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Context
Continuous optimization problems

min
x

f(x)

Large-scale problems
f : Rn → R

• has many variables (large n, ex: deep learning)
• is the result of many computations, f(x) =

∑m
i=1 fi(x) (large m,

ex: classification of large datasets)

Difficult problems

• Nonconvex and highly nonlinear
• Ill-posed and ill-conditioned
• Several local stationary points (local minima and saddle points)
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Optimization methods

The solution is approximated by a sequence xk converging to a
stationary point x∗ such that ∇f(x∗) = 0.

First order

xk+1 = xk − αk∇f(xk),

where αk is the step length
(learning rate).

, Low computational cost and
memory consumption

/ Better suited for convex
problems, dependent on the
choice of αk, slow convergence

Second order

xk+1 = xk −H(xk)
−1∇f(xk)

where H is the Hessian matrix.

/ Need for linear systems
solution, high computational
cost and memory consumption

, Efficient on nonconvex
problems, robust, fast
convergence
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Noisy least-squares problems

Nonlinear least-squares problems
Given F : Rn → Rm, nonlinear, continuously differentiable solve

min
x∈Rn

f(x) =
1

2
∥F (x)∥2

Let x∗ be a solution of the problem.

Noisy least-squares problems
In many cases f and its derivatives are not available exactly. We seek
an approximation to x∗ considering a sequence of noisy functions:

fδk ∼ f
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Outline: two souces of noise
• Part I: Ill-posed problems

Aim: stable methods for problems with noisy data
Bellavia, S. and Morini, B. and Riccietti, E.. On an adaptive regularization for ill-posed nonlinear systems
and its trust-region implementation. Comput. Optim. Appl. (2016).



Bellavia, S. and Riccietti, E.. On an elliptical trust-region procedure for ill-posed nonlinear least squares
problems. J. Optim. Theory Appl. (2018).



Bellavia, S. and Donatelli, M. and Riccietti, E.. An inexact non stationary Tikhonov procedure for large-
scale nonlinear ill-posed problems. Submitted to: Inverse Probl. (2020).



• Part II: Large-scale problems
Aim: fast methods exploiting cheaper approximations

Bellavia, S. and Gratton, S. and Riccietti, E.. A Levenberg-Marquardt method for large nonlinear least-
squares problems with noisy functions and gradients. Numer. Math. (2018).



Calandra, H. and Gratton, S. and Riccietti, E. and Vasseur, X.. On high-order multilevel optimization
strategies. Submitted to SIAM J. Optim. (2019).



Calandra, H. and Gratton, S. and Riccietti, E. and Vasseur, X.. On a multilevel Levenberg-Marquardt
method for the training of artificial neural networks and its application to the solution of partial differential
equations. Submitted to Optim. Methods Softw. (2019).



Calandra, H. and Gratton, S. and Riccietti, E. and Vasseur, X.. On the iterative solution of the extended
normal equations. Submitted to SIAM J. Matrix Anal. Appl. (2019).
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Second order methods

Levenberg–Marquardt and Trust-region methods

• LM: min
p

1

2
∥F (xk) + J(xk)p∥2 +

λk

2
∥p∥2

• TR: min
p

1

2
∥F (xk) + J(xk)p∥2, s.t. ∥p∥ ≤ ∆k

Both methods need the solution of a linear system:

(Bk + λkI)pk = −gk, Bk = J(xk)
TJ(xk), gk = J(xk)

TF (xk)

(For TR λk is such that λk(∥pk∥ −∆k) = 0)

6/45 Second-order optimization methods Elisa Riccietti



Global theoretical results we are interested in

Global convergence
For any initial guess, the sequence of iterates converges to a
first-order stationary point:

lim
k→∞

∥∇f(xk)∥ = 0

Worst case complexity
Given ϵ > 0, compute the number of iterations required to achieve an
iterate xk such that

∥∇f(xk)∥ ≤ ϵ : k = O(ϵ?)
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Local theoretical results we are interested in

Local convergence and rate of convergence
The sequence {xk} converges to x∗ if the initial approximation is
close enough to the solution and it exist c > 0, β ≥ 1 such that:

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥β

= c

Rates of convergence:
sublinear linear superlinear quadratic

β 1 1 1 2
c 1 ]0, 1[ 0 > 0
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Ill-posed least squares problems



Ill-posed problems with noisy data

• Original problem:

min
x∈Rn

f(x) = ∥F (x)− y∥2, F : Rn → Rm, m ≥ n (1)

Ill-posed

◦ solution is not unique,
◦ solution does not depend continuously on the data

• Noise on the data:

min
x∈Rn

f δ(x) = ∥F (x)− yδ∥2, ∥y − yδ∥ ≤ δ. (2)

The solutions of (2) may not be meaningful approximations of the
solutions of (1): need for regularization methods
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Drawbacks of state-of-the-art regularization methods

• Tikhonov method: minp
1
2∥F (xk)− yδ + J(xk)p∥2 + λ

2∥p∥
2

Choice of λ is often based on a-priori information on the solutions
(such as an estimate of the error)

• Levenberg–Marquardt method [Hanke 1997,2010]:
minp

1
2∥F (xk)− yδ + J(xk)p∥2 + λk

2 ∥p∥
2 Automatic λk but

convergence guaranteed for a starting guess close to a solution is
provided
⇒ both methods need a-priori information on the solution

• All methods but [Binder et all. 1994 (Tikhonov method)]: need
hypothesis of zero residual: it exists x∗ such that
r = F (x∗)− y = 0. This is not the case in many applications
The problem can be reduced to zero residual: yδ ← yδ + r, but
only if ∥r∥ can be estimated: this is difficult to do
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Ill-posed least squares problems
Zero residual problems
Nonzero residual problems
Large-scale nonzero residual problems

Large-scale problems
Subsampled methods for large m
Multilevel methods for large n

Conclusion & research project



A globally convergent, regularizing trust-region method

Our idea: combine trust-region scheme with regularization
Two key ingredients:
1) New trust-region radius update: ∆k ≤ 1−q

∥Bk∥∥∇f
δ(xk)∥

• Exploit properties of trust-region schemes to enforce global
convergence

• Exploit adaptive choice of λk from regularizing
Levenberg–Marquardt to enforce regularizing properties

2) Suitable stopping criterion. Discrepancy principle: stop at first
k∗(δ) such that: ∥F (xk∗(δ))− yδ∥ ≤ τδ, τ > 1
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Plot of the error ∥xk − x∗∥

versus iteration number.
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Theoretical results
Under suitable assumptions on the nonlinearity of the function

δ = 0

• Global convergence
• Complexity O(ϵ−2)

• Local convergence to x∗ such that F (x∗) = y at linear rate

δ > 0

• Finite termination k∗(δ) = O(δ−2)

• Convergence to x∗ of {xk∗(δ)} for δ → 0

Bellavia, S. and Morini, B. and Riccietti, E.. On an adaptive regularization for
ill-posed nonlinear systems and its trust-region implementation. Comput. Optim.
Appl. (2016).
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Comparison between regularizing TR e LM [Hanke]
Test problems: first-kind Fredholm integral equation∫ 1

0
k(t, s, x(s))ds = y(t), t ∈ [0, 1],

Regularizing TR
(our method)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

regularizing trust-region

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

regularizing trust-region

Regularizing LM
(state-of-the-art)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-3000

-2000

-1000

0

1000

2000

3000 regularizing Levenberg-Marquardt

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-2000

-1500

-1000

-500

0

500

1000

1500

2000

regularizing Levenberg-Marquardt

Results for an initial guess x0 not close from x∗ ⇒ global
convergence of TR allows for stable solution even in this case

15/45 Second-order optimization methods Elisa Riccietti



Comparison between regularizing and standard TR

Regularizing TR
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⇒ Improved robustness comes from combination of
TR scheme and regularization, not just TR
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Ill-posed least squares problems
Zero residual problems
Nonzero residual problems
Large-scale nonzero residual problems

Large-scale problems
Subsampled methods for large m
Multilevel methods for large n

Conclusion & research project



Nonzero residual problems

The proposed method cannot handle problems with nonzero residual
• Tikhonov regularization with a general penalty term (M spd)

min
p

1

2
∥F (xk)− yδ + J(xk)p∥2 +

λ

2
∥Mp∥2

• Our proposal: elliptical trust-region approach

min
p

1

2
∥F (xk)− yδ + J(xk)p∥2, s.t. ∥Mkp∥ ≤ ∆k.

• To ensure decrease of the error when the residual is nonzero we
choose: Mk = B

−1/2
k , Bk = J(xk)

TJ(xk).
⇒ We have generalized trust-region update, stopping criterion and
theoretical results to nonzero residual problems

Bellavia, S. and Riccietti, E.. On an elliptical trust-region procedure for ill-posed
nonlinear least squares problems. J. Optim. Theory Appl. (2018).
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Geophysics and Biomedical problems
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Ill-posed least squares problems
Zero residual problems
Nonzero residual problems
Large-scale nonzero residual problems

Large-scale problems
Subsampled methods for large m
Multilevel methods for large n
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Large-scale problems: Inexact method

• The proposed methods require several times the solution of

(Bk + λI)p(λ) = −gk, Bk ∈ Rn×n Large n⇒ Expensive!
(B2

k + λI)z(λ) = −B1/2
k gk, p(λ) = B

1/2
k z(λ)⇒ Even more expensive!

Our solution: Lanczos bidiagonalization
J(xk) = PℓTℓQ

T
ℓ , Bk = QℓT

T
ℓ TℓQ

T
ℓ with Tℓ bidiagonal matrix

• Exact solution of the system is not affordable → solution is sought
in Kℓ(Bk, gk) generated Krylov space

• Exact computation of the RHS is not affordable →
B

1/2
k gk ∼ Qℓ(T

T
ℓ Tℓ)

1/2QT
ℓ

Bellavia, S. and Donatelli, M. and Riccietti, E.. An inexact non stationary
Tikhonov procedure for large-scale nonlinear ill-posed problems. Submitted to:
Inverse Probl. (2020).
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Theoretical and numerical results

• Have to take into account two sources of inexactness in the analysis
• Structured perturbations: structure induced by Lanczos process

allows us to prove decrease of the error
• The inexact strategy provides considerable computational savings

without affecting the solution’s quality

Comparison of exact and inexact methods (ℓ = 10)
Geophysics (n = 4096) Image registration (n = 8320)
exact inexact exact inexact

iterations 67 67 36 137
time (s) 9519 2612 10730 55

÷3.6 ÷195
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Large-scale problems



Part II: Large-scale problems
We consider large-scale problems for which the objective function is
expensive to evaluate:

min
x

f(x) =
1

2
∥F (x)∥2 F : Rn → Rm

We distinguish two cases:
• F has many components: large m

• F depends on a large number of variables: large n

In many applications f can be approximated by cheaper
approximations ⇒ we want to exploit them to reduce the
computational cost of the solution

We consider two classes of methods:
• Large m ⇒ subsampled methods
• Large n ⇒ multilevel methods
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Ill-posed least squares problems
Zero residual problems
Nonzero residual problems
Large-scale nonzero residual problems

Large-scale problems
Subsampled methods for large m
Multilevel methods for large n
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State-of-the-art subsampled methods

Subsampling
Large set of data at disposal: {1, . . . ,m}.
Subsampling: Xk ⊆ {1, . . . ,m} such that |Xk| ≤ m is selected.

Typical strategies
• Stochastic gradient: |Xk| = 1, choice of learning rate difficult,

needs αk ↘ 0, sublinear convergence
• Mini-batch methods: |Xk| = γ ≪ m, less noise in the gradient,

but choice of γ still difficult
• Gradient with dynamic accuracy: |Xk| = γk ↗ m, allows for

convergence with constant α
⇒ But no second order methods based on subsampling with

dynamic accuracy!
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Subsampled Levenberg–Marquardt method
Our proposal: a subsampled Levenberg–Marquardt method with
dynamic control of the accuracy
When to increase γk?
• fδk corresponding to Xk

• If |fδk(xk)− f(xk)| ≤ 1
2λk∥pk∥2, then a reduction of fδk ⇒ a

reduction of f
⇒ Gives a criterion to dynamically increase γk

Theoretical properties
• Global convergence
• Worst case complexity: O(ϵ−2) iterations to get ∥∇f(xk)∥ ≤ ϵ

• Local convergence at a linear rate

Bellavia, S. and Gratton, S. and Riccietti, E.. A Levenberg-Marquardt method
for large nonlinear least-squares problems with noisy functions and gradients.
Numer. Math. (2018).
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Numerical results

Machine learning problem: binary classification problem (CINA
from the UCI machine-learning repository. Predict whether income
exceeds a given amount based on census datas, m ∼ 16000).
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Large-scale problems with large n

We consider large-scale nonlinear least-squares problems:

min
x

f(x) =
1

2
∥F (x)∥2, F : Rn → Rm.

Typical application: deep learning

• n = #edges + #nodes ⇒ very large for large & deep networks
• How to efficiently train the network?
• Common approach: stochastic gradient methods
◦ They depend on algorithmic parameters, their choice may be difficult

and it affects the convergence (a bad choice may prevent convergence)
◦ They may be slow and better suited and studied for the convex case
◦ They may be inefficient for complex networks architectures
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Multilevel methods

Hierarchy of problems

• {fℓ(xℓ)}, xℓ ∈ Rnℓ , nℓ−1 < nℓ

• fℓ−1 is cheaper to optimize compared with fℓ

xℓk

xℓ−1
0,k := Rℓx

ℓ
k

Rℓ

xℓ−1
∗,k

µℓ−1

xℓk+1 = xℓk + pℓk

pℓk = Pℓ(x
ℓ−1
∗,k − xℓ−1

0,k )

• To compute the step pℓk at level ℓ, we minimize the function at
level ℓ−1 using a model µℓ−1 (described later)

• The procedure is recursive: more levels can be used
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Theoretical results in a general framework
We consider the general framework of high-order methods in [Birgin
et al, 2017] minimizing

Tq(xk, p) +
λk

q + 1
∥p∥q, (order q)

where Tq is the qth order Taylor series of f
A family of high-order multilevel methods
For a multilevel method of order q, we have proved its:
• Global convergence
• Complexity: ∥∇f(xk)∥ ≤ ϵ in at most O(ϵ−(q+1)/q) iterations
• Local convergence at a rate of order q, i.e., ∃c > 0

lim
k→∞

∥xk+1 − x∗∥
∥xk − x∗∥q

≤ c

Calandra, H. and Gratton, S. and Riccietti, E. and Vasseur, X.. On high-order
multilevel optimization strategies. Submitted to SIAM J. Optim. (2019).
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Multilevel training methods for ANNs
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• Networks are algebraic objects, no geometry ⇒ how to build R,
P?

• We propose the use of an algebraic multigrid approach [Ruge and
Stueben] for Ax = b which only uses the matrix A

• Which matrix should we use? We propose to use Bk ≃ ∇2f(xk),
which contains second order information
Calandra, H. and Gratton, S. and Riccietti, E. and Vasseur, X.. On a multilevel Levenberg-Marquardt
method for the training of artificial neural networks and its application to the solution of partial differential
equations. Submitted to Optim. Methods Softw. (2019).
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Multilevel training methods for ANNs
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• Networks are algebraic objects, no geometry ⇒ how to build R,
P?

• We propose the use of an algebraic multigrid approach [Ruge and
Stueben] for Ax = b which only uses the matrix A

• Which matrix should we use? We propose to use Bk ≃ ∇2f(xk),
which contains second order information
Calandra, H. and Gratton, S. and Riccietti, E. and Vasseur, X.. On a multilevel Levenberg-Marquardt
method for the training of artificial neural networks and its application to the solution of partial differential
equations. Submitted to Optim. Methods Softw. (2019).
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Minimization problem at level ℓ
Classical model to compute pk:

min
p

f(xk) +∇f(xk)T p+
1

2
pTJ(xk)

TJ(xk)p+
λk

2
∥p∥2

which leads to the linear system(
J(xk)

TJ(xk) + λkI
)
p = −J(xk)TF (xk)

known as normal equations.

However, with a multilevel method, the
model to compute pk at level ℓ is instead:

min
p

f ℓ(xℓk) +∇f ℓ(xℓk)
T p+

1

2
pTJ ℓ(xℓk)

TJ ℓ(xℓk)p+
λk

2
∥p∥2

+
(
Rℓ+1∇f ℓ+1(xℓ+1

k )−∇f ℓ(xℓ0,k)︸ ︷︷ ︸
:=c

)T
p

which leads to the linear system(
J ℓ(xℓk)

TJ ℓ(xℓk) + λkI
)
p = −J ℓ(xℓk)

TF ℓ(xℓk) + c

known as extended normal equations
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Numerical stability of solution of extended normal equations

• Extended normal equations ATAx = AT b+ c arise in several
applications but their numerical solution is challenging

• Specialized methods like CGLS cannot be used because of extra
+c term, and general methods like CG are not numerically stable

⇒ We propose CGLSI, a new efficient and stable method
outperforming classical iterative methods:

ÂT ÎÂx = ÂT b̂, Â =

[
A
cT

]
,

Î =

[
Im 0
0 0

]
, b̂ =

[
b
1

]
.
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1
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MINRES

Calandra, H. and Gratton, S. and Riccietti, E. and Vasseur, X.. On the iterative
solution of the extended normal equations. Submitted to SIAM J. Matrix Anal.
Appl. (2019).
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Application: solution of PDEs with ANNs

Overcoming the curse of dimensionality in the numerical approximation of
semilinear parabolic partial differential equations (2018).

The Deep Ritz method: A deep learning-based numerical algorithm for
solving variational problems (2017)

A proof that deep artificial neural networks overcome the curse of
dimensionality in the numerical approximation of Kolmogorov partial differential
equations with constant diffusion and nonlinear drift coefficients (2018).

Analysis of the generalization error: Empirical risk minimization over deep
artificial neural networks overcomes the curse of dimensionality in the numerical
approximation of Black-Scholes partial differential equations (2018).

Solving stochastic differential equations and Kolmogorov equations by means
of deep learning (2018).

Deep Neural Networks motivated by Partial Differential Equations (2018).
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Why try to solve PDEs with ANNs?

Compared with classical approaches (FDM, FEM), approaches using
ANNs present the following advantages.

Advantages of ANNs over classical approaches
• Natural approach for nonlinear equations
• Provides analytical expression of the approximate solution which is

continuously differentiable
• The solution is meshless, well suited for problems with complex

geometries
• Allows to alleviate the effect of the curse of dimensionality (highly

effective for more than 4,5 dimensions)
• The training is highly parallelizable on GPU
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Our approach: express the solution as a neural network

1D case: D(z, u(z)) = g(z), z ∈ (a, b) u(a) = A, u(b) = B

Iz → σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

+ → û(w, z) ∼ u(z)

w vector of
weights and bi-
ases

Input
layer

Hidden
layer

Hidden
layer

Output
layer

Optimization problem: find the network weights w by minimizing

min
w

1

2T

T∑
t=1

(
D(z, û(w, zt))− g(zt)︸ ︷︷ ︸

Equation residual

)2
+ λp

(
(û(w, a)−A)2 + (û(w, b)−B)2︸ ︷︷ ︸

Boundary conditions

)
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Numerical results on difficult domains (n = 4096)

Left: −∆u+ ν2u = g1, u(x, y) = sin(ν(x+ y)) ν = 3
Right: −∆u+ νu2 = g1, u(x, y) = (x2+ y2)+ sin(ν(x2+ y2)), ν = 1

2

iter RMSE savings iter RMSE savings
min avg max min avg max

1 level 395 10−4 1408 10−3

2 levels 110 10−4 1.3 5.6 10.0 1301 10−3 1.2 1.9 2.4
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Comparison with 1st order method ADAM (Tensorflow)

2D Poisson’s equation (n = 4096)

0 250 500 750 1000 1250 1500 1750
Time (s)

10 3

10 2

10 1

100

101
RM

SE
ADAM (first order)
Multilevel method (second order)

⇒ Solution to PDEs constitutes a challenging objective,
first order methods struggle to achieve good training
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Conclusion & research project



Conclusion
A wide spectrum of novel second order methods …
• Regularizing, globally convergent trust-region method
◦ and its elliptical extension to handle nonzero residuals
◦ and its Lanczos-based inexact extension to handle large problems

• Subsampled Levenberg–Marquardt method
◦ with a dynamic control of the accuracy

• Multilevel Levenberg–Marquardt method
◦ and its specialization to the training of neural networks
◦ using a numerically stable solution to the extended normal equations

… for the solution of challenging problems
• Stable and fast solution of large ill-posed problems in geophysics and

biomedecine (image registration)
◦ Without any need of prior information
◦ Possibly with nonzero residual

• Fast, high-quality classification of large datasets
• Fast, high-quality training of deep neural networks
• Promising preliminary results for the solution of PDEs with ANNs
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Beyond first-order methods in machine learning

Until now first order methods have been preferred to second order
ones in the machine learning community: many variants of gradient
method (stochastic, minibatch, accelerated, …)

BUT

New challenges in optimization for machine learning
• Increasingly difficult problems (highly nonlinear, nonconvex,

ill-conditioned, many saddle points)
• Opportunities for parallelism and mixed precision with new

hardware (GPUs with tensor cores, …)

⇒ Second order methods emerge as natural candidates
to meet these challenges… but need to work on their cost to

tackle increasingly large problems (105–106 variables)
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Hessian free methods
(L-)BFGS methods approximate the inverse of the Hessian matrix using 1st
order information to reduce the cost and memory. Open problems:
• Deal with inexact gradients (ex: BFGS + subsampling)
• Exploit Hessian’s structure to include 2nd order information

Reduced/mixed precision methods
Many machine learning applications need limited accuracy and can thus
leverage new hardware with reduced precisions. Open problems:
• Deal with inexact function and gradients, with inexactness coming from

reduced precision (discrete set of precisions available)
• Linear systems in second order methods: from a drawback to an

opportunity thanks to mixed precision and GPU computing

New applications in deep learning
Many applications possess an underlying physics and require higher accuracy
than that provided by current deep learning techniques. Open problems:
• Inject classical numerical analysis techniques in networks (ex: domain

decomposition to train coupled GANs in parallel)
• High-order methods for highly nonlinear and nonconvex problems
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Thank you for your attention!

Slides and papers available here
bit.ly/elisaIRIT
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Classical Levenberg-Marquardt method

• Given xk ∈ Rn and λk ≥ 0, find the step pk ∈ Rn minimizing

mLM
k (p) =

1

2
∥R(xk) + J(xk)p∥2 +

1

2
λk∥p∥2.

• Set Φ(x) = 1
2∥R(x)∥2, and compute

ρk(pk) =
Φ(xk)− Φ(xk + pk)

mLM
k (0)−mLM

k (pk)
.

• Step acceptance. Given η ∈ (0, 1):

◦ If ρk < η reject the step: xk+1 = xk and increase λk.
◦ If ρk ≥ η accept the step: xk+1 = xk + pk.
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Trust-region methods

• Given xk and the trust-region radius ∆k > 0 find the step pk
solving

min
p

mTR
k (p) =

1

2
∥R(xk) + J(xk)p∥2,

s.t. ∥p∥ ≤ ∆k

• Set Φ(x) = 1
2∥R(x)∥2. Compute

ρk(pk) =
Φ(xk)− Φ(xk + pk)

mTR
k (0)−mTR

k (pk)
.

• Step acceptance and trust-region radius update. Given η ∈ (0, 1):

◦ If ρk < η then set ∆k+1 < ∆k and xk+1 = xk.
◦ If ρk ≥ η then set ∆k+1 ≥ ∆k and xk+1 = xk + pk.
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Iterative regularization methods

Iterative regularization methods generate a sequence {xk}. If the
process is stopped at iteration k∗(δ) the method is supposed to
guarantee the following properties, given x† a solution of the
unperturbed problem:

• xδk∗(δ) is an approximation of x†;

• {xδk∗(δ)} tends to x† if δ tends to zero;

• local convergence to x† in the noise-free case.
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Regularizing trust-region

2) q-condition: ∥F (xk)− yδ + J(xk)p∥ ≥ q∥F (xk)− yδ∥, q ∈ (0, 1)

λ
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‖F
(x

δ k
)
−

y
δ
+

J
(x

δ k
)p
(λ
)‖

0

0.1

0.2

0.3

0.4

0.5

‖F (xδ

k)− yδ‖

‖F (xδ

k)− yδ + J(xδ

k)p(λ)‖

‖PR(J(xδ

k
)⊥(F (xδ

k)− yδ)‖

q‖F (xδ

k)− yδ‖

λ
q

k

λ
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‖p
(λ
)‖

0

0.05

0.1

0.15

0.2

‖p(λq

k)‖

λ
q

k

→ If ∆k ≤ 1−q
∥Bk∥∥g

δ
k∥ then pk satisfies the q-condition and the trust

region is active.
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Local analysis

• Assumption 1: For index k̄ it exist positive ρ and c such that
1 the system F (x) = y is solvable in Bρ(x

δ
k̄
);

2 for x, x̃ ∈ B2ρ(x
δ
k̄
) the following tangential cone condition holds

∥F (x)− F (x̃)− J(x)(x− x̃)∥ ≤ c∥x− x̃∥∥F (x)− F (x̃)∥.

For well-posed systems: ∥F (x)− F (x̃)− J(x)(x− x̃)∥ ≤ c∥x− x̃∥2.

• Assumption 2: It exists positive KJ such that

∥J(x)∥ ≤ KJ

for all x ∈ L = {x ∈ Rn s.t. Φ(x) ≤ Φ(x0)}.
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Test problems

• Four nonlinear ill-posed systems arising from the discretization of
nonlinear first-kind Fredholm integral equation are considered, they
model gravimetric and geophysics problems:∫ 1

0
k(t, s, x(s))ds = y(t), t ∈ [0, 1],

P1,P2, [Vogel, 1990], P3,P4 [Kaltenbacher,2007];
• Their kernel is of the form

k(t, s, x(s)) = log

(
(t− s)2 +H2

(t− s)2 + (H − x(s))2

)
;

k(t, s, x(s)) =
1√

1 + (t− s)2 + x(s)2
;
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Regularizing properties nonzero residual

To maintain the regularizing properties of the trust-region approach
we assume equivalent conditions on the gradient instead on the
function.
1. discrepancy principle :

∥J(xk∗(δ))T (F (xk∗(δ))− yδ)∥ ≤ τδ < ∥J(xk)T (F (xk)− yδ)∥

2. q-condition:

∥J(xk)T (F (xk)− yδ + J(xk)pk)∥ ≥ q∥J(xk)T (F (xk)− yδ)∥

If ∆k ≤ 1−q
∥Bk∥2

∥(Bk)
1/2gδk∥ then pk satisfies the q-condition and

the trust-region is active.
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Convergence analysis

• Assumption1: there exists k̄ s.t. a solution exists in Bρ(xk̄) and
for x, x̃ ∈ B2ρ(xk̄)

∥∇f(x̃)−∇f(x)−J(x)TJ(x)(x̃−x)∥ ≤ (c∥x̃−x∥+σ)∥∇f(x)−∇f(x̃)∥.

∇2f(x) = J(x)TJ(x) + S(x) =

J(x)TJ(x) +
m∑
j=1

(Fj(x)− yj)∇2Fj(x).

• Assumption2: ∥S(x†)∥ ≤ σ < q < 1 (small residual problems)
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Numerical results

1. P1: We want to reconstruct c in the 2D-elliptic problem

−∆u+ cu = f̂ in Ω = (0, 1)× (0, 1)

u = ĝ on ∂Ω

from the knowledge of u in Ω, f̂ ∈ L2(Ω), ĝ the trace of a
function in H2(Ω). If F : D(F )→ L2(Ω) is the operator mapping
parameter c to the solution u we solve

min
c

1

2
∥F (c)− ũ∥2

ũ measured values of u.
2. In case of noisy problems, given the error level δ, the exact data y

was perturbed by normally distributed values using the Matlab
function randn, in a way that ∥y − yδ∥ = δ.

55/45 Second-order optimization methods Elisa Riccietti



Inexact step

Large-scale problems: approximate solution of LM subproblem

• p provides the sufficient Cauchy decrease:

mk(0)−mk(pk) ≥
θ

2

∥gδk(xk)∥2

∥Jδk(xk)∥2 + λk
, θ > 0.

• The Levenberg-Marquardt step computed as

(Jδk(xk)
TJδk(xk) + λkI)pk = −gδk(xk)+rk

for a residual rk satisfying ∥rk∥ ≤ ϵk∥gδk(xk)∥, with ϵk such that

0 ≤ ϵk ≤ min
{

θ1
λα
k

,

√
θ2

λk

∥Jδk(xk)∥2 + λk

}
,

where θ1 > 0, θ2 ∈
(
0, 12

]
and α ∈

[
1
2 , 1

)
achieves the Cauchy

decrease.56/45 Second-order optimization methods Elisa Riccietti



Local convergence

Asymptotic step behaviour
The LM step asymptotically tends to the direction of the negative
perturbed gradient:

lim
k→∞

(pLMk )i +
θ

κ2J + λk
(gδk(xk))i = 0 for i = 1, . . . , n,

where (·)i denotes the i-th vector component.

Lemma
Let pSDk = − θ

κ2
J+λk

gδk(xk) and xk+1 = xk + pSDk . If xk̄ ∈ Br(x
∗)

and λk̄ big enough,
• ∥xk+1 − x∗∥ < ∥xk − x∗∥, for all k ≥ k̄.
• ∥xk − x∗∥ tends to zero.
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Numerical results

• Machine learning problem. Binary classification problem:
{(zi, yi)} with zi ∈ Rn, yi ∈ {−1,+1} and i = 1, . . . , N .
Training objective function: logistic loss with l2 regularization

f(x) =
1

2N

N∑
i=1

log(1 + exp(−yixT zi)) + 1

2N
∥x∥2.
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Lanczos

∥ek+1∥ < ∥ek∥+ ρ(ℓ), lim
ℓ→n

ρ(ℓ) = 0
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CGLSI
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