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Goal
The goal of this work is to suggest a general algorithm
which allows localization in the case of non-local observa-
tion operators which is not restricted by this limit, and to test
its applicability by studying the effect of the transformed lo-
calization when applied to a infrared atmospheric sound-
ing interferometer(IASI)retrieval problem which is known to
have a strong non-locality and is of high interest to both
the research community and operational centers of weather
prediction.

Ensemble Kalman Filter(EnKF)
•Propagates the ensembles of states x(`)

k ∈ X. from tk−1 to
time tk by applying the model dynamics M : X → X, i.e.,

x(`,b)
k = M(x(`,a)

k−1 ), ` = 1, ..., L.

•Ensemble matrix Q is defined by

Qb
k :=

1
√

L − 1

(
x(1,b)

k − x(b)
k , ..., x(L,b)

k − x(b)
k

)
, k ∈ N.

•Set covariance matrix B = Q(b)(Q(b))∗, then Kalman gain

Kk = (Q(b)
k )(Q(b)

k )∗H∗(R + H(Q(b)
k )(Q(b)

k )∗H∗)−1, k ∈ N. (1)

•The Kalman Update equation

x(a)
k = x(b)

k + Kk(yk − Hx(b)
k ).

•The ensemble analysis

Q(a)
k = Q(b)

k L

where L =

√
I − (Q(b)

k )∗H∗k
(
R + HkQ(b)

k (Q(b)
k )∗H∗k

)−1
HkQ(b)

k .

•An analysis covariance matrix B(a) is calculated by

B(a)
k = (I − KkHk)B

(b)
k ,

Transformed Localization
• Input is our measurements in a space Y, the observation

operator H from the state space X into Y with

Hx = y, (2)

and the ensemble Q(b) defined on X.
•We first calculate a transformation T : X → X and

S : Y → Y such that B̃ = T BT ∗ and H̃ = S HT−1 are either
diagonal or have small elements in off-diagonal matrix el-
ements far away from the diagonal.

H̃ x̃ = ỹ. (3)

The influence of T&S on EnKF with square root is

Q̃ = T Q, Q̃∗ = Q∗T ∗, R̃ = S RS ∗.

The transformed Kalman gain matrix as given by (1) ,

K̃k = Q̃(b)(Q̃(b))∗H̃∗(R̃ + H̃Q̃(b)(Q̃(b))∗H̃∗)−1, k ∈ N. (4)

It has been shown by [1, Lemma 6.1, Theorem 6.2] that,

K̃k(ỹk − H̃ ˜x(b)
k ) = T K(yk − Hxb

k),

where the analysis ensemble is given by,

Q̃(a)
k = Q̃(b)

k L̃, with a matrix L̃ = L.

Analysis increment is
˜x(a) − ˜x(b) = T K(y − Hx(b)), with K̃ = T KS −1.

•Then, we solve the localized transformed equations in
each area or block given by the transformations T, S .

•The solution in each area or block are composed into a
global analysis x̃(a) in transformed space.

•The transformed analysis x̃(a) is mapped back into the
original state space X, i.e. we calculate x(a). If we denote
the localized transformed matrix by B̃k,gl (where gl stands
for generalized localization), this means we calculate

x̃(a)
gl := x̃(b) + K̃k,gl(ỹk − H̃ x̃(b)

k ),

where
K̃k,gl := B̃k,glH̃∗(R̃ + H̃B̃k,glH̃∗)−1

with R̃ given in (4). According to [1, Theorem 6.2, (A.7)],
it is equivalent to

x(a)
gl := x(b) + Kk,gl(yk − Hx(b)

k ), (5)

with
Kk,gl = Bk,glH∗(R + HBk,glH∗)−1,

for Bk,gl = T−1B̃k,gl(T ∗)−1.in the original space, transformed
into each other by T and S .

•By [1, Cor 3.4] Singular value decomposition of the op-
erator H provides a transformation of both the spaces X
and Y such that the matrix equation (3) is diagonal and,
thus, can be fully localized in the spaces (X̃, Ỹ).

Generalized Localization
Localization is to solve equations on some local domain
Bρ(p) around some point p and with localization radius ρ,
This means, we solve local linear systems

Hp,ρx = yp,ρ, (6)

with the operator Hp,ρ which is obtained from the operator H
by restricting it to data defined on Bρ(p), with yp,ρ defined as
the subset of data defined on Bρ(p), and with background
x(b). It leads to a local analysis x(a)

j and to a local analysis
ensemble x(a,`)

j which is valid in a neighborhood Bρ j(p j). We
can write the local equations (6) in the form

Pp,ρHx = Pp,ρy,

where Pp,ρ is a projection operator restricting to the ball de-
fined by p and ρ.
In a Generalized Localization Concept we replace the
simple operator P by a general family P j, j = 1, ..., J of pro-
jection operators and solve equations

H jx = y j, where H j := P jH, y j := P jy,

such that
X j ∩ Xi = {0}, i , j, i, j = 1, ..., J.

Now, we solve the equation

H jx = y j ⇔ P jHx = P jy

• In order to enhance the numbers of degrees of freedom
of the ensemble & cease the false correlation to use lo-
calization on ensemble

• If we localize non-local operators, the approximation
quality can be very poor and assimilation will not give the
desired result.

• In general, if the observation operator H is non-local, then
even if the B matrix is local, the term HBH∗ is non-local
and in (1) the inversion will need to solve a full system. In
this case, localization will lead to large errors.

•However, if we transform the state space X and the ob-
servation space Y in a way such that H̃ is local and B̃ is
local as well, then we can achieve locality of the terms
H̃B̃H̃∗, B̃H̃∗ and R̃, such that K̃ remains local. Then, lo-
calization applied to the transformed version of the EnKF
will yield small approximation errors.

•The full regularized solution xα equals to the sum of the
regularized solutions xpro j,α under generalized localiza-
tion.

Atmospheric Radiance Inversion

Figure 1: The sensitivity functions of the temperature sen-
sitive IASI channels of the RTTOV operator H, i.e. the rows
(H j1, ...,H j,n) for j = 1, ...,m.

Figure 2: Exponential decay of the singular values of H.
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Figure 3: We display a local B-matrix in (a), which has been
constructed according to as a Gaussian matrix in the col-
umn. The transformed matrix B̃ is displayed in Figure (b).
We localize the matrix B̃ by multiplication with the matrix
shown in (a), the result is displayed in (c). Figure (d) shows
the matrix Bgl defined as the backtransformed matrix from
B̃gl.
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Figure 4: We display a B-matrix constructed from the ex-
perimental global LETKF of DWD in (a), which has been
constructed by taking the standard stochastic estimator as
in (2) and adding a small constant times the Gaussian co-
variance matrix displayed in Figure (a). The transformed
matrix B̃ is displayed in Figure (b). We localize the matrix
B̃ by multiplication with the matrix shown in Figure (a), the
result is displayed in (c). Figure (d) shows the matrix Bgl

defined as the backtransformed matrix from B̃gl.
The difference between a background atmospheric temper-
ature profile and some given temperature profile are dis-
played in the below figures.

Figure 5: The true difference is shown in thick blue, the
reconstruction using the Gaussian B-matrix from Figure (a)
with regularization parameter α = 0.0001 is displayed in red,
the reconstruction with Bgl in black.

Figure 6: The true difference is shown in thick blue, the re-
construction using the LETKF B-matrix displayed in Figure
with regularization parameter α = 0.0001 is displayed in red,
the reconstruction with the corresponding Bgl in black.
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