Sorbonne Université Ecole Polytechnique

Volatilité locale et stochastique, calibration de modèle $\mathbf{TD} - 12/02/2020$

Exercise 1. [A preliminary exercise: in view of the derivation of call and put prices with respect to strike.] Let X be an integrable random variable with values in $\mathbb{R}_+ = [0, \infty)$.

1. Show that, for every $a \ge 0$,

$$\mathbb{E}[(a-X)^+] = \int_0^a \mathbb{P}(X \le y) dy, \qquad \mathbb{E}[(X-a)^+] = \int_a^\infty \mathbb{P}(X > y) dy.$$

2. Deduce that the right and left derivatives ∂_a^+ and ∂_a^- of the expectations above exist for all a > 0and satisfy

$$\begin{array}{ll} \partial_a^+ \mathbb{E}[(a-X)^+] = \mathbb{P}(X \leq a), & \partial_a^- \mathbb{E}[(a-X)^+] = \mathbb{P}(X < a) \\ \partial_a^+ \mathbb{E}[(X-a)^+] = -\mathbb{P}(X > a), & \partial_a^- \mathbb{E}[(a-X)^+] = -\mathbb{P}(X \geq a) \end{array}$$

Conclude that, if $x \mapsto \mathbb{P}(X \leq x)$ is continuous at the point *a*, then $\frac{d}{da}\mathbb{E}[(a-X)^+] = \mathbb{P}(X \leq a)$ and $\frac{d}{da}\mathbb{E}[(X-a)^+] = -\mathbb{P}(X > a)$.

Exercise 2. [Another proof of the Markovian projection theorem (or Gyöngy's theorem) for stochastic volatility.] We consider a process S_t that satisfies

$$S_{t} = S_{0} + \int_{0}^{t} b S_{u} du + \int_{0}^{t} \eta_{u} S_{u} dW_{u}, \qquad t \ge 0,$$
(1)

where $(W_t)_{t\geq 0}$ is a Brownian motion on a probability space $(\Omega, \mathcal{F}, (\mathcal{F})_{t\geq 0}, \mathbb{P}), b \in \mathbb{R}$ is a constant, and $(\eta_t)_{t\geq 0}$ is a positive and bounded process (in the sense: there exists a constant $\overline{\eta} > 0$ such that $0 \leq \eta_t \leq \overline{\eta}, \forall t \geq 0, \text{ a.s.}$) adapted to \mathcal{F}_t .

- 1. Write the solution of (1) as $S_t = S_0 e^{Y_t}$, where Y_t is stochastic process that you will write down explicitly.
- 2. Show that $\forall p \ge 1, \forall t \ge 0, \mathbb{E}[S_t^p] \le S_0^p \exp(Ct)$, where C is a constant depending on $b, \overline{\eta}$ and p.

We assume that there exists a continuous function $\sigma : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}$ such that

$$\mathbb{E}[\eta_t^2 | S_t] = \sigma(t, S_t)^2 \qquad \forall t > 0,$$
(2)

and moreover, σ satisfies the hypothesis (H) given in the lectures. We consider a function $v \in C^{1,2}([0,T) \times \mathbb{R}_+, \mathbb{R})$ satisfying

$$\begin{cases} \partial_t v(t,x) + b x \,\partial_x v(t,x) + \frac{1}{2} \sigma(t,x)^2 x^2 \partial_{xx} v(t,x) - b v(t,x) = 0 \qquad (t,x) \in [0,T) \times [0,\infty) \\ v(T,x) = f(x) \qquad x \in [0,\infty) \,, \end{cases}$$

where $f : \mathbb{R}_+ \to \mathbb{R}_+$ is a continuous function with polynomial growth: $\exists C, q > 0$ s.t. $\forall x \ge 0$, $f(x) \le C(1 + x^q)$.

We assume that $\partial_x v$ and $\partial_{xx} v$ also have polynomial growth: $|\partial_x v(t,x)| + |\partial_{xx} v(t,x)| \le C_1(1+x^{q_1}), \forall 0 \le t \le T, \forall x \ge 0$, for some positive constants C_1 and q_1 .

Now consider the process V_t defined by $V_0 = v(0, S_0)$ and

$$dV_t = (b V_t - b \,\delta_t S_t) dt + \delta_t dS_t \qquad t \le T,$$

where $\delta_t = \partial_x v(t, S_t)$.

- 3. Is the process $(e^{-bt}V_t)_{0 \le t \le T}$ a martingale?
- 4. Compute $dv(t, S_t)$, then $d\left(e^{-bt}(V_t v(t, S_t))\right)$.

Let X be such that

$$X_t = S_0 + \int_0^t b \, X_u du + \int_0^t \sigma(u, X_u) X_u dW_u, \qquad t \ge 0$$

5. Show that $\mathbb{E}[V_T] = \mathbb{E}[f(S_T)]$, then that $\mathbb{E}[f(X_T)] = \mathbb{E}[f(S_T)]$. Conclude that X_T and S_T have the same law, for every T.

Exercise 3. Consider a market containing a tradable asset S, a constant risk-free rate r and a constant repo rate q. Let C(T, K) be a surface of call prices on the asset S, parametrized by maturity T and strike price K. It is possible (and classical) to show that, if the market is free of arbitrage at time t = 0, the function $C(\cdot)$ satisfies the conditions

- (0) $(S_0 e^{-qT} K e^{-rT})^+ \le C(T, K) \le S_0 e^{-qT}$, for every $T, K \ge 0$.
- (i) The function $K \mapsto C(T, K)$ is convex, for every $T \ge 0$.
- (ii) A condition about the dependence of C with respect to T.
- (iii) $C(T, K) \to 0$ as $K \to \infty$, for every $T \ge 0$.
 - 1. Give the missing condition (ii).

The goal of this exercise is to show the following result, that holds for fixed maturities T

Proposition: Let $K \mapsto C(K)$ be a function that satisfies conditions (0), (i) and (iii), for some fixed T > 0. Then, there exist a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ supporting a positive random variable X_T such that $C(K) = \mathbb{E}[e^{-rT}(X_T - K)^+]$, for all $K \ge 0$.

Let $C(\cdot)$ be as in the Proposition above. We set

$$c(K) := e^{qT} C\left(K e^{(r-q)T}\right) \qquad \text{for all } K \ge 0.$$

Note that the function c will satisfy

$$(S_0 - K)^+ \le c(K) \le S_0$$
; c is convex; $c(K) \to 0$ as $K \to \infty$.

Recall that the following properties follow from the convexity of c: the right derivative $\partial_K^+ c(K)$ exists for all $K \ge 0$, and $\partial_K^+ c$ is a right-continuous and increasing function.¹

- 2. Show that $\partial_K^+ c(0) \ge -1$.
- 3. Show that $\partial_K^+ c(K) \to 0$ as $K \to \infty$.
- 4. Define the function $F(K) = \begin{cases} 1 + \partial_K^+ c(K) & \text{if } K \ge 0 \\ 0 & \text{if } K < 0. \end{cases}$ Show that F is a cumulative distribution function on \mathbb{R} .
- 5. Let γ be a probability measure on \mathbb{R} such that $F_{\gamma}(K) = \gamma((-\infty, K]) = F(K)$ for all K. Show that $\int_{\mathbb{R}} (y-K)^+ \gamma(dy) = c(K)$ for all K.
- 6. Conclude on the proof of the Proposition above.

¹Actually, a convex function is locally Lipschitz, so that the derivative c'(K) exists for almost every K.