Vertification of a variational source condition
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1. Introduction

Regularization theory deals with the solution of 1ll-posed operator equations

F(f) =)°

where F' : dom(F) ¢ X — Y. A prominent example to solve these equation given per-
turbed data y° with ||F(f") — y°||y < ¢ is Tikhonov regularization
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fa € argmin |\ Z[FCH =, + 3115

For many interesting problems the convergence rates are unknown, while stability estimates
exists. We try to answer the question:

Can stability estimates be sharpened to
variational source conditions?

We consider acoustic medium scattering given by

Au + k*u = fu in R°,
ou® 1
T ik = O(—2

r

or

) asr = |x| — oo,

where k > 0, f 1s the contrast of the medium and

feD:= {f e L(R?): J(f) <0, R(f) < 1,supp(f) C B(n)}.

The problem 1s to reconstruct f from the knowledge of the incident wave and measurements
of the scattered field.

Employing methods used to proof the stability estimates (e.g. [4,6]), for example geomet-
rical optical solutions, we show that for this problem the answer is yes.

2. Why variational source conditions?

In our setting condition of the form: There exists 8 € (0, 1] and an index function ¢ s.t.:

1 1
vf edomPy: Elf = £ <SR =5 17 1+ (lF - FOOI)  vso

Advantages over spectral source conditions:

e Yields for Tikhonov regularization the convergence rate

o 2
3 e = f 1l < 406
if the 1index function ¢ 1s concave and the regularization parameter chosen as —1/(2a) €
O(—y(46%)) (see [3,7)).
o If (VSC) holds for all " € K c X they imply the stability estimate

p

S = Al <w (IFCD) - FRIl).  Vfi.fae k.

e In Hilbert spaces with linear operators necessary and sufficient for certain rates of con-
vergence for a big class of regularization methods (see [2]).

e No further differentiability assumptions on the forward operator ~~ no restrictive assump-

tions connecting the operators F and F” like the tangential cone condition (usually not
verifiable).

e Usable 1n 1n a Banach space setting.

e Suitable for more general noise models and data fidelity terms/penalty terms.

Hence popular in regularization theory but few results on the verification of such con-
ditions. [1, 5]
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3. Near field inverse scattering

Assumption (Solution regularity) Let % <m<s, s #2m+ 3/2. Suppose that the true
contrast ' satisfies f € DN H (B(r)) with || Fgs < C, for some C > 0.

e Choose R > .
e For each y € 0B(R):

— Use a point source as incident wave

1 eiK|x_y|

uy(x) = yP——

—For all x € 0B(R) measure the total field
wr(x,y).
e Define the operator

Fo: D — L*(0B(R)*), f wr.

OB(R

Theorem (VSC for near field) Let R > n and the assumption be fulfilled. Then (VSC)
holds true for the operator F, with dom(Fy,) := D N Hy'(B(r)) with

Ya(t) = A (ln(3 + t_l))_zu : [ := min {1, ms_:;}lz} : B = %,

where the constant A > 0 depends on m, s, Cy, k and R.

4. Far field inverse scattering

e For each direction d € dB(1):

— Use a incident plane wave propagating
in direction d

uid’oo(x) — einOC.

— For all directions x € 0B(1) measure the
far field u®(x, d) defined by

IK| x|
0} oo () = —u" (i d) +O(x)

xl Al

e Define the operator

u>*(z,d) ~
—t1RT ,,S

re” """y () Fr: D — L*(9B(1)%),

f—u”.

Theorem (VSC for far field) Let the assumption be satisfied and 0 < 0 < 1. Then the F;
with dom(Fy) := D N H(B(m)) fulfills (VSC) with

wi(t) = B(In3 + 1) ",

where u is given as before and the constant B > 0 depends on m, s, C, k, 0 and R.

5. Outlook

e Extend the results to other scattering problems, for example electromagnetic inverse
medium scattering.

e Specify the dependenc on the variational source condition of the parameter x to obtain
Holder-logarithmic results (see [6]).

e Use Banach space penalty functional.
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