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Abstract

We present a study of an h-version a posteri-
ori analysis for the Plane Wave Discontinuous
Galerkin Method, with a fixed number of plane
waves per element. We derive an error indicator
using residuals, and present a numerical study
of its efficiency. The condition number of the
PWDGmatrix deteriorates as the mesh is refined.
We show that using scaled Bessel functions sig-
nificantly improves conditioning.

Introduction

Let Ω ⊂ R2 be a bounded Lipschitz polyhedral do-
main with boundary ∂Ω := ΓD ∪ ΓA consisting of
two disjoint components. The problem is to approx-
imate the solution u of

−∆u− k2u = 0 in Ω,
∂u

∂ν
+ iku = g on ΓA,

u = 0 on ΓD.
Here the wavenumber k > 0, g ∈ L2(ΓA).

This problem is often considered because the Robin
boundary condition is a simple absorbing boundary
condition, so the problem is a simplified model for
scattering from a bounded domain. In the scattering
case, g is determined by the incident field.

Purpose of Study

We are interested in deriving a posteriori error
indicators based on residuals to drive the PWDG
method adaptively to a solution.

The PWDG Method

The PWDG method is based on the use of plane
waves propagating in different directions in each el-
ement. On each element K the local solution space
are the plane waves

V K
pK

:= span
{
exp(ikdKj · x), 1 ≤ j ≤ pK

}
.

Then the solution space is
Vh =

{
vh ∈ L2(Ω) : vh|K ∈ V K

pK

}
.

The PWDG Method is to find uh ∈ Vh such that
Ah(uh, vh) = `h(v) for all v ∈ Vh, where

Ah(u, v) :=
∫
EI
{{u}} [[∇hv]]−

∫
EI

[[v]] {{∇hu}}

− 1
ik

∫
EI
β [[∇hu]] [[∇hv]] + ik

∫
EI

[[u]] [[v]]

−
∫
ED

(∇hu · ν) v −
∫
EB
δ (∇hu · ν) v

+ik
∫
EB

(1− δ)uv +
∫
EB

(1− δ)u (∇hv · ν)

− 1
ik

∫
EB
δ (∇hu · ν) (∇hv · ν) + ik

∫
ED
αuv,

`h(v) := − 1
ik

∫
EB
δg (∇hv · ν) +

∫
EB

(1− δ)gv
with penalty parameters α, β, δ > 0.

An a Posteriori Error Estimate

Theorem

For any sufficiently fine mesh, there is a constant
C independent of h, u, uh such that

‖u− uh‖L2(Ω) ≤ Cη(uh)
where

η(uh)2 := k2s−1(dΩk)1−2s [η2
J + η2

J,ν + η2
B + η2

D

]
with the residuals
η2
J(uh) := ‖α1/2hse [[uh]] ‖2

L2(EI),

η2
J,ν(uh) := k−2‖β1/2hse [[∇huh]] ‖2

L2(EI)

η2
B(uh) := k−2‖δ1/2hse

g − ∂uh
∂ν
− ikuh

 ‖2
L2(EB),

η2
D(uh) := ‖hseα1/2uh‖2

L2(ED)

0 ≤ s ≤ 1/2 is a parameter that depends on
(re-entrant corners of) the domain. For convex
domains choose s = 1/2.

Solution: Case 1

Exact solution u(x) = Jξ(kr) sin(ξθ)
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Figure 1: Singular Bessel, ξ = 2/3
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Figure 2: Smooth Bessel, ξ = 2. Top left: initial mesh. Top
right: 12 iterations. Bottom left: Computed solution. Bottom
right: L2 norm of error and error indicator.

Solution: Case 2 (a)
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Figure 3: Total Internal Reflection. 9 plane wave directions

Solution: Case 2(b)

Figure 4: Partial Internal Reflection. 9 plane waves per element

Bessel Basis Functions

Numerical observations show that using basis func-
tions of the form

uh =
p∑

m=−p

Jm(k|x− cK|)
k
√

(J ′m(khK))2 + (Jm(khK))2

significantly improves the conditioning of the prob-
lem.
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Figure 5: Condition numbers of the scheme. Left: 9 plane waves
per element Right: 8 Bessel functions per element
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