Transformed and Generalized Localization for Ensemble Methods in Data Assimilation

Aamir Nadeem and Roland Potthast

Institute for Numerical and Applied Mathematics, University of Göttingen German Weather Service (DWD) \& University of Reading, UK
Deutscher Wetterdienst
Wetter und Klima aus einer Hand

Goal

The goal of this work is to suggest a general algorithm which allows localization in the case of non-local observation operators which is not restricted by this limit, and to test its applicability by studying the effect of the transformed localization when applied to a infrared atmospheric sounding interferometer(IASI)retrieval problem which is known to have a strong non-locality and is of high interest to both the research community and operational centers of weathe prediction.

Ensemble Kalman Filter(EnKF)

- Propagates the ensembles of states $x_{k}^{(\ell)} \in X$. from t_{k-1} to time t_{k} by applying the model dynamics $M: X \rightarrow X$, i.e.,

$$
x_{k}^{(\ell, b)}=M\left(x_{k-1}^{(\ell, a)}\right), \ell=1, \ldots, L .
$$

- Ensemble matrix Q is defined by

$$
Q_{k}^{b}:=\frac{1}{\sqrt{L-1}}\left(x_{k}^{(1, b)}-x_{k}^{(b)}, \ldots, x_{k}^{(L, b)}-x_{k}^{(b)}\right), k \in \mathbb{N} .
$$

- Set covariance matrix $B=Q^{(b)}\left(Q^{(b)}\right)^{*}$, then Kalman gain

$$
\begin{equation*}
K_{k}=\left(Q_{k}^{(b)}\right)\left(Q_{k}^{(b)}\right)^{*} H^{*}\left(R+H\left(Q_{k}^{(b)}\right)\left(Q_{k}^{(b)}\right)^{*} H^{*}\right)^{-1}, k \in \mathbb{N} . \tag{1}
\end{equation*}
$$

- The Kalman Update equation

$$
x_{k}^{(a)}=x_{k}^{(b)}+K_{k}\left(y_{k}-H x_{k}^{(b)}\right)
$$

- The ensemble analysis

$$
Q_{k}^{(a)}=Q_{k}^{(b)} \mathcal{L}
$$

where $\mathcal{L}=\sqrt{I-\left(Q_{k}^{(b)}\right)^{*} H_{k}^{*}\left(R+H_{k} Q_{k}^{(b)}\left(Q_{k}^{(b)}\right)^{*} H_{k}^{*}\right)^{-1} H_{k} Q_{k}^{(b)}}$. - An analysis covariance matrix $B^{(a)}$ is calculated by

$$
B_{k}^{(a)}=\left(I-K_{k} H_{k}\right) B_{k}^{(b)},
$$

Transformed Localization

- Input is our measurements in a space Y, the observation operator H from the state space X into Y with
$H x=y$,
(2)
and the ensemble $Q^{(b)}$ defined on X.
- We first calculate a transformation $T: X \rightarrow X$ and $S: Y \rightarrow Y$ such that $\tilde{B}=T B T^{*}$ and $\tilde{H}=S H T^{-1}$ are either diagonal or have small elements in off-diagonal matrix elements far away from the diagonal.

$$
\begin{equation*}
\tilde{H} \tilde{x}=\tilde{y} . \tag{3}
\end{equation*}
$$

The influence of $T \& S$ on EnKF with square root is

$$
\tilde{Q}=T Q, \quad \tilde{Q}^{*}=Q^{*} T^{*}, \tilde{R}=S R S^{*} .
$$

The transformed Kalman gain matrix as given by (1),

$$
\tilde{K_{k}}=\tilde{Q^{(b)}}\left(\tilde{Q^{(b)}}\right)^{*} \tilde{H}^{*}\left(\tilde{R}+\tilde{H} \tilde{Q^{(b)}}\left(\tilde{Q^{(b)}}\right)^{*} \tilde{H}^{*}\right)^{-1}, k \in \mathbb{N}
$$

It has been shown by [1, Lemma 6.1, Theorem 6.2] that,

$$
\tilde{K}_{k}\left(\tilde{y_{k}}-\tilde{H} x_{k}^{\tilde{b})}\right)=T K\left(y_{k}-H x_{k}^{b}\right),
$$

where the analysis ensemble is given by,

$$
Q_{k}^{\tilde{(a)}}=Q_{k}^{\tilde{(b)}} \tilde{\mathcal{L}}, \text { with a matrix } \tilde{\mathcal{L}}=\mathcal{L} .
$$

Analysis increment is

$$
x^{\tilde{(a)}}-x^{\tilde{(b)}}=T K\left(y-H x^{(b)}\right) \text {, with } \tilde{K}=T K S^{-1} .
$$

- Then, we solve the localized transformed equations in each area or block given by the transformations T, S.
- The solution in each area or block are composed into a global analysis $\tilde{x}^{(a)}$ in transformed space.
- The transformed analysis $\tilde{x}^{(a)}$ is mapped back into the Figure 1: The sensitivity functions of the temperature senoriginal state space X, i.e. we calculate $x^{(a)}$. If we denote sitive IASI channels of the RTTOV operator H, i.e. the rows the localized transformed matrix by $\tilde{B}_{k, g l}$ (where $g l$ stands $\left(H_{j 1}, \ldots, H_{j, n}\right)$ for $j=1, \ldots, m$. for generalized localization), this means we calculate

$$
\tilde{x}_{g l}^{(a)}:=\tilde{x}^{(b)}+\tilde{K}_{k, g l}\left(\tilde{y}_{k}-\tilde{H} \tilde{x}_{k}^{(b)}\right),
$$

where

$$
\tilde{K}_{k, g l}:=\tilde{B}_{k, g l} \tilde{H}^{*}\left(\tilde{R}+\tilde{H} \tilde{B}_{k, g l} \tilde{H}^{*}\right)^{-1}
$$

with \tilde{R} given in (4). According to [1, Theorem 6.2, (A.7)], it is equivalent to

$$
\begin{equation*}
x_{g l}^{(a)}:=x^{(b)}+K_{k, g l}\left(y_{k}-H x_{k}^{(b)}\right), \tag{5}
\end{equation*}
$$

with

$$
K_{k, g l}=B_{k, g l} H^{*}\left(R+H B_{k, g l} H^{*}\right)^{-1},
$$

for $B_{k, g l}=T^{-1} \tilde{B}_{k, g l}\left(T^{*}\right)^{-1}$.in the original space, transformed
into each other by T and S.

- By [1, Cor 3.4] Singular value decomposition of the operator H provides a transformation of both the spaces X and Y such that the matrix equation (3) is diagonal and, thus, can be fully localized in the spaces (\tilde{X}, \tilde{Y}).

Generalized Localization

Localization is to solve equations on some local domain $\mathbf{B}_{\rho}(\mathbf{p})$ around some point p and with localization radius ρ, This means, we solve local linear systems

$$
H_{p, \rho} x=y_{p, \rho},
$$

(6) with the operator $H_{p, \rho}$ which is obtained from the operator H by restricting it to data defined on $\mathbf{B}_{\rho}(\mathbf{p})$, with $y_{p, \rho}$ defined as the subset of data defined on $\mathbf{B}_{\rho}(\mathbf{p})$, and with background $x^{(b)}$. It leads to a local analysis $x_{j}^{(a)}$ and to a local analysis ensemble $x_{j}^{(a, \ell)}$ which is valid in a neighborhood $B_{\rho_{j}}\left(p_{j}\right)$. We $\tilde{B}_{g l}$ can write the local equations (6) in the form

$$
P_{p, \rho} H x=P_{p, \rho} y,
$$

where $P_{p, \rho}$ is a projection operator restricting to the ball defined by p and ρ.
In a Generalized Localization Concept we replace the simple operator P by a general family $P_{j}, j=1, \ldots, J$ of projection operators and solve equations

$$
H_{j} x=y_{j}, \text { where } H_{j}:=P_{j} H, y_{j}:=P_{j} y,
$$

such that

$$
X_{j} \cap X_{i}=\{0\}, i \neq j, i, j=1, \ldots, J .
$$

Now, we solve the equation

$$
H_{j} x=y_{j} \Leftrightarrow P_{j} H x=P_{j} y
$$

- In order to enhance the numbers of degrees of freedom of the ensemble \& cease the false correlation to use localization on ensemble
- If we localize non-local operators, the approximation quality can be very poor and assimilation will not give the desired result.
- In general, if the observation operator H is non-local, then even if the B matrix is local, the term $H B H^{*}$ is non-local and in (1) the inversion will need to solve a full system. In this case, localization will lead to large errors.
- However, if we transform the state space X and the observation space Y in a way such that \tilde{H} is local and \tilde{B} is local as well, then we can achieve locality of the terms $\tilde{H} \tilde{B} \tilde{H}^{*}, \tilde{B} \tilde{H}^{*}$ and \tilde{R}, such that \tilde{K} remains local. Then, localization applied to the transformed version of the EnKF will yield small approximation errors.
- The full regularized solution x_{α} equals to the sum of the regularized solutions $x_{p r o j, \alpha}$ under generalized localization.

Atmospheric Radiance Inversion

