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Cross-correlations of ambient noise recordings

We consider here the problem of imaging reflectors using cross-correlations of
passive incoherent recordings due to ambient noise sources.

use cross-correlations between pairs of sensors (receivers) to retrieve
information about the Green’s function in the background medium.

Derivative of the cross-correlation between two sensors is the symmetrized
Green’s function between them

achieved either with equi-distribution of sources or through multiple scattering

R.L. Weaver and O.I. Lobkis “Ultrasonics without a source : thermal fluctuation
correlations at MHz frequencies”, Phys. Rev. Lett. 87 (13), 134301, 2001.

R. Snieder, “Extracting the Green’s function from the correlation of coda waves : a
derivation based on stationary phase”, Phys. Rev. E 69, 2005.

C. Bardos, J. Garnier and G. Papanicolaou, “Identification of Green’s functions
singularities by cross-correlation of noisy signals”, Inverse Problems, 24, 015011, 2008.

L. Boschi and C. Weemstra, "Stationary-phase integrals in the cross-correlation of
ambient noise", Reviews of Geophysics, 2015.
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Applications

Historically it was first used in Helioseismology (Duval et al., Nature, 1993)

Then in passive seismology, an alternative way of probing the Earth’s interior
using only noise

Shapiro, N.M. and M. Campillo, Emergence of broadband Rayleigh waves from
correlations of the ambient seismic noise, Geophys. Res. Lett., 31, L07614, 2004.

K.G. Sabra, P. Gerstoft, P. Roux, W.A. Kuperman and M.C. Fehler, “Extracting time
domain Green’s function estimates from ambient seismic noise”, Geophys. Res. Lett.
32, L03310, 2005.

N. M. Shapiro, M. Campillo, L. Stehly and M. Ritzwoller, “High resolution surface
wave tomography from ambient seismic noise”, Science 307, pp. 1615–1618, 2005.

R. Snieder and K, Wapenaar, “Imaging with ambient noise”, Physics Today, 307, pp.
1615–1618, 2010.

New developments on imaging and monitoring with seismic noise. C. R. Geosciences,
343 (8-9), 2011
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Our goal

Our aim is to use these cross-correlations in order to image reflectors
(embedded in complex media).

To do so we will use coherent imaging methods, such as travel time
migration (using arrival time information).
Applications :
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Our goal

Our aim is to use these cross-correlations in order to image reflectors
(embedded in complex media).
To do so we will use coherent imaging methods, such as travel time
migration (using arrival time information).
Applications :

Structural Health Monitoring

E. Larose, O.I. Lobkis, and R. L. Weaver “Passive correlation imaging of a
buried scatterer”, J. Acoust. Soc. Am., 119 (6), 2006.

K. Sabra et al, “Structural health monitoring by extraction of coherent
guided waves from diffuse fields”, J. Acoust. Soc. Am. 123 (1), 2008.
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Our goal

Our aim is to use these cross-correlations in order to image reflectors
(embedded in complex media).
To do so we will use coherent imaging methods, such as travel time
migration (using arrival time information).
Applications :

Exploration geophysics (auxiliary array imaging)

A. Bakulin and R. Calvert, The virtual source method : Theory and case
study, Geophysics, 71(2006), pp. SI139-SI150

K. Wapenaar, E. Slob, R. Snieder, and A. Curtis, Tutorial on seismic
interferometry : Part 2 - Underlying theory and new advances,
Geophysics, 75 (2010), pp. 75A211-75A227.
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Our goal

Our aim is to use these cross-correlations in order to image reflectors
(embedded in complex media).
To do so we will use coherent imaging methods, such as travel time
migration (using arrival time information).
Applications :

Volcano monitoring

Lorent Brenguier, Daniel Clarke, Yosuke Aoki , Nikolai M. Shapiro , Michel
Campillo , Vale rie Ferrazzini , “Monitoring volcanoes using seismic noise
correlations”, C. R. Geoscience 343 (2011) 633–638.

Seismic fault monitoring

Digdem Acarel, Fatih Bulut, Marco Bohnhoff, and Recai Kartal
“Coseismic velocity change associated with the 2011 Van earthquake
(M7.1) : Crustal response to a major event”, Geophys. Res. Lett. 41
(2014) 4519-4526.
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Model problem

We consider a domain Ω containing a reflector O
and u(t, ~x) solution of the acoustic wave equation on Ω \ O :

1

c(~x)2

∂2u(t, ~x)

∂t2
−∆u(t, ~x) = n(t, ~x).

Propagation speed c(~x) is given

c(~x)2 = c20 (homogeneous case),

1

c(~x)2
=

1

c20

[
1 + σµ(

~x

`
)

]
(inhomogeneous case),

c0 is known speed of sound in the background medium,
µ is the normalized fluctuations,
` is the correlation length,
σ controls the strength of the fluctuations,
n(t, ~x) models noise sources.

C. Tsogka (University of Crete) Correlation based Imaging Aug 24-28 2015 8 / 67



Model problem

We consider a domain Ω containing a reflector O
and u(t, ~x) solution of the acoustic wave equation on Ω \ O :

1

c(~x)2

∂2u(t, ~x)

∂t2
−∆u(t, ~x) = n(t, ~x).

Propagation speed c(~x) is given

c(~x)2 = c20 (homogeneous case),

1

c(~x)2
=

1

c20

[
1 + σµ(

~x

`
)

]
(inhomogeneous case),

c0 is known speed of sound in the background medium,
µ is the normalized fluctuations,
` is the correlation length,
σ controls the strength of the fluctuations,
n(t, ~x) models noise sources.

C. Tsogka (University of Crete) Correlation based Imaging Aug 24-28 2015 8 / 67



Model problem

We consider a domain Ω containing a reflector O
and u(t, ~x) solution of the acoustic wave equation on Ω \ O :

1

c(~x)2

∂2u(t, ~x)

∂t2
−∆u(t, ~x) = n(t, ~x).

Propagation speed c(~x) is given

c(~x)2 = c20 (homogeneous case),

1

c(~x)2
=

1

c20

[
1 + σµ(

~x

`
)

]
(inhomogeneous case),

c0 is known speed of sound in the background medium,

µ is the normalized fluctuations,
` is the correlation length,
σ controls the strength of the fluctuations,
n(t, ~x) models noise sources.

C. Tsogka (University of Crete) Correlation based Imaging Aug 24-28 2015 8 / 67



Model problem

We consider a domain Ω containing a reflector O
and u(t, ~x) solution of the acoustic wave equation on Ω \ O :

1

c(~x)2

∂2u(t, ~x)

∂t2
−∆u(t, ~x) = n(t, ~x).

Propagation speed c(~x) is given

c(~x)2 = c20 (homogeneous case),

1

c(~x)2
=

1

c20

[
1 + σµ(

~x

`
)

]
(inhomogeneous case),

c0 is known speed of sound in the background medium,
µ is the normalized fluctuations,

` is the correlation length,
σ controls the strength of the fluctuations,
n(t, ~x) models noise sources.

C. Tsogka (University of Crete) Correlation based Imaging Aug 24-28 2015 8 / 67



Model problem

We consider a domain Ω containing a reflector O
and u(t, ~x) solution of the acoustic wave equation on Ω \ O :

1

c(~x)2

∂2u(t, ~x)

∂t2
−∆u(t, ~x) = n(t, ~x).

Propagation speed c(~x) is given

c(~x)2 = c20 (homogeneous case),

1

c(~x)2
=

1

c20

[
1 + σµ(

~x

`
)

]
(inhomogeneous case),

c0 is known speed of sound in the background medium,
µ is the normalized fluctuations,
` is the correlation length,

σ controls the strength of the fluctuations,
n(t, ~x) models noise sources.

C. Tsogka (University of Crete) Correlation based Imaging Aug 24-28 2015 8 / 67



Model problem

We consider a domain Ω containing a reflector O
and u(t, ~x) solution of the acoustic wave equation on Ω \ O :

1

c(~x)2

∂2u(t, ~x)

∂t2
−∆u(t, ~x) = n(t, ~x).

Propagation speed c(~x) is given

c(~x)2 = c20 (homogeneous case),

1

c(~x)2
=

1

c20

[
1 + σµ(

~x

`
)

]
(inhomogeneous case),

c0 is known speed of sound in the background medium,
µ is the normalized fluctuations,
` is the correlation length,
σ controls the strength of the fluctuations,

n(t, ~x) models noise sources.

C. Tsogka (University of Crete) Correlation based Imaging Aug 24-28 2015 8 / 67



Model problem

We consider a domain Ω containing a reflector O
and u(t, ~x) solution of the acoustic wave equation on Ω \ O :

1

c(~x)2

∂2u(t, ~x)

∂t2
−∆u(t, ~x) = n(t, ~x).

Propagation speed c(~x) is given

c(~x)2 = c20 (homogeneous case),

1

c(~x)2
=

1

c20

[
1 + σµ(

~x

`
)

]
(inhomogeneous case),

c0 is known speed of sound in the background medium,
µ is the normalized fluctuations,
` is the correlation length,
σ controls the strength of the fluctuations,
n(t, ~x) models noise sources.

C. Tsogka (University of Crete) Correlation based Imaging Aug 24-28 2015 8 / 67



The Green’s function
Time domain

The Green’s function G(t, ~x, ~y) is the solution of

1

c(~x)2

∂2G(t, ~x, ~y)

∂t2
−∆G(t, ~x, ~y) = δ(t)δ(~x− ~y)

Assuming G(t, ~x, ~y) = 0 for t < 0 we obtain in a homogeneous medium
c(~x) = c0, the well-known expression

G(t, ~x, ~y) =
1

4π|~x− ~y|
δ(t− |

~x− ~y|
c0

)
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The Green’s function
Frequency domain

In the frequency domain, the time-harmonic Green’s function

Ĝ(ω, ~x, ~y) =

∫
G(t, ~x, ~y)eiωtdt

is the solution of

ω2

c(~x)2
Ĝ(ω, ~x, ~y) + ∆Ĝ(ω, ~x, ~y) = −δ(~x− ~y)

with the Sommerfeld radiation condition (assuming c(~x) = c0 at infinity)

lim
|~x|→∞

|~x|
(
~x

|~x|
∇~x −

iω

c0

)
Ĝ(ω, ~x, ~y) = 0

In a homogeneous medium we obtain

Ĝ(ω, ~x, ~y) =
1

4π|~x− ~y|
ei

ω
c0
|~x−~y|
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The Green’s function
wave equation solution

The solution of the wave equation for a source n(t, ~x) is

u(t, ~x) =

∫ ∫
G(t− s, ~x, ~y)n(s, ~y)d~yds

and in the frequency domain

û(ω, ~x) =

∫
Ĝ(ω, ~x, ~y)n̂(ω, ~y)d~y
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The Kirchhoff Helmholtz identity

~x1
~x2

B(0, D)
B(0, L)

Assume that the medium is homogeneous outside B(0, D), then

Ĝ(ω, ~x1, ~x2)− Ĝ(ω, ~x1, ~x2) =
2iω

c0

∫
∂B(0,L)

Ĝ(ω, ~x1, ~y)Ĝ(ω, ~x2, ~y)ds(~y)

for L� D and ∀~x1, ~x1 ∈ B(0, D) (the medium can be heterogeneous in
B(0, D)).
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The Kirchhoff Helmholtz identity
Proof

Let G(ω, ~y, ~x1) and G(ω, ~y, ~x2) solutions of

ω2

c(~x)2
Ĝ(ω, ~y, ~x1) + ∆Ĝ(ω, ~y, ~x1) = −δ(~y − ~x1) (1)

ω2

c(~x)2
Ĝ(ω, ~y, ~x2) + ∆Ĝ(ω, ~y, ~x2) = −δ(~y − ~x2) (2)

Multiply (2) by Ĝ(ω, ~y, ~x1) and (1) by Ĝ(ω, ~y, ~x2) and subtract

Ĝ(ω, ~y, ~x1)× (2)− Ĝ(ω, ~y, ~x2)× (1) :

∇ ·
(
Ĝ(ω, ~y, ~x1)∇Ĝ(ω, ~y, ~x2)− Ĝ(ω, ~y, ~x2)∇Ĝ(ω, ~y, ~x1)

)
=

= −δ(~y − ~x2)Ĝ(ω, ~y, ~x1) + δ(~y − ~x1)Ĝ(ω, ~y, ~x2)

= −δ(~y − ~x2)Ĝ(ω, ~x2, ~x1) + δ(~y − ~x1)Ĝ(ω, ~x1, ~x2)

(reciprocity) = −δ(~y − ~x2)Ĝ(ω, ~x1, ~x2) + δ(~y − ~x1)Ĝ(ω, ~x1, ~x2)
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The Kirchhoff Helmholtz identity
Proof continues

By integrating the previous expression over the ball B(0, L) and using the
divergence theorem, we obtain∫
∂B(0,L)

~y

|~y|
·
(
Ĝ(ω, ~y, ~x1)∇Ĝ(ω, ~y, ~x2)− Ĝ(ω, ~y, ~x2)∇Ĝ(ω, ~y, ~x1)

)
ds(~y)

= −Ĝ(ω, ~x1, ~x2) + Ĝ(ω, ~x1, ~x2)

Using the Sommerfeld radiation condition (letting L→∞) we replace
~y

|~y|
· ∇Ĝ(ω, ~y, ~x2) by

iω

c0
Ĝ(ω, ~y, ~x2) and

~y

|~y|
· ∇Ĝ(ω, ~y, ~x1) by

−iω
c0

Ĝ(ω, ~y, ~x1) to obtain

2iω

c0

∫
∂B(0,L)

Ĝ(ω, ~x1, ~y)Ĝ(ω, ~x2, ~y)ds(~y) = Ĝ(ω, ~x1, ~x2)− Ĝ(ω, ~x1, ~x2)
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Noise sources

n(~x, t) is a zero mean stationary (in time) random process,

its correlation function is

E {n(~x1, t1)n(~x2, t2)} = F (t1 − t2)K(~x1)δ(~x1 − ~x2)

assume Gaussian statistics for the noise sources
assume that the coherence time of the sources is small compared to the

typical travel times, i.e., F (t) = Fε(t) = F

(
t

ε

)
K(~x) characterizes the spatial support of the sources
(if K(~x) ≡ 1 there are noise sources everywhere)
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Computation of cross-correlations

Let u(t, ~x1) and u(t, ~x2) be the wave fields recorded at ~x1 and ~x2. Their
empirical cross correlation is

CT (τ, ~x1, ~x2) =
1

T

∫ T

0

u(t, ~x1)u(t+ τ, ~x2)dt

Theorem
The expectation of the empirical cross correlation CT (with respect to the
distribution of the sources) is independent of T :

〈CT (τ, ~x1, ~x2)〉 =
1

2π

∫ ∫
Ĝ(ω, ~x1, ~y)Ĝ(ω, ~x2, ~y)K(~y)F̂ε(ω)e−iωτd~ydω,
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Proof

The solution of the wave equation can be written as (change of variable s̃→ t− s)

u(t, ~x) =

∫ t

−∞

∫
G(t− s, ~x, ~y)nε(s, ~y)d~yds =

∫ ∞
0

∫
G(s̃, ~x, ~y)nε(t− s̃, ~y)d~yds̃

Extending G(t, ~x, ~y) = 0 for t ≤ 0, we get

u(t, ~x) =

∫ ∞
−∞

∫
G(s, ~x, ~y)nε(t− s, ~y)d~yds

The stationarity of nε implies stationarity of u(t, ~x), hence the mean of CT does
not depend on T and is given by

C(1)(τ, ~x1, ~x2) := 〈CT (τ, ~x1, ~x2)〉 = 〈u(0, ~x1)u(τ, ~x2)〉

=

∫
d~y1

∫
d~y2

∫
ds

∫
ds′G(s, ~x1, ~y1)G(s′, ~x2, ~y2) 〈nε(−s, ~y1)nε(τ − s′, ~y2)〉

=

∫
d~y

∫
ds

∫
ds′G(s, ~x1, ~y)G(s′, ~x2, ~y)K(~y)Fε(−s− τ + s′)
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Proof

doing a change of variables s1 = s, s2 = −s− τ + s′ we get

C(1)(τ, ~x1, ~x2) =

∫
d~y

∫
ds1

∫
ds2G(s1, ~x1, ~y)G(τ + s1 + s2, ~x2, ~y)K(~y)Fε(s2)

using Fourier transform and going in the frequency domain we obtain the result,

C(1)(τ, ~x1, ~x2) =∫
e−iω1s1−iω2(τ+s1+s2)Ĝ(ω1, ~x1, ~y)Ĝ(ω2, ~x2, ~y)K(~y)Fε(s2)d~yds1ds2

dω1

2π

dω2

2π
(
∫
ds1 ⇒ ω1 = −ω2)∫

e−iω2(τ+s2)Ĝ(−ω2, ~x1, ~y)Ĝ(ω2, ~x2, ~y)K(~y)Fε(s2)d~yds2
dω2

2π
(F̂ε(−ω2) = (

∫
e−iω2s2Fε(s2)ds2) and F̂ε real valued and even∫

e−iω2τ Ĝ(−ω2, ~x1, ~y)Ĝ(ω2, ~x2, ~y)K(~y)F̂ε(ω2)d~y
dω2

2π

(f(t) real ⇒ f̂(−ω) = f̂(ω))∫
e−iωτ Ĝ(ω, ~x1, ~y)Ĝ(ω, ~x2, ~y)K(~y)F̂ε(ω)d~y

dω

2π
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Expectation of cross-correlation

We showed that the expectation of the empirical cross correlation CT is
independent of T and given by :

C(1)(τ, ~x1, ~x2) =
1

2π

∫ ∫
Ĝ(ω, ~x1, ~y)Ĝ(ω, ~x2, ~y)K(~y)F̂ε(ω)e−iωτd~ydω,

We can re-write C(1)(τ, ~x1, ~x2) as

C(1)(τ, ~x1, ~x2) =

∫
e−iωτ D̂(ω, ~x1, ~x2)F̂ε(ω)

dω

2π

with
D̂(ω, ~x1, ~x2) =

∫
Ĝ(ω, ~x1, ~y)Ĝ(ω, ~x2, ~y)K(~y)d~y
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Self averaging property

Theorem
The empirical cross correlation CT is a self-averaging quantity

CT (τ, ~x1, ~x2)
T→∞−→ C(1)(τ, ~x1, ~x2)

in probability with respect to the distribution of the sources.

CT is a statistically stable quantity : for large T , CT is independent of the
realization of the noise sources !
This implies, in particular, that the SNR of the cross-correlations is
proportional to

√
T !

SNR(X) =
< X >√
V ar(X)
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Self averaging property
Proof

Proof : show that the variance of CT tends to zero as T →∞ (the rate is
O(1/T )).
The covariance of the empirical cross correlation CT is :

Cov
(
CT (τ, ~x1, ~x2), CT (τ ′, ~x3, ~x4)

)
=

1

2πT

∫
D̂(ω, ~x1, ~x3)D̂(ω, ~x2, ~x4)(F̂ε(ω))2e−iω(τ ′−τ)dω

+
1

2πT

∫
D̂(ω, ~x1, ~x4)D̂(ω, ~x2, ~x3)(F̂ε(ω))2e−iω(τ ′+τ)dω

For details see
J. Garnier and G. Papanicolaou, “Passive sensor imaging using cross
correlations of noisy signals in a scattering medium”, SIAM J. Imaging
Sciences, 2 :396–437, 2009.
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Emergence of the Green’s function from noise
cross-correlations

Assume that the medium is homogeneous outside B(0, D) and that the noise
sources are distributed with uniform density on the surface of a sphere
B(0, L) with L� D

~x1

~x2

B(0, D)

B(0, L) noise sources

If ε� 1 then Fε behaves like a delta-function and we get

∂

∂τ
C(1)(τ, ~x1, ~x2) ≈ G(τ, ~x1, ~x2)−G(−τ, ~x1, ~x2)

In the more general case, for spatially localised noise sources, the cross
correlation between ~x1 and ~x2 is expected to have a singular component at
the travel time between the two points only if the ray going through ~x1 and
~x2 reaches into the source region, that is, into the support of the function
K(~y). This is shown using stationary phase.
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2π

Using the Kirchhoff-Helmholtz identity
2iω

c0

∫
∂B(0,L)

Ĝ(ω, ~x1, ~y)Ĝ(ω, ~x2, ~y)ds(~y) = Ĝ(ω, ~x1, ~x2)− Ĝ(ω, ~x1, ~x2)
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∂
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Spatially localised noise sources
WKB assymptotics

We assume a slowly varrying c(~x) and use the WKB
(Wentzell-Kramers-Brillouin) asymptotics for the Green’s function

Ĝ(
ω

ε
, ~x, ~y) ≈ a(~x, ~y)eiω

τ(~x,~y)
ε

The amplitude a(~x, ~y) and travel time τ(~x, ~y) are smooth except at ~x = ~y.

To obtain this we seek for an expansion of Ĝ(ωε , ~x, ~y) as ε→ 0 of the form

Ĝ(
ω

ε
, ~x, ~y) = ei

ω
ε T (~x,~y)

∞∑
j=0

Aj(~x, ~y)
εj

ωj

substituting in

ω2

ε2c(~x)2
Ĝ(
ω

ε
, ~x, ~y) + ∆Ĝ(

ω

ε
, ~x, ~y) = −δ(~x− ~y)
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Spatially localised noise sources
WKB asymptotics

we get

Terms of O
(

1
ε2

)
: |∇T (~x, ~y)|2 − 1

c(~x)2
= 0, eikonal for the travel time

Terms of O
(

1
ε

)
: 2∇T (~x, ~y) · ∇A0(~x, ~y) +A0(~x, ~y)∆T (~x, ~y) = 0,

transport for the amplitude

that we can solve with the method of characteristics (rays)
We have a(~x, ~y) = A0(~x, ~y) and τ(~x, ~y) = T (~x, ~y)

In the homogeneous case : a(~x, ~y) =
1

4π |~x− ~y|
and τ(~x, ~y) =

|~x− ~y|
c0
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Spatially localised noise sources
Ray equations

The travel time can be obtained from Fermat’s principle :

τ(~x, ~y) = inf

{
Ts.t.∃(Xt)t∈[0,T ] ∈ C1, X0 = ~x, XT = ~y,

∣∣∣∣dXt

dt

∣∣∣∣ = c(Xt)

}
The minimising curve Xt is a ray and we assume that c(~x) is such that there
is a unique ray joining any ~x, ~y. We need the following Lemma :

Lemma
If ∇~yτ(~x1, ~y) = ∇~yτ(~x2, ~y) then ~x1 and ~x2 lie on the same ray issuing from ~y
and

τ(~x1, ~x2) = |τ(~x2, ~y)− τ(~x1, ~y)| .

While if ∇~yτ(~x1, ~y) = −∇~yτ(~x2, ~y) then ~x1 and ~x2 lie on the opposite sides of
the same ray issuing from ~y and

τ(~x1, ~x2) = τ(~x1, ~y) + τ(~x1, ~y).
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Spatially localised noise sources
back to cross-correlations

We have

C(1)(τ, ~x1, ~x2) =

∫
e−iωτ Ĝ(ω, ~x1, ~y)Ĝ(ω, ~x2, ~y)K(~y)F̂ε(ω)d~y

dω

2π

Now use that F̂ε(ω) = εF̂ (εω) (since Fε(t) = F ( tε )) to get

C(1)(τ, ~x1, ~x2) = ε

∫
e−iωτ Ĝ(ω, ~x1, ~y)Ĝ(ω, ~x2, ~y)K(~y)F̂ (εω)d~y

dω

2π

With the change of variables ω̃ = εω,

C(1)(τ, ~x1, ~x2) =

∫
e−i

ω̃
ε τ Ĝ(

ω̃

ε
, ~x1, ~y)Ĝ(

ω̃

ε
, ~x2, ~y)K(~y)F̂ (ω̃)d~y

dω̃

2π
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Spatially localised noise sources
stationary phase

Using the WKB approximation for Ĝ we get

C(1)(τ, ~x1, ~x2) =

∫
a(~x1, ~y)a(~x2, ~y)ei

ω
ε T (~y)K(~y)d~y

dω

2π

with phase
ωT (~y) = ω (τ(~x2, ~y)− τ(~x1, ~y)− τ)

Stationary phase implies that the main contributions come from the critical
points where

∂

∂ω
(ωT (~y)) = 0, ∇~y (ωT (~y)) = 0

from where it follows that

τ(~x2, ~y)− τ(~x1, ~y) = τ, ∇~yτ(~x1, ~y) = ∇~yτ(~x2, ~y)

The previous Lemma implies that ~x1 and ~x2 lie on the same ray issuing from
~y ! In order for a stationary point to contribute we need K(~y) 6= 0which
means that ~y has to be in the source region !
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Spatially localised noise sources

Possible configurations when ∇~yτ(~x1, ~y) = ∇~yτ(~x2, ~y)

~x2

~x1

~y

source region

~y

~x2

~x1

source region

τ(~x1, ~x2) = τ(~x2, ~y)− τ(~x1, ~y) τ(~x1, ~x2) = −(τ(~x2, ~y)− τ(~x1, ~y))

~x1

~x2

source region

~y

no contribution !
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Seismic noise : An example
Cross-correlations

Two seismic stations (Santorini and Naxos)
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-0.01

0

0.01
First 30 days of 2012. SNR=14.3187

-300 -200 -100 0 100 200 300
-0.01

0

0.01
First 90 days of 2012. SNR=26.3629

-300 -200 -100 0 100 200 300
-0.01

0

0.01
All days of 2012. SNR=45.5967

The cross-correlations between the two stations as a function of recording time.
Distance : 78Km , Mean Speed : 2.1 Km/s ⇒ expected peak at ±37s

Recall SNR analysis (
√
T )

Use these cross-correlations to : Estimate the velocity structure in the crust
Volcano monitoring (Santorini/seismic activity)
Seismic fault monitoring
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The imaging problem

noise sources are spatially localized,
sensors (~xq)16q6Nq

are located between the sources and the reflector

This is the daylight configuration (Josselin’s talk) : there are rays that
emanating from the source region meet first a sensor and then the reflector !
Stationary phase analysis shows that the cross correlation between two
sensors ~x1 and ~x2 has a singular component at +/− the sum of the travel
times between the sensors and the reflector

τ(z∗, ~x1) + τ(z∗, ~x2)
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Imaging functional

To image the reflector it seems a good idea to compute

ID(z) =

Nq∑
q,q′=1

CT (τ(z, ~xq′) + τ(z, ~xq), ~xq, ~xq′),

for points z in a search domain.
we could also use the −(τ(z, ~xq′) + τ(z, ~xq))), but it should not make a
difference since we expect CT (−τ, ~xq, ~xq′) = CT (τ, ~xq′ , ~xq). In practice we
may want to average the cross-correlation over the positive and negative
times.
ID(z) is Kirchhoff migration (or travel time migration) and has been
analyzed in detail (Beylkin, Bleistein, Symes, ...) in the case of an active
array, i.e., when we send pulses from sources at the array and record the
echoes at the receivers.
Here the difference is that the array is passive and records noisy signals. By
forming the cross-correlations of the recorded signals we transform the
“passive array” into an active one.
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Simulation setup

wave equation on the rectangle
[0, 50λ]× [−15λ, 15λ], with a
reflector located on
[44λ, 46λ]× [−λ, λ],
random distribution of sources
has support on the rectangle
[0, 4λ]× [−15λ, 15λ],
we record the solution u of the
wave equation at Nq receivers
located at
~xq = (5λ, (q − (Nq + 1)/2)λ/2),
for 1 6 q 6 Nq,
λ = 6mm and c0 = 3km/s,
the reflector is modeled as a soft
acoustic scatterer, i.e. u = 0 on
the boundary of the reflector
we surround domain by PML

Image domain : square of size 20λ cen-
tered on the reflector
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Numerical solution of wave equation

We solve the wave equation with the code Montjoie
(http://montjoie.gforge.inria.fr/).

Montjoie is designed for the efficient solution of time-domain and
time-harmonic linear partial differential equations using high-order finite
element methods.
For the numerical examples considered here we use 7th order finite elements
in space and 4th order finite differences in time.
We added the computation of cross-correlations and imaging functionals in
Montjoie.
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Results (homogeneous test case)

Figure : Imaging functional for the homogeneous medium. Nq = 21

C. Tsogka (University of Crete) Correlation based Imaging Aug 24-28 2015 25 / 67



Results (homogeneous test case)

Figure : Imaging functional for the homogeneous medium. Nq = 31
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Results (homogeneous test case)

Figure : Imaging functional for the homogeneous medium. Nq = 41
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Results (homogeneous test case)

Figure : Imaging functional for the homogeneous medium. Nq = 51
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Image quality

A good question that naturally arise is “Under what conditions do we obtain
such a good image” ?

In other words, “What are the parameters that control the quality of the
image, and how” ?
Resolution analysis (same as for the active case)

Cross range resolution : λL/a.
Range resolution : c0/B

J. Garnier and G. Papanicolaou, “Resolution analysis for imaging with noise”,
Inverse Problems, Vol. 26, pp. 074001, 2010.
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Signal to Noise Ratio analysis

SNR analysis : Assuming that the sources surround the region of interest, and
that the receiver array is sampled at half-a-wavelength apart (or larger), we
show that

SNRD =

〈
ID(zr)

〉
Var
(
ID(z)

)1/2 ∼ N2
qB√

N2
qB/T

= Nq

√
BT

Numerically we compute

SNR =
|ID|(z∗)

maxz6=z∗ |ID|(z)

where z∗ is the point where the image admits its maximal value and z 6= z∗

means that squares of size 2λ× 2λ centered at z and z∗ do not intersect.
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Array size

Nq = 21, a = 10λ Nq = 31, a = 15λ

15 20 25 30 35 40 45 50 55 60 65
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5

Nq = 41, a = 20λ SNR vs Nq
∗

∗ disks ∆Xq = λ/2, triangles ∆Xq = λ

Resolution improves with array size and SNR increases linearly with number of receivers
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Recording time

T = 1920µs T = 3840µs
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T = 8640µs SNR vs T

SNR is proportional to
√
T
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Bandwidth

B = 56 kHz B = 125 kHz
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B = 250 kHz SNR vs B

Range resolution improves with bandwidth and SNR is proportional to
√
B
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To resume

Our analysis shows that the important parameters for imaging are :

1 The number of sensors Nq. Both cross-range resolution and SNR linearly
improve with Nq.

2 The bandwidth of the noise sources B. Range resolution improves linearly
with B, while the SNR is proportional to

√
B.

3 The recording time T . The SNR of the cross-correlations, and therefore the
SNR of the image as well, is proportional to

√
T .

Numerical results are in very good agreement with the theory.

J. Garnier, G. Papanicolaou, A. Semin and C.T., “Signal to Noise Ratio estimation in
passive correlation based imaging”, SIAM J. Imaging Sci. 6-2 (2013), pp. 1092-1110.
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Imaging with waves in complex media

surface array

object to be imaged

auxiliary array

motivation : exploration
geophysics

traditional approach : surface
array imaging
complex medium impedes the
imaging process
auxiliary receiver array does it
helps and how ?
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Imaging with waves in complex media

surface array

object to be imaged

auxiliary array

motivation : exploration
geophysics
traditional approach : surface
array imaging
complex medium impedes the
imaging process

auxiliary receiver array does it
helps and how ?

problem : small signal to noise ratio, i.e., scatterer echoes are overwhelmed by
reflections from the background medium.
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Imaging with waves in complex media

surface array

object to be imaged

auxiliary array

motivation : exploration
geophysics
traditional approach : surface
array imaging
complex medium impedes the
imaging process
auxiliary receiver array does it
helps and how ?

How to use the recorded signals on the auxiliary array so as to make a good
image ?
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Imaging with waves in complex media

surface array

object to be imaged

auxiliary array

motivation : exploration
geophysics
traditional approach : surface
array imaging
complex medium impedes the
imaging process
auxiliary receiver array does it
helps and how ?

Mathematical Model : study wave propagation in inhomogeneous random media
with a velocity that fluctuates arround a known mean
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Here there are no random sources, the sources are deterministic
the randomness comes form the complex medium. Here µ, is obtained by
combining an isotropic and a layered random variable,

µ(~x) =
1√
2

(µi(~x) + µl(~x)) ,

with standard deviation σ = 0.08. The isotropic part µi(~x) = µ
(
x
` ,

z
`

)
, has a

Gaussian correlation function

E{µi(~x1)µi(~x2)} = R(~x1, ~x2) = e−
|~x1−~x2|

2

2`2 , ` = λ/2

and the layered random variable, µl(~x) = µ
(
z
`z

)
, satisfies

E{µl(z1)µl(z2)} =

(
1 +
|z1 − z2|

`z

)
e−
|z1−z2|
`z , `z = λ/30.
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Traditional Imaging

Image obtained using the array at the top

Statistically unstable and with very low signal to noise ratio :
good image only for very low fluctuations
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Traditional Imaging

Image obtained using the bottom array

Statistically unstable and with very low signal to noise ratio :
good image only for very low fluctuations
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Correlation based Imaging

We compute cross-correlations at the auxiliary array by

C(τ, ~xl, ~xm) =
1

T

Ns∑
s=1

∫
u(t, ~xl;~xs)u(t+ τ, ~xm;~xs)dt

Note that this is coherent averaging over the sources which is not what we
do in the ambient noise problem where

C(τ, ~xl, ~xm) =
1

T

∫ ( Ns∑
s=1

u(t, ~xl;~xs)

)(
Ns∑
s=1

u(t+ τ, ~xm;~xs)

)
dt
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Correlation based Imaging

Correlation based imaging with the auxiliary array

Statistically stable : high SNR even for strong medium fluctuations
(depends on bandwidth, complex medium characteristics, array characteristics)

C. Tsogka (University of Crete) Correlation based Imaging Aug 24-28 2015 36 / 67



Wave propagation through a strongly scattering medium

The field transmitted through the random strongly scattering medium has
Gaussian statistics, mean zero, and cross correlations of the form

E
[
û(ω, ~xq;~xs)û(ω′, ~xq′ ;~xs′)

]
= 0

E
[
û(ω, ~xq;~xs)û(ω′, ~xq′ ;~xs′)

]
= F̂ (ω)F̂ (ω′) exp

(
− (ω−ω′)2

ω2
c

)
× exp

(
− |xq−xq′ |

2

X2
cq

− |xs−xs′ |
2

X2
cs

)
,

ωc : correlation frequency of the field in the plane z = −L of the auxiliary
receiver array,
Xcq is the correlation radius of the field at the auxiliary receiver array (when
emitted from a point source at the source array),
Xcs is the correlation radius of the field at the source array (when emitted
from a point source at the auxiliary receiver array).
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Image quality : Resolution analysis

Cross range resolution : λ(Ly − L)/aeff .

with ahom
eff = b

Ly − L
L

and areff =
λ(Ly − L)

Xcq

and is improved in the random paraxial case.

(a) Homogeneous medium (b) Random medium

J. Garnier and G. Papanicolaou, Role of scattering in virtual source imaging, SIAM
Journal of Imaging Science 7 (2014), pp. 1210-1236.
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Cross-range resolution : λ(Ly − L)/aeff

a = 30λ a = 20λ

a = 10λ a = 5λ

The array size does not seem to affect the resolution ! (here aeff = 9λ)
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Range resolution : c0/B

B = 7.5Hz B = 10Hz

B = 15Hz B = 40Hz

Range resolution improves with B
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Image quality : SNR analysis

We show that, the SNR defined by,

SNRCC =
|E[ICC(~y)]|

Var(ICC(~yS))1/2
, (1)

satisfies (for Xcs � b and ωc � B)

SNRCC ≈
σrefXcq

λ2(Ly − L)

( b

max{∆Xs, Xcs}

)1/2( a

max{∆Xq, Xcq}

)( B
ωc

)1/2

.

When the correlation radius Xcq is small, it is relevant to have a dense auxiliary
receiver array for a given aperture in order to get good stability.

For a given aperture a, the SNR increases when the inter-distance ∆Xq decreases,
until the inter-distance becomes of the order of the correlation radius Xcq of the
illumination field, and then the SNR reaches a value determined by Xcq.
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SNR vs bandwidth
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Figure : SNR vs bandwidth

SNR is proportional to
√
B

C. Tsogka (University of Crete) Correlation based Imaging Aug 24-28 2015 42 / 67



SNR vs number of sources

5 10 15 20 25 30 35 40 45 50
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15
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30

Figure : SNR as a function of b (in λ). Blue circles correspond to ∆Xs = λ/2, red
squares to ∆Xs = λ and yellow triangles to ∆Xs = 3λ/2.

SNR is proportional to
√
b (Xcs > ∆Xs)
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SNR vs number of receivers
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(a) SNR as a function of 1/∆Xq

(measured in λ/2) for a fixed ar-
ray aperture a = 21λ.
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(b) SNR as a function of Nq

SNR is proportional to Nq (Xcq < ∆Xq)
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Conclusions

Virtual source array imaging : Imaging by migrating the cross-correlation matrix
of the auxiliary array data gives much better images then migrating the data !

In fact the random medium effects are eliminated and it is “even better” then if an
active array near the object was used for imaging (only the down-going part of the
Green’s function is reconstructed)
Differences w.r.t the homogeneous case :

1 SNR depends on the inter-element (auxiliary) array distance which should be
of the order of Xcq for optimal SNR.

2 SNR is proportional to
√
Ns. SNR also depends on the inter-element (source)

array distance which should be of the order of Xcs for optimal SNR.
Numerical results are in very good agreement with the theory. Resolution analysis
in agreement with results obtained in the random paraxial regime.

J. Garnier, G. Papanicolaou, A. Semin and C.T., Signal to Noise Ratio estimation in
virtual source array imaging, SIAM Journal on Imaging Science 8 (2015), pp.
248-279.
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Seismic noise : An example
The seismic stations

Two seismic stations (Santorini and Naxos)
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Seismic noise : An example
Recordings on Santorini station

SANT

The data recorded on Santorini filtered in frequency range [0.2, 0.5]Hz
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Seismic noise : An example
Recordings on Naxos station

APE

The data recorded on Naxos filtered in frequency range [0.2, 0.5]Hz

C. Tsogka (University of Crete) Correlation based Imaging Aug 24-28 2015 47 / 67



Seismic noise : An example
Cross-correlations (3 months)

-300 -200 -100 0 100 200 300
-0.01

0

0.01
1-Jan-2012 to 31-Mar-2012. SNR=26.3629

-300 -200 -100 0 100 200 300
-0.01

0

0.01
1-Jun-2012 to 31-Aug-2012. SNR=22.0641

-300 -200 -100 0 100 200 300
-0.01

0

0.01
1-Sep-2012 to 31-Nov-2012. SNR=30.1720

Observe variability w.r.t to the season of the year !
Due to seasonal variations of the medium or of the noise sources ?

(non-stationarity)
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Two methods to estimate dc/c

We want to use the cross-correlations to estimate relative velocity changes in the
propagating medium.
Two methods are mainly used to estimate dc/c. They both compare :

CCref : the average CC over a long period (reference)
CCcur : average of CC over a small period around the current day

MWCS method operates in the frequency domain
SM operates in the time domain
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Two methods to estimate dc/c
Stretching Method

A small change in the velocity c→ c(1 + dc/c) induces a change in travel time
t→ t(1 + dt/t) (with dc/c = −dt/t). We want to measure the stretching
coefficient ε = dt/t by comparing CCref and CCcur.

We seek ε that maximizes :

C(ε) =

∫
CCcur(t(1 + ε))CCref(t)dt√

(
∫

CC2
cur(t(1 + ε))dt)(

∫
CC2

ref(t)dt)
,

where the integration is over a specific time window.

We seek for the parameter ε in a search interval [−εmax : εmax], with an accuracy
dε = 10−6 (using adaptive refinement).
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Two methods to estimate dc/c
MWCS Method

The MWCS method detects a phase shift in the frequency domain.

We divide each cross-correlation function into Nw windows, with each window
centered around time ti, i = 1, ..., Nw. For each central time ti we get a
measurement dti using the corresponding windowed segments of CCref and CCcur.
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Two methods to estimate dc/c
MWCS Method

Those segments after being window tapered, they are being fourier transformed
and called Fref(ν) = F (CCref) and Fcur(ν) = F (CCref) respectively.
Then the cross-spectrum is calculated as

X(ν) = Fref(ν) F ∗cur(ν),
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Two methods to estimate dc/c
MWCS Method

We estimate the phase of the cross-spectrum ϕi(νj) as a function of frequency νj ,

ϕi(νj) = 2π dti νj ,

and then we estimate dti the time shift corresponding to the central time ti. From
this we get dc/c = −dt/t using weighted least squares.

D. Clarke and L. Zaccarelli and N.M. Shapiro and F. Brenguier “Assessment of
resolution and accuracy of the Moving Window Cross Spectral technique for
monitoring crustal temporal variations using ambient seismic noise”, Geophys. J. Int.
186 (2011) 867-882.
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What are seasonal variations ?

It has been observed that noisy recordings have seasonal variations

Power spectral density of recordings on Milos island. Vertical axis : time in days
(850 days ≈ 2.3 years). Horizontal axis : frequency between 0 and 1 Hz.
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What are seasonal variations ?

Seasonal variations in the seismic velocity are observed in

Ueli Meier, Nikolai M. Shapiro and Florent Brenguier, “Detecting seasonal variations in
seismic velocities within Los Angeles basin from correlations of ambient seismic noise”,
Geophys. J. Int. (2010) 181, 985–996

where it is suggested that they are due to hydrological and/or thermoelastic
variations of the medium.

On the other hand
Zhongwen Zhan, Victor C. Tsai and Robert W. Clayton, “Spurious velocity changes caused
by temporal variations in ambient noise frequency content”, Geophys. J. Int. (2013) 194,
1574–1581

suggest that the observed variations are spurious and are due to seasonal
variations in the amplitude spectrum of the noise sources.

To study the effect of seasonal variations of the ambient noise sources on the
estimated changes of the seismic velocity we design simple but realistic numerical
experiments
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Modelling the seasonal variations : the wave equation

We consider the acoustic wave equation :

1

c(~x)2

∂2u

∂t2
(t, ~x)−∆u(t, ~x) = n(t, ~x),

where n(t, ~x) models the noise sources.

The solution at a given point ~x can be
written as,

u(t, ~x) =

∫ ∫
G(t− s, ~x, ~y)n(s, ~y)d~yds,

or equivalently in the frequency domain,

û(ω, ~x) =

∫
Ĝ(ω, ~x, ~y)n̂(ω, ~y)d~y.

Here hat denotes the Fourier transform and Ĝ(ω, ~x, ~y) is the Green’s function.
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Modelling the seasonal variations : The sources

We assume that n(t, ~x) is a zero-mean stationary in time random process with a
covariance function

〈n(t1, ~y1), n(t2, ~y2)〉 = Γ(t2 − t1, ~y1)δ(~y2 − ~y1).

Here 〈·〉 stands for statistical averaging. The function t→ Γ(t, ~y) is the time
correlation function of the noise signals emitted by the noise sources at location ~y.

The function ~y→ Γ(0, ~y) characterizes the spatial support of the sources. In our
case we assume that the sources are uniformly distributed on a circle C of radius
of RC = 25km :

Γ(t, ~y) =
1

2πRC
Γ0(t, ~y)δC(y).
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correlation function of the noise signals emitted by the noise sources at location ~y.

The function ~y→ Γ(0, ~y) characterizes the spatial support of the sources. In our
case we assume that the sources are uniformly distributed on a circle C of radius
of RC = 25km :

Γ(t, ~y) =
1

2πRC
Γ0(t, ~y)δC(y).
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Modelling the seasonal variations : setup

The noise sources are located on a circle of radius 25km and the wave field is
recorded at two receivers ~x1 = (−5, 0)km and ~x2 = (5, 0)km.
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Modelling the seasonal variations :

To model seasonal variations we assume that the statistics of the noise sources
change from one day to another and denote Γj0(t, ~y) the covariance function at
day j. The wave field at ~x is computed by (i = 1, Ns the noise sources)

ûj(ω, ~x) =
1

Ns

Ns∑
i=1

Ĝj(ω, ~x, ~yi)n̂
j
i (ω), (2)

where n̂ji (ω) is the frequency content of the noise sources at ~yi during day j,

which is random such that
〈
n̂ji (ω)

〉
= 0 and〈

n̂ji (ω)n̂ji (ω
′)
〉

= 2πΓ̂j0(ω, ~yi)δ(ω − ω′).
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Modelling the seasonal variations : Variation models

Our model for the power spectral density of the noise sources is

Γ̂j0(ω, ~y) = F̂ (ω)ŝj(ω, ~y),

Here the unperturbed noise source distribution is uniform over the circle C and has
power spectral density F̂ (ω), and ŝj(ω, ~y) is the daily perturbation of the power
spectral density at location ~y.

For uniform daily perturbations, we have ŝj(ω, ~y) = f̂ j(ω)l(~y),〈
ĈC

j
(ω, ~x1, ~x2)

〉
= F̂ (ω)f̂ j(ω)

∫
C
dσ(~y) Ĝj(ω, ~x1, ~y)Ĝj(ω, ~x2, ~y)l(~y),

and the daily perturbation factors out of the integral ...

C. Tsogka (University of Crete) Correlation based Imaging Aug 24-28 2015 58 / 67



Modelling the seasonal variations : Variation models

Our model for the power spectral density of the noise sources is

Γ̂j0(ω, ~y) = F̂ (ω)ŝj(ω, ~y),
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Results

Reference CC-function = average 360 daily CC-functions
Current CC-function for day j = average 7 days around day j.

Without seasonal variations
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Results

Accuracy vs Stability

L2 error for days where dc/c 6= 0 std for days where dc/c = 0
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Results

With seasonal variations
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We clearly see that only the SM estimation is affected by the seasonal variations
in the amplitude spectra of the noise sources.
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Spectral Whitening

A simple way to remove them is to use spectral whitening (normalize the
amplitude spectra) of the CC-functions.

Days
50 100 150 200 250 300 350

d
c
/c

 (
%

)

-0.5

0

0.5

1

1.5
Velocity Model 1

Velocity Model
Without seasonal variations
With seasonal variations
With seasonal variations after whitening 

Days
50 100 150 200 250 300 350

d
c
/c

 (
%

)

-0.5

0

0.5

1

1.5
Velocity Model 2

Velocity Model
Without seasonal variations
With seasonal variations
With seasonal after whitening

Spectral whitening works for perturbations of separable form, i.e., uniform seasonal
variations (a reasonable assumption for receivers that are not very far apart)
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SNR increase by spectral whitening

We consider Milos, an island in Aegean sea and two stations 6 Km apart.
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SNR improvement of an order of 3 (std).
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Santorini 2011-2012 unrest

The Santorini 2011-2012 seismic unrest begins on January 2011 and ends on
February 2012 measuring a total of 10 cm uplift of the caldera of Santorini.
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Santorini 2011-2012 unrest : dc/c estimation

Slow event,
difficult to follow without
removing seasonal variations !

We observe
decrease in the velocity of
seismic waves in the caldera of
Santorini which is correlated
with the accumulated
elevation measured with GPS.
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Conclusions/Future work

Potential of developing monitoring tools which provide accurate results even
with sparse seismic networks

E. Daskalakis, C. Evangelidis, J. Garnier, N. Melis, G. Papanicolaou and C. T.,
"Robust seismic velocity change estimation using ambient noise recordings", preprint
2015.

Study how errors propagate into the estimation (UQ)
Application to seismic fault monitoring
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Future work

Results obtained with the SM method when in the computation of CCcur we only
use days in the past.
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On the left we use a window of 15 days and on the right 21 days. The day of the
earthquake (M6.9) is shown with the blue vertical curve. We clearly observe a
decrease in the relative velocity of about 0.4% starting a few days before and
continuing for several days after the earthquake.
Similar results have been obtained for the Tohuku-Oki earthquake in Japan

N. Nakata and R. Snieder, “Near-surface weakening in Japan after the 2011 Tohuku-Oki
earthquake”, Geophys. Res. Lett. (2011) 38, L17302.
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