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1. Introduction
Regularization theory deals with the solution of ill-posed operator equations

F( f ) = yδ

where F : dom(F) ⊂ X → Y. A prominent example to solve these equation given per-
turbed data yδ with ‖F( f †) − yδ‖Y ≤ δ is Tikhonov regularization

f δα ∈ argmin
f∈dom(F)

[
1
α

∥∥∥F( f ) − yδ
∥∥∥2
Y

+
1
2
‖ f ‖2X

]
.

For many interesting problems the convergence rates are unknown, while stability estimates
exists. We try to answer the question:

Can stability estimates be sharpened to
variational source conditions?

We consider acoustic medium scattering given by

∆u + κ2u = f u in R3,

∂us

∂r
− iκus = O

(
1
r2

)
as r = |x| → ∞,

where κ > 0, f is the contrast of the medium and

f ∈ D :=
{
f ∈ L∞(R3) : =( f ) ≤ 0,<( f ) ≤ 1, supp( f ) ⊂ B(π)

}
.

The problem is to reconstruct f from the knowledge of the incident wave and measurements
of the scattered field.
Employing methods used to proof the stability estimates (e.g. [4, 6]), for example geomet-
rical optical solutions, we show that for this problem the answer is yes.

2. Why variational source conditions?

In our setting condition of the form: There exists β ∈ (0, 1] and an index function ψ s.t.:

∀ f ∈ dom(F) :
β

2

∥∥∥ f − f †
∥∥∥2
X
≤

1
2
‖ f ‖2X −

1
2

∥∥∥ f †
∥∥∥2
X

+ ψ
(∥∥∥F( f ) − F( f †)

∥∥∥2
Y

)
(VSC)

Advantages over spectral source conditions:
•Yields for Tikhonov regularization the convergence rate

β

2

∥∥∥ f δα − f †
∥∥∥2
X
≤ 4ψ(δ2)

if the index function ψ is concave and the regularization parameter chosen as −1/(2α) ∈
∂(−ψ(4δ2)) (see [3, 7]).

• If (VSC) holds for all f † ∈ K ⊂ X they imply the stability estimate

β

2
‖ f1 − f2‖2X ≤ ψ

(
‖F( f1) − F( f2)‖2

Y

)
, ∀ f1, f2 ∈ K .

• In Hilbert spaces with linear operators necessary and sufficient for certain rates of con-
vergence for a big class of regularization methods (see [2]).

•No further differentiability assumptions on the forward operator no restrictive assump-
tions connecting the operators F and F′ like the tangential cone condition (usually not
verifiable).

•Usable in in a Banach space setting.

• Suitable for more general noise models and data fidelity terms/penalty terms.

Hence popular in regularization theory but few results on the verification of such con-
ditions. [1, 5]

3. Near field inverse scattering

Assumption (Solution regularity) Let 3
2 < m < s, s , 2m + 3/2. Suppose that the true

contrast f † satisfies f † ∈ D ∩ Hs
0(B(π)) with ‖ f †‖Hs ≤ Cs for some Cs ≥ 0.

•Choose R > π.

• For each y ∈ ∂B(R):

– Use a point source as incident wave

ui
y(x) =

1
4π

eiκ|x−y|

|x − y|
.

– For all x ∈ ∂B(R) measure the total field
w f (x, y).

•Define the operator

Fn : D → L2(∂B(R)2), f 7→ w f .

Theorem (VSC for near field) Let R > π and the assumption be fulfilled. Then (VSC)
holds true for the operator Fn with dom(Fn) := D∩ Hm

0 (B(π)) with

ψn(t) := A
(
ln(3 + t−1)

)−2µ
, µ := min

{
1,

s − m
m + 3/2

}
, β =

1
2
,

where the constant A > 0 depends on m, s,Cs, κ and R.

4. Far field inverse scattering

• For each direction d ∈ ∂B(1):

– Use a incident plane wave propagating
in direction d

ui
d,∞(x) = eiκd·x.

– For all directions x̂ ∈ ∂B(1) measure the
far field u∞(x̂, d) defined by

us
d,∞(x) =

eiκ|x|

|x|
u∞

(
x
|x|
, d

)
+ O(|x|−3)

•Define the operator

Ff : D → L2(∂B(1)2), f 7→ u∞.

Theorem (VSC for far field) Let the assumption be satisfied and 0 < θ < 1. Then the Ff

with dom(Ff) := D∩ Hm
0 (B(π)) fulfills (VSC) with

ψf(t) := B
(
ln(3 + t−1)

)−2µθ
, β =

1
2
,

where µ is given as before and the constant B > 0 depends on m, s,Cs, κ, θ and R.

5. Outlook

•Extend the results to other scattering problems, for example electromagnetic inverse
medium scattering.

• Specify the dependenc on the variational source condition of the parameter κ to obtain
Hölder-logarithmic results (see [6]).

•Use Banach space penalty functional.
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