Volatilité locale et stochastique, calibration de modèle TD - 12/02/2020

Exercise 1. [A preliminary exercise: in view of the derivation of call and put prices with respect to strike.] Let X be an integrable random variable with values in $\mathbb{R}_+ = [0, \infty)$.

1. Show that, for every $a \ge 0$,

$$\mathbb{E}[(a-X)^+] = \int_0^a \mathbb{P}(X \le y) dy, \qquad \mathbb{E}[(X-a)^+] = \int_a^\infty \mathbb{P}(X > y) dy.$$

Answer. It follows from Fubini's theorem that

$$\mathbb{E}[(a-X)^+] = \mathbb{E}[(a-X)\mathbf{1}_{X\leq a}] = \mathbb{E}\left[\int_0^a \mathbf{1}_{X\leq x} dx \,\mathbf{1}_{X\leq a}\right] = \int_0^a \mathbb{E}[\mathbf{1}_{X\leq x}] dx = \int_0^a \mathbb{P}(X\leq x) dx.$$
same type of argument yields $\mathbb{E}[(X-a)^+] = \int_a^\infty \mathbb{P}(X>x) dx.$

The same type of argument yields $\mathbb{E}[(X-a)^+] = \int_a^\infty \mathbb{P}(X > x) dx.$

2. Deduce that the right and left derivatives ∂_a^+ and ∂_a^- of the expectations above exist for all a > 0and satisfy

$$\begin{aligned} \partial_a^+ \mathbb{E}[(a-X)^+] &= \mathbb{P}(X \le a), \\ \partial_a^+ \mathbb{E}[(X-a)^+] &= -\mathbb{P}(X > a), \end{aligned} \qquad \begin{aligned} \partial_a^- \mathbb{E}[(a-X)^+] &= -\mathbb{P}(X \ge a) \\ \partial_a^- \mathbb{E}[(a-X)^+] &= -\mathbb{P}(X \ge a), \end{aligned}$$

Conclude that, if $x \mapsto \mathbb{P}(X \leq x)$ is continuous at the point a, then $\frac{d}{da}\mathbb{E}[(a-X)^+] = \mathbb{P}(X \leq a)$ and $\frac{d}{da}\mathbb{E}[(X-a)^+] = -\mathbb{P}(X > a).$

Exercise 2. [Another proof of the Markovian projection theorem (or Gyöngy's theorem) for stochastic volatility.] We consider a process S_t that satisfies

$$S_{t} = S_{0} + \int_{0}^{t} b S_{u} du + \int_{0}^{t} \eta_{u} S_{u} dW_{u}, \qquad t \ge 0,$$
(1)

where $(W_t)_{t\geq 0}$ is a Brownian motion on a probability space $(\Omega, \mathcal{F}, (\mathcal{F})_{t\geq 0}, \mathbb{P}), b \in \mathbb{R}$ is a constant, and $(\eta_t)_{t>0}$ is a positive and bounded process (in the sense: there exists a constant $\overline{\eta} > 0$ such that $0 \leq \eta_t \leq \overline{\eta}, \forall t \geq 0, \text{ a.s.})$ adapted to \mathcal{F}_t .

1. Write the solution of (1) as $S_t = S_0 e^{Y_t}$, where Y_t is stochastic process that you will write down explicitly.

Answer. Let $Y_t = bt - \frac{1}{2} \int_0^t \eta_u^2 du + \int_0^t \eta_u dW_u$. An application of Itô's formula allows to show that the process $S_t = S_0 e^{Y_t}$ is a solution of (1). This is also the unique solution: why?

2. Show that $\forall p \ge 1, \forall t \ge 0, \mathbb{E}[S_t^p] \le S_0^p \exp(Ct)$, where C is a constant depending on $b, \overline{\eta}$ and p.

Answer. Using the explicit expression for S_t and the boundedness of the process η_t , we get

$$\begin{split} S_{t}^{p} &= S_{0}^{p} \exp\left(pbt - \frac{p}{2} \int_{0}^{t} \eta_{u}^{2} du + p \int_{0}^{t} \eta_{u} dW_{u}\right) \\ &= S_{0}^{p} \exp\left(pbt + \frac{1}{2}p(p-1) \int_{0}^{t} \eta_{u}^{2} du + p \int_{0}^{t} \eta_{u} dW_{u} - \frac{p^{2}}{2} \int_{0}^{t} \eta_{u}^{2} du\right) \\ &\leq S_{0}^{p} \exp\left(Ct\right) \exp\left(p \int_{0}^{t} \eta_{u} dW_{u} - \frac{p^{2}}{2} \int_{0}^{t} \eta_{u}^{2} du\right) \end{split}$$

where $C = pb + \frac{1}{2}p(p-1)\overline{\eta}^2$. Since η is bounded, the process $Z_t = \exp\left(p\int_0^t \eta_u dW_u - \frac{p^2}{2}\int_0^t \eta_u^2 du\right)$ is a martingale (this fact is a consequence of Novikov's condition, but it can also be proven directly using standard moment controls for SDEs: how?). In particular, $\mathbb{E}[Z_t] = Z_0 = 1$. We conclude that $\mathbb{E}[S_t^p] \leq S_0^p \exp(Ct)$.

We assume that there exists a continuous function $\sigma : \mathbb{R}_+ \times \mathbb{R}_+ \to \mathbb{R}$ such that

$$\mathbb{E}\left[\eta_t^2 \middle| S_t\right] = \sigma(t, S_t)^2 \qquad \forall t > 0,$$
(2)

and moreover, σ satisfies the hypothesis (H) given in the lectures. We consider a function $v \in C^{1,2}([0,T) \times \mathbb{R}_+, \mathbb{R})$ satisfying

$$\begin{cases} \partial_t v(t,x) + b \, x \, \partial_x v(t,x) + \frac{1}{2} \sigma(t,x)^2 x^2 \partial_{xx} v(t,x) - b \, v(t,x) = 0 \qquad (t,x) \in [0,T) \times [0,\infty) \\ v(T,x) = f(x) \qquad x \in [0,\infty) \,, \end{cases}$$

where $f : \mathbb{R}_+ \to \mathbb{R}_+$ is a continuous function with polynomial growth: $\exists C, q > 0$ s.t. $\forall x \ge 0$, $f(x) \le C(1 + x^q)$.

We assume that $\partial_x v$ and $\partial_{xx} v$ also have polynomial growth: $|\partial_x v(t,x)| + |\partial_{xx} v(t,x)| \le C_1(1+x^{q_1}), \forall 0 \le t \le T, \forall x \ge 0$, for some positive constants C_1 and q_1 .

Now consider the process V_t defined by $V_0 = v(0, S_0)$ and

$$dV_t = (b V_t - b \delta_t S_t) dt + \delta_t dS_t \qquad t \le T,$$

where $\delta_t = \partial_x v(t, S_t)$.

3. Is the process $(e^{-bt}V_t)_{0 \le t \le T}$ a martingale?

Answer. Using the expression of dV_t ,

$$d(e^{-bt}V_t) = e^{-bt}(-b\delta_t S_t)dt + e^{-bt}\delta_t dS_t = e^{-bt}(b\delta_t S_t - b\delta_t S_t)dt + e^{-bt}\delta_t \eta_t S_t dW_t$$
$$= e^{-rt}\delta_t \eta_t S_t dW_t,$$

Therefore,

$$V_t = V_0 + \int_0^t e^{-bu} \partial_x v(u, S_u) \eta_u S_u dW_u$$

is a local martingale, and here it is a martingale because of: the boundedness of the process η , the assumption of polynomial growth for $\partial_x v$, and the control of moments of S obtained in question 2.

4. Compute $dv(t, S_t)$, then $d\left(e^{-bt}(V_t - v(t, S_t))\right)$.

Answer. dV_t was given above. We have

$$dv(t, S_t) = \left[\partial_t v(t, S_t) + \frac{1}{2}\eta_t^2 S_t^2 \partial_{xx} v(t, S_t)\right] dt + \partial_x v(t, S_t) dS_t$$

therefore

$$dV_t - dv(t, S_t) = \left[bV_t - bS_t \partial_x v(t, S_t) - \partial_t v(t, S_t) - \frac{1}{2} \eta_t^2 S_t^2 \partial_{xx} v(t, S_t) \right] dt$$
$$= \left[bV_t - bv(t, S_t) + \frac{1}{2} S_t^2 \left(\sigma(t, S_t)^2 - \eta_t^2 \right) \partial_{xx} v(t, S_t) \right] dt.$$

where we have used the PDE satisfied by v in the second identity. By Itô's formula,

$$d\left(e^{-bt}(V_t - v(t, S_t))\right) = e^{-bt} \frac{1}{2} S_t^2 \partial_{xx} v(t, S_t) \left(\sigma(t, S_t)^2 - \eta_t^2\right) dt$$

so that , for all $t \in [0,T]$

$$e^{-bt}(V_t - v(t, S_t)) = \frac{1}{2} \int_0^t e^{-bu} S_u^2 \partial_{xx} v(u, S_u) \Big(\sigma(u, S_u)^2 - \eta_u^2 \Big) du$$

Let X be such that

$$X_t = S_0 + \int_0^t b X_u du + \int_0^t \sigma(u, X_u) X_u dW_u, \qquad t \ge 0$$

5. Show that $\mathbb{E}[V_T] = \mathbb{E}[f(S_T)]$, then that $\mathbb{E}[f(X_T)] = \mathbb{E}[f(S_T)]$. Conclude that X_T and S_T have the same law, for every T.

Answer. Taking expectations in the previous questions, we obtain

$$\begin{split} \mathbb{E}[e^{-bt}(V_t - v(t, S_t))] &= \frac{1}{2} \mathbb{E}\Big[\int_0^t e^{-bu} S_u^2 \partial_{xx} v(u, S_u) \Big(\sigma(u, S_u)^2 - \eta_u^2\Big) du\Big] \\ &= \frac{1}{2} \int_0^t e^{-bu} \mathbb{E}\Big[S_u^2 \partial_{xx} v(u, S_u) \Big(\sigma(u, S_u)^2 - \eta_u^2\Big)\Big] du \\ &= \frac{1}{2} \int_0^t e^{-bu} \mathbb{E}\Big[S_u^2 \partial_{xx} v(u, S_u) \mathbb{E}\Big[\sigma(u, S_u)^2 - \eta_u^2\Big|S_u\Big]\Big] du = 0 \end{split}$$

where we have used the polynomial growth estimate on $\partial_{xx}v(u, S_u)$ in order to apply Fubini's Theorem in the second step, and the fact that $\mathbb{E}[\eta_u^2|S_u] = \sigma(u, S_u)^2$ for all u in the last step. When t = T, we obtain

$$\mathbb{E}[e^{-bT}V_T] = \mathbb{E}[e^{-bT}v(T, S_T)] = \mathbb{E}[e^{-bT}f(S_T)]$$

Now, $\mathbb{E}[e^{-bT}V_T] = V_0 = v(0, S_0)$ by question 3, and by the Feynman-Kac theorem $v(0, S_0) = \mathbb{E}[e^{-bT}f(X_T)]$, where the process X satisfies the equation above. Putting things together, we have obtained

$$\mathbb{E}[f(X_T)] = \mathbb{E}[f(S_T)]$$

Since this identity holds for any continuous and bounded function f, we conclude on the required identity in law.

Exercise 3. Consider a market containing a tradable asset S, a constant risk-free rate r and a constant repo rate q. Let C(T, K) be a surface of call prices on the asset S, parametrized by maturity T and strike price K. It is possible (and classical) to show that, if the market is free of arbitrage at time t = 0, the function $C(\cdot)$ satisfies the conditions

- (0) $(S_0 e^{-qT} K e^{-rT})^+ \le C(T, K) \le S_0 e^{-qT}$, for every $T, K \ge 0$.
- (i) The function $K \mapsto C(T, K)$ is convex, for every $T \ge 0$.
- (ii) A condition about the dependence of C with respect to T.
- (iii) $C(T, K) \to 0$ as $K \to \infty$, for every $T \ge 0$.
 - 1. Give the missing condition (ii).

Answer. See lecture 4 on Feb 12, 2020.

The goal of this exercise is to show the following result, that holds for fixed maturities T

Proposition: Let $K \mapsto C(K)$ be a function that satisfies conditions (0), (i) and (iii), for some fixed T > 0. Then, there exist a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ supporting a positive random variable X_T such that $C(K) = \mathbb{E}[e^{-rT}(X_T - K)^+]$, for all $K \ge 0$.

Let $C(\cdot)$ be as in the Proposition above. We set

$$c(K) := e^{qT} C\left(K e^{(r-q)T}\right) \qquad \text{for all } K \ge 0.$$

Note that the function c will satisfy

$$(S_0 - K)^+ \le c(K) \le S_0;$$
 c is convex; $c(K) \to 0$ as $K \to \infty$

Recall that the following properties follow from the convexity of c: the right derivative $\partial_K^+ c(K)$ exists for all $K \ge 0$, and $\partial_K^+ c$ is a right-continuous and increasing function.¹

2. Show that $\partial_K^+ c(0) \ge -1$.

Answer. From the bounds on c, we have $c(0) = S_0$. Therefore, $\frac{c(K)-c(0)}{K} \ge \frac{(S_0-K)^+-S_0}{K} = -1$ for all $K < S_0$. In particular then, $\partial_K^+ c(0) \ge -1$.

3. Show that $\partial_K^+ c(K) \to 0$ as $K \to \infty$.

Answer. First of all, note that $\lim_{K\to\infty} \partial_K^+ c(K)$ exists because the fct is monotone. Denote l this limit.

- We have $c(K) \ge c(K_0) + \partial_K^+ c(K_0)(K K_0) \ge \partial_K^+ c(K_0)(K K_0)$. Assume l < 0. Then, $\partial_K^+ c(K_0)(K - K_0) \to +\infty$ as $K_0 \to \infty$, which is a contradiction.
- · Assume l > 0. Then, there exists \overline{K} such that $\partial_K^+ c(K) > l/2$ for all $K \ge \overline{K}$. Using the fact that c is locally Lipschitz, hence absolutely continuous (therefore: c is the integral of its derivative), we can write

$$c(K) = c(\overline{K}) + \int_{\overline{K}}^{K} \partial_{K}^{+} c(z) dz \ge c(\overline{K}) + \int_{\overline{K}}^{K} \frac{l}{2} dz = c(\overline{K}) + \frac{l}{2}(K - \overline{K}) \to \infty \quad \text{as } K \to \infty,$$

which is a contradiction. Overall, we have shown l = 0.

4. Define the function $F(K) = \begin{cases} 1 + \partial_K^+ c(K) & \text{if } K \ge 0\\ 0 & \text{if } K < 0. \end{cases}$ Show that F is a cumulative distribution

function on \mathbb{R} .

By construction, F is right continuous, identically zero on $(-\infty, 0)$, increasing on Answer. $[0,\infty)$. By the previous question, we have $\lim_{K\to 0} F(K) = 1$. Finally, we just have to note that $F(0) = 1 + \partial_K^+ c(0) \ge 0$ by question 1, so that F is increasing on the whole \mathbb{R} . Overall, F is a cdf on \mathbb{R} .

5. Let γ be a probability measure on \mathbb{R} such that $F_{\gamma}(K) = \gamma((-\infty, K]) = F(K)$ for all K. Show that $\int_{\mathbb{R}} (y-K)^+ \gamma(dy) = c(K)$ for all K.

Answer. Using the result in Exercise 1, we have

$$\int_{\mathbb{R}} (y-K)^+ \gamma(dy) = \int_K^\infty (1-F_\gamma(x))dx$$
$$= \int_K^\infty (-\partial_K^+ c(x))dx = \lim_{A \to \infty} \int_K^A (-\partial_K^+ c(x))dx = \lim_{A \to \infty} (c(K) - c(A)) = c(K),$$

¹Actually, a convex function is locally Lipschitz, so that the derivative c'(K) exists for almost every K.

by condition $\bullet.$

6. Conclude on the proof of the Proposition above.

Answer. Going back to the function C, we have shown that

$$C(K) = e^{-dT} c \left(K e^{-(r-d)T} \right) = e^{-dT} \int_{\mathbb{R}} (y - K e^{-(r-d)T})^+ \gamma(dy)$$

= $\int_{\mathbb{R}} e^{-rT} (e^{(r-d)T}y - K)^+ \gamma(dy) = \mathbb{E} \left[e^{-rT} \left(e^{(r-d)T} X_T - K \right)^+ \right],$

where X_T is a random variable defined on a (any) probability space $(\Omega, \mathcal{F}, \mathbb{P})$, distributed according to the law γ .