

Transformed and Generalized Localization for Ensemble Methods in Data Assimilation **Aamir Nadeem and Roland Potthast**

Deutscher Wetterdienst Institute for Numerical and Applied Mathematics, University of Göttingen Wetter und Klima aus einer Hand German Weather Service (DWD) & University of Reading, UK

The goal of this work is to suggest a general algorithm which allows localization in the case of non-local observation operators which is not restricted by this limit, and to test its applicability by studying the effect of the transformed localization when applied to a infrared atmospheric sounding interferometer (IASI) retrieval problem which is known to $\mathbf{B}_{\rho}(\mathbf{p})$ around some point p and with localization radius ρ , have a strong non-locality and is of high interest to both This means, we solve local linear systems the research community and operational centers of weather prediction.

Ensemble Kalman Filter(EnKF)

• By [1, Cor 3.4] *Singular value decomposition* of the operator *H* provides a transformation of both the spaces *X* and Y such that the matrix equation (3) is diagonal and, thus, can be fully localized in the spaces (\tilde{X}, \tilde{Y}) .

Generalized Localization

Localization is to solve equations on some local domain

 $H_{p,\rho}x = y_{p,\rho},$

with the operator $H_{p,\rho}$ which is obtained from the operator H umn. The transformed matrix \tilde{B} is displayed in Figure (b). by restricting it to data defined on $\mathbf{B}_{\rho}(\mathbf{p})$, with $y_{p,\rho}$ defined as We localize the matrix \tilde{B} by multiplication with the matrix the subset of data defined on $B_{\rho}(p)$, and with background shown in (a), the result is displayed in (c). Figure (d) shows • Propagates the ensembles of states $x_k^{(\ell)} \in X$. from t_{k-1} to $x^{(b)}$. It leads to a local analysis $x_i^{(a)}$ and to a local analysis the matrix B_{gl} defined as the backtransformed matrix from ensemble $x_i^{(a,\ell)}$ which is valid in a neighborhood $B_{\rho_i}(p_j)$. We \tilde{B}_{gl} . can write the *local equations* (6) in the form

DWD

(6) Figure 3: We display a local B-matrix in (a), which has been constructed according to as a Gaussian matrix in the col-

- time t_k by applying the model dynamics $M: X \to X$, i.e., $x_k^{(\ell,b)} = M(x_{k-1}^{(\ell,a)}), \ \ell = 1, ..., L.$
- Ensemble matrix *Q* is defined by

$$Q_k^b := \frac{1}{\sqrt{L-1}} \left(x_k^{(1,b)} - x_k^{(b)}, \dots, x_k^{(L,b)} - x_k^{(b)} \right), \ k \in \mathbb{N}.$$

- Set covariance matrix $B = Q^{(b)}(Q^{(b)})^*$, then Kalman gain $K_k = (Q_k^{(b)})(Q_k^{(b)})^* H^* (R + H(Q_k^{(b)})(Q_k^{(b)})^* H^*)^{-1}, \ k \in \mathbb{N}.$ (1)
- The Kalman Update equation

 $x_{k}^{(a)} = x_{k}^{(b)} + K_{k}(y_{k} - Hx_{k}^{(b)}).$

• The ensemble analysis

 $Q_k^{(a)} = Q_k^{(b)} \mathcal{L}$

where $\mathcal{L} = \sqrt{I - (Q_k^{(b)})^* H_k^* (R + H_k Q_k^{(b)} (Q_k^{(b)})^* H_k^*)^{-1} H_k Q_k^{(b)}}$. • An analysis covariance matrix $B^{(a)}$ is calculated by

 $B_{k}^{(a)} = (I - K_{k}H_{k})B_{k}^{(b)},$

Transformed Localization

 $P_{p,\rho}Hx = P_{p,\rho}y,$

where $P_{p,\rho}$ is a projection operator restricting to the ball defined by p and ρ .

In a Generalized Localization Concept we replace the simple operator P by a general family P_j , j = 1, ..., J of pro*jection operators* and solve equations

 $H_i x = y_i$, where $H_i := P_i H$, $y_i := P_i y$,

such that

$$X_j \cap X_i = \{0\}, i \neq j, i, j = 1, ..., J.$$

Now, we solve the equation

 $H_i x = y_i \iff P_i H x = P_i y$

- In order to enhance the numbers of degrees of freedom of the ensemble & cease the false correlation to use localization on ensemble
- If we localize non-local operators, the approximation defined as the backtransformed matrix from \tilde{B}_{gl} . quality can be very poor and assimilation will not give the The difference between a background atmospheric temperdesired result. ature profile and some given temperature profile are dis-
- In general, if the observation operator *H* is non-local, then played in the below figures.

Figure 4: We display a B-matrix constructed from the experimental global LETKF of DWD in (a), which has been constructed by taking the standard stochastic estimator as in (2) and adding a small constant times the Gaussian covariance matrix displayed in Figure (a). The transformed matrix \tilde{B} is displayed in Figure (b). We localize the matrix \tilde{B} by multiplication with the matrix shown in Figure (a), the result is displayed in (c). Figure (d) shows the matrix B_{gl}

• Input is our measurements in a space Y, the observation operator *H* from the state space *X* into *Y* with

Hx = y,

and the ensemble $Q^{(b)}$ defined on X.

• We first calculate a transformation $T : X \rightarrow X$ and $S: Y \to Y$ such that $\tilde{B} = TBT^*$ and $\tilde{H} = SHT^{-1}$ are either diagonal or have small elements in off-diagonal matrix elements far away from the diagonal.

 $\tilde{H}\tilde{x} = \tilde{y}.$

The influence of T&S on EnKF with square root is

 $\tilde{Q} = TQ, \quad \tilde{Q}^* = Q^*T^*, \tilde{R} = SRS^*.$

The transformed Kalman gain matrix as given by (1),

 $\tilde{K}_{k} = \tilde{Q^{(b)}}(\tilde{Q^{(b)}})^{*}\tilde{H^{*}}(\tilde{R} + \tilde{H}\tilde{Q^{(b)}}(\tilde{Q^{(b)}})^{*}\tilde{H^{*}})^{-1}, \ k \in \mathbb{N}.$ (4)

It has been shown by [1, Lemma 6.1, Theorem 6.2] that,

$$\tilde{K}_k(\tilde{y_k} - \tilde{H}x_k^{(b)}) = TK(y_k - Hx_k^b),$$

where the *analysis ensemble* is given by,

$$\tilde{Q_k^{(a)}} = \tilde{Q_k^{(b)}} \tilde{\mathcal{L}}$$
, with a matrix $\tilde{\mathcal{L}} = \mathcal{L}$.

Analysis increment is

 $x^{(a)} - x^{(b)} = TK(y - Hx^{(b)})$, with $\tilde{K} = TKS^{-1}$.

• Then, we solve the localized transformed equations in

even if the *B* matrix is local, the term *HBH*^{*} is non-local and in (1) the inversion will need to solve a full system. In

(2)this case, localization will lead to large errors.

• However, if we transform the state space X and the observation space Y in a way such that \tilde{H} is local and \tilde{B} is local as well, then we can achieve locality of the terms $\tilde{H}\tilde{B}\tilde{H}^*$, $\tilde{B}\tilde{H}^*$ and \tilde{R} , such that \tilde{K} remains local. Then, localization applied to the transformed version of the EnKF will yield small approximation errors.

• The full regularized solution x_{α} equals to the sum of the regularized solutions $x_{pro\,i,\alpha}$ under generalized localization.

Atmospheric Radiance Inversion

Figure 5: The true difference is shown in thick blue, the reconstruction using the Gaussian *B*-matrix from Figure (a) with regularization parameter $\alpha = 0.0001$ is displayed in red, the reconstruction with B_{gl} in black.

each area or block given by the transformations T, S.

• The solution in each area or block are composed into a global analysis $\tilde{x}^{(a)}$ in transformed space.

Brightness Temperature Sensitivity in K/K

Figure 6: The true difference is shown in thick blue, the reconstruction using the LETKF *B*-matrix displayed in Figure with regularization parameter $\alpha = 0.0001$ is displayed in red, the reconstruction with the corresponding B_{gl} in black.

References

[1] A. Nadeem and R. Potthast. Mathematical Methods in the Applied Science, 16, 2015(to appear).

Acknowledgement

This work was supported by Federal Urdu University of Art, Science and Technology, Islamabad Pakistan.

• The transformed analysis $\tilde{x}^{(a)}$ is mapped back into the Figure 1: The sensitivity functions of the temperature senoriginal state space X, i.e. we calculate $x^{(a)}$. If we denote sitive IASI channels of the RTTOV operator H, i.e. the rows the localized transformed matrix by $\tilde{B}_{k,gl}$ (where gl stands $(H_{j1},...,H_{j,n})$ for j = 1,...,m. for *generalized localization*), this means we calculate

(5)

(3)

 $\tilde{x}_{gl}^{(a)} := \tilde{x}^{(b)} + \tilde{K}_{k,gl}(\tilde{y}_k - \tilde{H}\tilde{x}_k^{(b)}),$

where

with

 $\tilde{K}_{k,gl} := \tilde{B}_{k,gl} \tilde{H}^* (\tilde{R} + \tilde{H}\tilde{B}_{k,gl}\tilde{H}^*)^{-1}$

with \tilde{R} given in (4). According to [1, Theorem 6.2, (A.7)], it is equivalent to

$$x_{gl}^{(a)} := x^{(b)} + K_{k,gl}(y_k - Hx_k^{(b)}),$$

 $K_{k,gl} = B_{k,gl}H^*(R + HB_{k,gl}H^*)^{-1},$ for $B_{k,gl} = T^{-1}\tilde{B}_{k,gl}(T^*)^{-1}$ in the original space, transformed into each other by T and S.

Figure 2: Exponential decay of the singular values of *H*.