Adaptive Plane Wave Discontinuous Galerkin Methods for the Helmholtz Equation

Department of Mathematical Sciences, University of Delaware

Abstract

We present a study of an h-version a posteriori analysis for the Plane Wave Discontinuous Galerkin Method, with a fixed number of plane waves per element. We derive an error indicator using residuals, and present a numerical study of its efficiency. The condition number of the PWDG matrix deteriorates as the mesh is refined. We show that using scaled Bessel functions significantly improves conditioning.

Introduction

Let $\Omega \subset \mathbb{R}^2$ be a bounded Lipschitz polyhedral domain with boundary $\partial \Omega := \Gamma_D \cup \Gamma_A$ consisting of two disjoint components. The problem is to approximate the solution \boldsymbol{u} of

$$\Delta u - k^2 u = 0$$
 in Ω ,
 $\frac{\partial u}{\partial \nu} + iku = g$ on Γ_A ,
 $u = 0$ on Γ_D .

Here the wavenumber $k > 0, g \in L^2(\Gamma_A)$. This problem is often considered because the Robin boundary condition is a simple absorbing boundary condition, so the problem is a simplified model for scattering from a bounded domain. In the scattering case, g is determined by the incident field.

Purpose of Study

We are interested in deriving a posteriori error indicators based on residuals to drive the PWDG method adaptively to a solution.

Shelvean Kapita, Peter Monk, and Timothy Warburton

The PWDG Method

The PWDG method is based on the use of plane waves propagating in different directions in each element. On each element K the local solution space are the plane waves

 $V_{p_K}^K := \operatorname{span} \left\{ \exp(ik\mathbf{d}_j^K \cdot \mathbf{x}), \ 1 \le j \le p_K \right\}.$ Then the solution space is $V_h = \{v_h \in L^2(\Omega) : v_h | _K \in V_{p_K}^K \}.$ The PWDG Method is to find $u_h \in V_h$ such that $A_h(u_h, v_h) = \ell_h(v)$ for all $v \in V_h$, where $A_h(u,v) := \int_{\mathcal{E}_{\tau}} \{\!\!\{u\}\!\!\} \left[\!\!\left[\nabla_h \overline{v}\right]\!\!\right] - \int_{\mathcal{E}_{\tau}} \left[\!\!\left[\overline{v}\right]\!\!\right] \{\!\!\{\nabla_h u\}\!\!\}$ $-\frac{1}{ik}\int_{\mathcal{E}_{\mathcal{I}}}\beta\left[\!\left[\nabla_{h}u\right]\!\right]\left[\!\left[\nabla_{h}\overline{v}\right]\!\right] + ik\int_{\mathcal{E}_{\mathcal{I}}}\left[\!\left[u\right]\!\right]\left[\!\left[\overline{v}\right]\!\right] \\ -\int_{\mathcal{E}_{\mathcal{D}}}\left(\nabla_{h}u\cdot\nu\right)\overline{v} - \int_{\mathcal{E}_{\mathcal{B}}}\delta\left(\nabla_{h}u\cdot\nu\right)\overline{v}$ $+ik\int_{\mathcal{E}_{\mathcal{B}}}(1-\delta)u\overline{v}+\int_{\mathcal{E}_{\mathcal{B}}}(1-\delta)u\left(\nabla_{h}\overline{v}\cdot\nu\right)$ $-\frac{1}{ik}\int_{\mathcal{E}_{\mathcal{B}}}\delta\left(\nabla_{h}u\cdot\nu\right)\left(\nabla_{h}\overline{v}\cdot\nu\right)+ik\int_{\mathcal{E}_{\mathcal{D}}}\alpha u\overline{v},$ $\ell_h(v) := -\frac{1}{ik} \int_{\mathcal{E}_{\mathcal{B}}} \delta g \left(\nabla_h \overline{v} \cdot \nu \right) + \int_{\mathcal{E}_{\mathcal{B}}} (1 - \delta) g \overline{v}$ with penalty parameters $\alpha, \beta, \delta > 0$.

An a Posteriori Error Estimate

Theorem

For any sufficiently fine mesh, there is a constant C independent of h, u, u_h such that

$$\|u-u_h\|_{L^2(\Omega)} \leq C\eta(u_h)$$

where

$$\eta(u_h)^2 := k^{2s-1} (d_\Omega k)^{1-2s} \left[\eta_J^2 + \eta_{J,\nu}^2 + \eta_B^2 + \eta_D^2 \right]$$
with the residuals

$$\begin{split} \eta_{J}^{2}(u_{h}) &:= \|\alpha^{1/2}h_{e}^{s}\left[\!\left[u_{h}\right]\!\right]\|_{L^{2}(\mathcal{E}_{\mathcal{I}})}^{2}, \\ \eta_{J,\nu}^{2}(u_{h}) &:= k^{-2}\|\beta^{1/2}h_{e}^{s}\left[\!\left[\nabla_{h}u_{h}\right]\!\right]\|_{L^{2}(\mathcal{E}_{\mathcal{I}})}^{2} \\ \eta_{B}^{2}(u_{h}) &:= k^{-2}\|\delta^{1/2}h_{e}^{s}\left[g - \frac{\partial u_{h}}{\partial\nu} - iku_{h}\right]\|_{L^{2}(\mathcal{E}_{\mathcal{B}})}^{2}, \\ \eta_{D}^{2}(u_{h}) &:= \|h_{e}^{s}\alpha^{1/2}u_{h}\|_{L^{2}(\mathcal{E}_{\mathcal{D}})}^{2} \end{split}$$

 $0 \leq s \leq 1/2$ is a parameter that depends on (re-entrant corners of) the domain. For convex domains choose s = 1/2.

Computational and Applied Mathematics, Rice University

right: 12 iterations. Bottom left: Computed solution. Bottom right: L^2 norm of error and error indicator.

Solution: Case 2 (a)

Figure 3: Total Internal Reflection. 9 plane wave directions

[1] S. Kapita, P. Monk, T. Warburton, Residual Based Adaptivity and PWDG Methods for the Helmholtz, SIAM J. Sci. Comput., **37**(3), A1525-A1553.

Acknowledgements

The work of S.Kapita and P. Monk was was supported in part by NSF grant number DMS-1216620. The work of T. Warburton was funded in part by NSF grant number DMS-1216674

