Black-Scholes model and the implied volatility

- If Black-Scholes model were a good model for market data, we would have

\[\sigma_{BS}(T, K) = \sigma \quad \forall T, K \]

- In practice, we observe \(\sigma_{BS}(\cdot, \cdot) \) that depends on \(T \) and \(K \): the *smile* phenomenon.
Black-Scholes model and the implied volatility

- If Black-Scholes model were a good model for market data, we would have
 \[\sigma_{BS}(T, K) = \sigma \quad \forall T, K \]

- In practice, we observe \(\sigma_{BS}(\cdot, \cdot) \) that depends on \(T \) and \(K \): the *smile* phenomenon.

- Need to use more general models than BS \(\rightsquigarrow \) the local vol model

- Drawback of the BS model: underestimates important fluctuations of \(S_T \) around \(S_0 \)
Black-Scholes model and the implied volatility

- If Black-Scholes model were a good model for market data, we would have

\[\sigma_{BS}(T, K) = \sigma \quad \forall T, K \]

- In practice, we observe \(\sigma_{BS}(\cdot, \cdot) \) that depends on \(T \) and \(K \): the smile phenomenon.

- Need to use more general models than BS \(\rightsquigarrow \) the local vol model

- Drawback of the BS model: underestimates important fluctuations of \(S_T \) around \(S_0 \)

- Nevertheless:
 - explicit formulas for Calls/Puts with intuitive parameters
 - often used only as a reference to express prices in terms of their volatilities
 - but BS models sometimes used as a model to quote option prices on assets with small liquidity.
Model Calibration: general considerations

- **Objective**: price/hedge a complex product using simpler products (called the *hedging instruments*)

 Example:

 - hedge an exotic option with maturity T
 - using Vanillas (Calls and Puts) with maturities $\leq T$

Two steps:

1. Identify the hedging instruments: liquid products with listed and reliable prices (small bid-ask spread).
2. Choose a model.

 The role of the model is: reproduce the quoted prices of the simple instruments, then allow to manage the complex product.
Objective: price/hedge a complex product using simpler products (called the *hedging instruments*)

Example:
- hedge an exotic option with maturity T
- using Vanillas (Calls and Puts) with maturities $\leq T$

Two steps:

1. Identify the hedging instruments: liquid products with listed and reliable prices (small bid-ask spread).
2. Choose a model.

 The role of the model is: reproduce the quoted prices of the simple instruments, then allow to manage the complex product.

Quoting Emmanuel Derman:

If you want to know the value of a security, use the price of another security that is as similar to it as possible. All the rest is modeling.
Model Calibration: general considerations

- **Model calibration** = determine the parameters of a model from market data of liquid instruments.

- Some theory, lots of practice.

- One can distinguish two different approaches:
 - Statistical estimation
 - from historical data
 - under the historical measure
 - Calibration
 - based on quotes of option prices (Calls/Puts)
 - reflects the market view on the future evolution of the asset
 - directly under the risk-neutral measure
Model Calibration: general considerations

Nature of market data

- In statistical estimation:
 - observations \((y_i)_{i=1, \ldots, n}\)
 - Build an estimator as \(n = \# \text{ observations} \to \infty\).

- In calibration:
 - The number of observations is fixed by the market
 - Option prices \(\{P(T_i, K_j)\}_{i,j}\) for some maturities \(T_i\) and some strikes \(K_j\).
 - Typically a few hundreds prices at most.
 - Which price? Bid, Ask?
 - Have to make a choice
 - Typically one calibrates to the mid price \(\text{Mid} = \frac{\text{Ask} + \text{Bid}}{2}\)
Model Calibration: general considerations

Nature of market data

- In statistical estimation:
 - observations \((y_i)_{i=1}^n\)
 - Build an estimator as \(n \to \infty\).

- In calibration:
 - The number of observations is fixed by the market
 - Option prices \(\{P(T_i, K_j)\}_{i,j}\) for some maturities \(T_i\) and some strikes \(K_j\).
 - Typically a few hundreds prices at most.
 - Which price? Bid, Ask?
 - Have to make a choice
 - Typically one calibrates to the mid price \(\text{Mid} = \frac{\text{Ask} + \text{Bid}}{2}\).

In practice

- If the goal is option pricing/hedging, the calibration approach is more appropriate.
- Statistical estimation procedures are rather used to identify trends in assets (↗ or ↘) and exploit possible arbitrage.
Model Calibration

Heuristical ideas/guidelines

- Number of model parameters: the higher
 - The better the model fits to the market
 - But:
 - the more difficult to interpret each parameter.
 - the more sensitive the parameters are to changes in market data.
Model Calibration

Heuristical ideas/guidelines

- Number of model parameters: the higher
 - The better the model fits to the market
 - But:
 - the more difficult to interpret each parameter.
 - the more sensitive the parameters are to changes in market data.

- In general, a “good” model should have
 - A parameterisation that is parsimonious and intuitive (for traders)
 - A calibration method that is stable and fast.
Model Calibration

In practice: given a model(\(\theta\)) that depends on some vector parameter \(\theta \in \mathbb{R}^d\)

- We want to find \(\theta\) such that

\[
P^{\text{model}(\theta)}(T_i, K_j) = P^{\text{market}}(T_i, K_j) \quad \forall i, j.
\]
Model Calibration

In practice: given a model(θ) that depends on some vector parameter θ ∈ ℝ^d

- We want to find θ such that

\[P_{\text{model}}(θ) (\mathcal{T}_i, \mathcal{K}_j) = P_{\text{market}} (\mathcal{T}_i, \mathcal{K}_j) \quad \forall i, j. \]

- If such a θ does not exist, or if it cannot be computed explicitly (because there is no explicit formula for \(P_{\text{model}}(θ) \)), we replace the problem above with

\[\min_\theta \sum_{i,j} \left(P_{\text{model}}(θ)(\mathcal{T}_i, \mathcal{K}_j) - P_{\text{market}} (\mathcal{T}_i, \mathcal{K}_j) \right)^2 \]

- A least square approach: minimize the \(L^2 \) distance between model prices and market prices.