + \lambda(1+q)\mathbf{v} - q\mathbf{w}] \, \phi \, d\mathbf{x} = \mathbf{0}$$

for all $(\psi, \phi) \in X$. Define also the symmetric form

$$\hat{a}_{\lambda}(\mathbf{v},\mathbf{w};\psi,\phi) := \int_{D} [\Delta\psi + \lambda\psi] \mathbf{w} \, d\mathbf{x} + \int_{D} \{ [\Delta\mathbf{v} + \lambda\mathbf{v}] \, \phi - q\mathbf{w}\phi \} \, d\mathbf{x}$$

Lemma: There exist $\hat{c} > 0$ and $\alpha > 0$ such that for all $\lambda < 0$:

$$\int_{D\setminus R} |w|^2 dx \leq \hat{c} e^{-2\alpha \sqrt{|\lambda|}} \int_R |w|^2 dx$$

for all solutions $w \in L^2(D)$ of $\Delta w + \lambda w = 0$ in D.

Proof of Lemma (in \mathbb{R}^3 for simplicity) Let $\lambda = -k^2$ and $R' \subset R$ with $\partial D \subset R'$ and $\alpha = \operatorname{dist}(D \setminus R, R') > 0$ and

 $\rho \in C^{\infty}(D)$ with compact support in *D* and $\rho = 1$ in $D \setminus R'$. Green's representation theorem to ρw in *D* where $\Delta w - k^2 w = 0$ in *D*:

$$\begin{split} \rho(x) w(x) &= -\int_{D} \left[\Delta(\rho w)(y) - k^{2}(\rho w)(y) \right] \frac{\exp(-k|x-y|)}{4\pi|x-y|} \, dy \\ &= 2 \int_{R'} w(y) \operatorname{div}_{y} \left(\nabla \rho(y) \frac{\exp(-k|x-y|)}{4\pi|x-y|} \right) dy \\ &- \int_{R'} \Delta \rho(y) \frac{\exp(-k|x-y|)}{4\pi|x-y|} w(y) \, dy \, . \end{split}$$

For $x \in D \setminus R$:

$$|w(x)| \leq c_1 e^{-\alpha k} \int_{R'} |w(y)| dy \leq c_1 e^{-\alpha k} \int_{R} |w(y)| dy$$
, thus
 $|w(x)|^2 \leq c_1^2 e^{-2\alpha k} |R| \int_{R} |w(y)|^2 dy$.

Integration with respect to *x* over $D \setminus R$ yields the assertion.

Theorem (inf-sup condition)

$$\hat{a}_{\lambda}(\mathbf{v},\mathbf{w};\psi,\phi) := \int_{D} [\Delta\psi + \lambda\psi] \mathbf{w} \, d\mathbf{x} + \int_{D} \{ [\Delta \mathbf{v} + \lambda\mathbf{v}] \phi - q \, \mathbf{w} \, \phi \} \, d\mathbf{x}$$

There exists $\lambda_0 < 0$ and c > 0 such that for all $\lambda \leq \lambda_0$

$$\sup_{(\psi,\phi)\neq 0} \frac{\left|\hat{a}_{\lambda}(\nu,w;\psi,\phi)\right|}{\|(\psi,\phi)\|_{X}} \geq c \, \|(\nu,w)\|_{X} \quad \text{for all } (\nu,w) \in X.$$

Proof (sketch): Fix $\lambda_0 < 0$ with (by Lemma!)

$$\int_{D} q|w|^{2} dx = \int_{D\setminus R} q|w|^{2} dx + \int_{R} q|w|^{2} dx \geq \frac{q_{0}}{2} \int_{R} |w|^{2} dx$$

for all solutions w of $\Delta w + \lambda w = 0$ in D and all $\lambda \leq \lambda_0$. Proof by contradiction: Otherwise there exist $(v_j, w_j) \in X$ with $\|(v_j, w_j)\|_X = 1$ and $\sup_{(\psi, \phi) \neq 0} |\hat{a}_\lambda(v_j, w_j; \psi, \phi)| \to 0$ as $j \to \infty$. There exist weakly convergence subsequences $(v_j, w_j) \rightharpoonup (v, w)$ in X. Then $\hat{a}_\lambda(v, w; \psi, \phi) = 0 \ \forall (\psi, \phi) \in X$, thus $\Delta w + \lambda w = 0$ in D.

Theorem, Proof cont.

$$\mathbf{0} = \hat{\mathbf{a}}_{\lambda}(\mathbf{v}, \mathbf{w}; \psi, \phi) = \int_{D} [\Delta \psi + \lambda \psi] \mathbf{w} \, d\mathbf{x} + \int_{D} \{ [\Delta \mathbf{v} + \lambda \mathbf{v}] \phi - q \mathbf{w} \phi \} \, d\mathbf{x}$$

Set $\psi = -v$ and $\phi = w$, then $\int_D q w^2 dx = 0$, thus w = 0 in *R*. From this: w = 0 in *D*. With $\psi = 0$ and $\phi = v$ also v = 0 follows.

Choose $\rho \in C^{\infty}(D)$ with $\rho = 1$ in neighborhood R' of ∂D and $\rho = 0$ in $D \setminus R$. Set $\psi = \rho v_j$ and $\phi = -\rho w_j$. Then

$$\int_{R} \left[\Delta(\rho \mathbf{v}_{j}) - \lambda \rho \mathbf{v}_{j} \right] \mathbf{w}_{j} \, d\mathbf{x} - \int_{R} (\Delta \mathbf{v}_{j} - \lambda \mathbf{v}_{j}) \, \rho \mathbf{w}_{j} - \mathbf{q} \, \rho \, \mathbf{w}_{j}^{2} \, d\mathbf{x}$$

tends to zero. Because $v_j \to 0$ in $H^1(D)$ we have $\int_R q \rho |w_j|^2 dx \to 0$, thus $\int_{R'} |w_j|^2 dx \to 0$. Similar arguments yield $w_j \to 0$ in $L^2(D)$ and $v_j \to 0$ in $H^2(D)$. Contradition to $||(v_j, w_j)||_X = 1!$

Theorem on Discreteness

$$\begin{aligned} a_{\lambda}(\mathbf{v},\mathbf{w};\psi,\phi) &= \int_{D} [\Delta\psi + \lambda\psi] \mathbf{w} \, d\mathbf{x} + \int_{D} [\Delta\mathbf{v} + \lambda(\mathbf{1} + q)\mathbf{v} - q\mathbf{w}] \phi \, d\mathbf{x} \\ \hat{a}_{\lambda}(\mathbf{v},\mathbf{w};\psi,\phi) &= \int_{D} [\Delta\psi + \lambda\psi] \mathbf{w} \, d\mathbf{x} + \int_{D} [\Delta\mathbf{v} + \lambda\mathbf{v} - q\mathbf{w}] \phi \, d\mathbf{x} \end{aligned}$$

Theorem of Riesz yields existence of bounded A_{λ} , $\hat{A}_{\lambda} : X \to X$ with $(\hat{A}_{\lambda}(v, w), (\psi, \phi))_{X} = \hat{a}_{\lambda}(v, w; \psi, \phi), (A_{\lambda}(v, w), (\psi, \phi))_{X} = a_{\lambda}(v, w; \psi, \phi)$ for all $(v, w), (\psi, \phi) \in X = H_{0}^{2}(D) \times L^{2}(D)$. Generalized Theorem of Lax-Milgram yields that \hat{A}_{λ} is isomorphism from X onto itself. Furthermore, $\hat{A}_{\lambda} - A_{\mu}$ and $A_{\lambda} - A_{\mu}$ are compact (simple) and A_{λ} one-to-one for $\lambda \leq \lambda_{1}$ for some $\lambda_{1} \leq \lambda_{0}$ (complicated). Therefore, also A_{λ} is isomorphism from X onto itself for $\lambda \leq \lambda_{1}$. Rewrite $A_{\lambda}(v, w) = 0$ into $(v, w) + A_{\lambda_{1}}^{-1}(A_{\lambda} - A_{\lambda_{1}})(v, w) = 0$. Also $A_{\lambda} - A_{\lambda_{1}} = (\lambda - \lambda_{1})K$ and K compact. Thus:

Theorem: The set of transmission eigenvalues is discrete with infinity as the only accumulation point.

Salisruhe Institute of Technology

Existence of Eigenvalues

Assumption: $q \in L^{\infty}(D)$ and $q(x) \ge q_0 > 0$ on D. $H_0^2(D)$ -Formulation: Determine $\lambda > 0$ and non-trivial $v \in H_0^2(D)$ with

$$h_{\lambda}(\mathbf{v},\psi) := \int_{D} \left[\Delta \mathbf{v} + \lambda(1+q)\mathbf{v} \right] \left[\Delta \psi + \lambda \psi \right] \frac{dx}{q} = 0 \quad \text{for all } \psi \in H_{0}^{2}(D)$$

$$h_{\lambda}(\mathbf{v},\psi) \;=\; a(\mathbf{v},\psi) + \lambda \, b(\mathbf{v},\psi) + \lambda^2 \, c(\mathbf{v},\psi) \quad \text{for all } \psi \in H^2_0(D), \text{ where}$$

$$\begin{aligned} a(\mathbf{v},\psi) &= \int_{D} \Delta \mathbf{v} \, \Delta \psi \, \frac{dx}{q} \,, \qquad \mathbf{c}(\mathbf{v},\psi) \,= \, \int_{D} \frac{1+q}{q} \, \mathbf{v} \, \psi \, dx \,, \\ b(\mathbf{v},\psi) &= \, \int_{D} \left[(1+q) \, \mathbf{v} \, \Delta \psi + \psi \, \Delta \mathbf{v} \right] \frac{dx}{q} \,. \end{aligned}$$

This is a quadratic eigenvalue problem (not self–adjoint!) Theorem: (Colton/K./Päivärinta 1989, Päivärinta/Sylvester 2009, Cakoni/Gintides/Haddar 2009)

The set of eigenvalues λ forms a discrete set, and there is a sequence of real eigenvalues which converge to infinity.

Sketch of Proof, Part 1

First: Let *D* be a disk centered at 0 with radius R > 0, and *q* constant. Let again $\lambda = k^2$ and $\rho = \sqrt{1+q}$. For fixed $n \in \mathbb{N}$ the functions

$$u(r,\phi) = a J_n(k\rho r) e^{in\phi}$$
, $w(r,\phi) = b J_n(kr) e^{in\phi}$,

 $r \in [0, R]$, $\phi \in [0, 2\pi]$, are solutions of the differential equations. The constants *a*, *b* are determined from boundary conditions:

$$a J_n(k\rho R) - b J_n(kR) = 0$$
, $a\rho J'_n(k\rho R) - b J'_n(kR) = 0$.

Nontrivial solutions exist if

$$\det \begin{bmatrix} J_n(k\rho R) & -J_n(kR) \\ \rho J'_n(k\rho R) & -J'_n(kR) \end{bmatrix} = J_n(kR) \rho J'_n(k\rho R) - J_n(k\rho R) J'_n(kR) = 0.$$

Asymptotic behaviour of $J_n(t)$ for $t \to \infty$ yields assertion.

Sketch of Proof, Part 2

Treat λ as parameter and consider the (real valued) function

 $f(\lambda) = \inf_{\|u\|_{H^2_0(D)}=1} h_{\lambda}(u, u)$. It is f(0) > 0 because *a* is coercive.

Lemma: *f* is continuous on $\mathbb{R}_{\geq 0}$. Every zero $\lambda > 0$ of *f* is an interior transmission eigenvalue.

Goal: Determine $\hat{\lambda} > 0$ and $\hat{u} \in H_0^2(D)$ with $\hat{u} \neq 0$ and $h_{\hat{\lambda}}(\hat{u}, \hat{u}) \leq 0$. Choose disk *B* in *D* and interior TEV $\hat{\lambda}$ with eigenfunction $\hat{u} \in H_0^2(B)$ in *B* corresponding to constant q_0 (possible by part 1!). Extend \hat{u} by 0 into *D*, then $\hat{u} \in H_0^2(D)$.

$$\begin{split} h_{\hat{\lambda}}(\hat{u},\hat{u}) &= \int_{D} \left[\Delta \hat{u} + \hat{\lambda} (1+q) \hat{u} \right] \left[\Delta \hat{u} + \hat{\lambda} \hat{u} \right] \frac{dx}{q} \\ &= \int_{D} |\Delta \hat{u} + \hat{\lambda} \hat{u}|^{2} \frac{dx}{q} + \hat{\lambda} \int_{D} \hat{u} (\Delta \hat{u} + \hat{\lambda} \hat{u}) \, dx \\ &\leq \int_{B} |\Delta \hat{u} + \hat{\lambda} \hat{u}|^{2} \frac{dx}{q_{0}} + \hat{\lambda} \int_{B} \hat{u} (\Delta \hat{u} + \hat{\lambda} \hat{u}) \, dx = 0 \, . \end{split}$$

This ends the lecture! Fioralba will continue with more advanced and recent results.

Thank you for your attention!