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Abstract

We consider the problem of reconstructing the shape
of an impenetrable sound-soft obstacle from scattering
measurements. The input data is assumed to be the
far-field pattern generated when a plane wave impinges
on an unknown obstacle from one or more directions
and at one or more frequencies. It is well known that
this inverse scattering problem is both ill posed and
nonlinear.

Direct scattering problem

We want to solve the direct acoustic scattering problem
for sound-soft obstacles. For the incident plane wave
uinc(x) = e ikx ·d with direction d , we want to find the
solution u = uinc + us to:

∆u + k2u = 0 in R2\D
u = 0 on ∂D,

where us satisfies the Sommerfeld radiation condition

limr→∞r
1/2

(
∂us

∂r
− ikus

)
= 0, r = ‖x‖.

We use two approaches as [1]. Using potential theory,
we have:[(

1

2
I +DΓ,k − iηSΓ,k

)
ϕ

]
= −uinc, (1)

and using Green’s second identity, we have:[(
1

2
I − S′Γ,k + iηSΓ,k

)
∂u

∂ν

]
=
∂uinc

∂ν
+ iηuinc. (2)

where Sγ,k , S′Γ,k and DΓ,k are respectively the single ,
its derivative, and double layer operators at wavenum-
ber k and γ is a parameterization of the obstacle D,
and ϕ is a layer potential.

We define the far-field pattern u∞(x̂) as:

u(x) =
e ik|x |

|x |

{
u∞(x̂) +O

(
1

|x |

)}
.

We use the following equation to obtain the far-field
pattern:

u∞(x̂) =
[(
D∞Γ,k − iηS∞Γ,k

)
ϕ
]

(x̂). (3)

where S∞Γ,k and D
∞
Γ,k are respectively the single and dou-

ble layer far field operators(or its respective counterpart
in the case of using Equation (1)).

Numerical Implementation

We discretize the boundary using a Nyström method
[1], with N equispaced points.Because SΓ,k and the
principal value for DΓ,k and S′Γ,k are logarithmically
singular, however, we employ the hybrid Gauss-
trapezoidal rule of order 16 due to Alpert [2].

For small N, we use direct LU factorization to solve
the discretized versions of (1) and (2). For large N,
we will employ the fast direct solver of Ambikasaran
and Darve [3], whose cost scales as O(N log2 N) for a
fixed frequency.

Inverse scattering problem

Given the measured far-field pattern, we wish to deter-
mine the shape Γ of the scatterer such that

F (Γ) = u∞ .

We use the Newton-like method to solve for the un-
known Γ, based on the approximation

F (Γj + Pj) ≈ F (Γj) + F ′(Γj)Pj = u∞ ,

where Γj is the jth guess for Γ, F ′(Γj) denotes the
Fréchet derivative of F , and Pj is the update. The
(j + 1)st iterate is then given by

Γj+1 = Γj + Pj . (4)

The approximation above leads to the linearized prob-
lem:

F ′(Γj)Pj = u∞ − F (Γj) , (5)

Theorem [4] Let v denote the solution to the forward
scattering problem with Dirichlet data

v(t) = −νj(t) · Pj(t)
∂uj
∂ν

(t) on Γj ,

where Pj(t) is some two-dimensional perturbation of
the boundary and νj(t) denotes the normal vector to
Γj , and let v∞ denote its far-field pattern. Then the
Fréchet derivative of F is

F ′(Γj)Pj = v∞. (6)

Remark 1: We assume that Pj(t) lies in the normal
direction:

Pj(t) = νj(t)pj(t) ,

where pj(t) is a bandlimited scalar function.

Inverse scattering using multiple frequency

Since the number of nontrivial measurements that
can be made in the far field is proportional to the
size of the object in wavelengths, it is reasonable to
expect that greater resolution should be obtained as
the frequency increases.

We have the following behavior associated to Newton’s
method when using a single frequency to reconstruct
the object
Frequency Reconstruction Initial Guess

Low Fuzzy Simple
High Sharp Closer to object

This interplay between easy recovery at low frequen-
cies of a blurry reconstruction and the need for a good
initial guess at high frequency to achieve higher fidelity
reconstruction led Chen [5] to introduce the recursive
linearization algorithm (RLA).

Recursive Linearization Algorithm

– Choose a initial guess Γ0 for the domain.
– For j = 1, 2, . . . , Nk

Take Γj = Γj−1 as initial guess and use Newton’s
method for a single frequency to obtain the ap-
proximation for the domain for the wavenumber
kj .

Numerical Examples

Ex. 2 Aircraft using increasing number of directions
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Numerical Examples(Cont.)

Ex. 3 Submarine with detail
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Conclusions and future work

– The method produces sharp approximations of the
object from simple approximations. [6]
– We developed a fast solver for the solution of the
penetrable media problem [7]. This solver will be used
in the solution of the inverse medium problem.
– This algorithm can be extended for the 3D case.
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