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Exercise 1. [A preliminary exercise: in view of the derivation of call and put prices with respect to
strike.]| Let X be an integrable random variable with values in Ry = [0, 00).

1. Show that, for every a > 0,
Bla- X)) = [ PX<pdy. B(X - = [ B>y
0 a

Answer. It follows from Fubini’s theorem that
E[(a — X)+] = E[(a — X)nga] = E |:/ 1X§xd1' ]-X<a:| = / E[lxgz]d‘L = / ]P(X S (E)dil’
0 0 0

The same type of argument yields E[(X —a)™] = [ P(X > z)dz. ]

2. Deduce that the right and left derivatives 9 and 9, of the expectations above exist for all a > 0
and satisfy

0/ E[(a — X)T] =P(X < a), [(

07 E[(a — X)) =P(X < a)
OAE(X —a)]=-P(X >a), OI7E[(

a J—
a—X)T]=-P(X >a)

Conclude that, if z — P(X < x) is continuous at the point a, then d%IE[(a - X)T|=P(X <a)
and d%IE[(X —a)t] = -P(X > a).

Exercise 2. |[Another proof of the Markovian projection theorem (or Gyéngy’s theorem) for stochastic
volatility.] We consider a process S; that satisfies

t t
St:Sng/ bSudu+/ MuSudWy, >0, (1)
0 0

where (W;);>0 is a Brownian motion on a probability space (2, F, (F)i>0,P), b € R is a constant,
and (1:)¢>0 is a positive and bounded process (in the sense: there exists a constant 77 > 0 such that
0<m <7, Vt>0, as.) adapted to F;.

1. Write the solution of (1) as S; = Spe¥?, where Y; is stochastic process that you will write down
explicitly.

Answer. Let Y; = bt — % fot n2du + jot NuwdW,. An application of It6’s formula allows to show that the

process S; = Spe¥* is a solution of (1). This is also the unique solution: why? U

2. Show that Vp > 1, Vi > 0, E[Sﬂ < S§exp(Ct), where C' is a constant depending on b, 77 and p.



Answer. Using the explicit expression for S; and the boundedness of the process 7;, we get

t t
SP = SP exp (pbt - g/ n2du +p/ nuqu)
0 0
1 t t P2
= S exp (pbt + =p(p— 1)/ n2du +p/ NudWy — */ nidu)
2 0 0 2 Jo
t 2t
< S exp (Ct) exp (p/ Ny dW,, — %/ nidu)
0 0

where C' = pb + $p(p — 1)7°. Since 7 is bounded, the process Z; = exp (p fot NudWy — % fot nﬁdu)
is a martingale (this fact is a consequence of Novikov’s condition, but it can also be proven directly
using standard moment controls for SDEs: how?). In particular, E[Z;] = Zy = 1. We conclude that
E[S}] < S§ exp(Ct). O

We assume that there exists a continuous function o : Ry x Ry — R such that
E[n7|S:] = o(t, Si)? vt >0, (2)
and moreover, o satisfies the hypothesis (H) given in the lectures. We consider a function v €
C12([0,T) x Ry, R) satisfying
O (t,x) +bx Oyv(t,x) + %O‘(t,:ﬂ)2$283m’v(t,l‘) —bo(t,x) =0 (t,z) €10,T) x [0,00)
(T, z) = f(z) z € [0,00),

where f : Ry — R, is a continuous function with polynomial growth: 3 C,q > 0 s.t. Vo > 0,
fz) < C(1+ x9).

We assume that 0,v and 9,,v also have polynomial growth: |0,v(t, )| + |Opzv(t, z)| < C1(1 + 1),
V0<t<T, Vx>0, for some positive constants Cy and q1.

Now consider the process V; defined by Vy = v(0, .Sp) and
dV; = (b‘/;g — bdtSt)dt + 64dSt t<T,
where 0; = 9,v(t, St).

3. Is the process (e*btvi)ogtg a martingale?

Answer. Using the expression of dV;,

d(e_tit) = e_bt(—b5t5t)dt + e_bt(StdSt = €_bt(b6tst — bétSt)dt + e_btét ’I]tStth
= 67”(515 ntStth,

Therefore,

t
Vi=W Jr/ eibuamv(u,su)nusudwu
0

is a local martingale, and here it is a martingale because of: the boundedness of the process 7, the

assumption of polynomial growth for d,v, and the control of moments of S obtained in question 2. [

4. Compute dv(t, S), then d (e (V; — v(t, St))).

Answer. dV; was given above. We have
1
d’U(t, St) = |:8t"0(t, St) + infStzﬁmv(t, St)] dt + 81;U(t, St)dSt

therefore )
AV, — dv(t, Sy) = [bv; — bSi00(t, S1) = Dpu(t, Si) — 5mFSPOravl, st)} dt

= [pvi—bo(t.5) + %sf (o0t 800 02 ) B, )]



where we have used the PDE satisfied by v in the second identity. By Itd’s formula,
1
A (e (Ve = vlt, $1)) = e S S20uv(t, S0) (ot S)* ) dt

so that , for all ¢ € [0, T

1 t
efbt(Vt —(t,S))) = 5/ efbusqiamv(u, Su) (U(u, Su)2 - ni)du
0

Let X be such that
t t
X =5 —l—/ b X, du+ / o(u, Xy) XydWy, t>0
0 0

5. Show that E[Vr| = E[f(S7)], then that E[f(X7)] = E[f(S7)]. Conclude that Xp and Sr have
the same law , for every T.

Answer. Taking expectations in the previous questions, we obtain

Ele™" (Vi - v(t, 51))] = ;E[/Ot S iBuw(an 80) (o, 51)° = )]

_ ;/t . {Sigmv(% S.) (O—(u, Su)? — ni)]du
0

1 t
=3 / e ™E {Siaxmv(% SU)E [U(uﬂ Su)2 - 773
2 Jo

Squu:()

where we have used the polynomial growth estimate on 9,,v(u,S,) in order to apply Fubini’s Theorem
in the second step, and the fact that E[n2|S,] = o(u,S,)? for all u in the last step. When ¢t = T, we
obtain

Ele " Vi) = Ele~*To(T, Sr)] = Ele ™" £(Sr)]

Now, E[e=*TVy] = Vy = v(0,8) by question 3, and by the Feynman-Kac theorem v(0,Sy) =
E[e="T f(X7)], where the process X satisfies the equation above. Putting things together, we have
obtained

E[f(Xr)] = E[f(ST)]

Since this identity holds for any continuous and bounded function f, we conclude on the required identity
in law. [l

Exercise 3. Consider a market containing a tradable asset S, a constant risk-free rate r and a
constant repo rate q. Let C'(T, K) be a surface of call prices on the asset S, parametrized by maturity
T and strike price K. It is possible (and classical) to show that, if the market is free of arbitrage at
time t = 0, the function C(+) satisfies the conditions

(0) (Soe 9" — Ke ™) < O(T, K) < Spe™4T, for every T, K > 0.
(i) The function K — C(T, K) is convex, for every T > 0.

(ii) A condition about the dependence of C' with respect to T.

(iii) C(T,K) = 0 as K — oo, for every T' > 0.

1. Give the missing condition (ii).

Answer. See lecture 4 on Feb 12, 2020. [l



The goal of this exercise is to show the following result, that holds for fixed maturities T’

Proposition: Let K — C(K) be a function that satisfies conditions (0), (i) and (iii), for some

fixed T > 0. Then, there exist a probability space (2, F,P) supporting a positive random
variable X7 such that C(K) = E[e "7 (X7 — K)*], for all K > 0.

Let C(-) be as in the Proposition above. We set
oK)= eqTC’(Ke(T_Q)T) for all K > 0.
Note that the function ¢ will satisfy
(So — K)T <c¢(K) < Sp; cisconvex; c¢(K)—0 as K — oc.

Recall that the following properties follow from the convexity of c: the right derivative 0j:c(K) exists
for all K > 0, and 8}0 is a right-continuous and increasing function.!

2. Show that dj-c(0) > —1.

Answer. From the bounds on ¢, we have ¢(0) = Sy. Therefore, C(K)I;c(o) > (SO_[;)+_S° = —1 for all

K < Sp. In particular then, 9;¢c(0) > —1. O

3. Show that 0j-c(K) — 0 as K — oc.

Answer. First of all, note that limg_, 8}0(.7() exists because the fct is monotone. Denote [ this limit.

- We have c¢(K) > ¢(Ko) + 0fc(Ko)(K — Ko) > 0fc(Ko)(K — Kg). Assume [ < 0. Then,
O c(Ko)(K — Ko) — +0oo as Ko — 0o, which is a contradiction.
- Assume [ > 0. Then, there exists K such that 9};c(K) > 1/2 for all K > K. Using the fact that

¢ is locally Lipschitz, hence absolutely continuous (therefore: c is the integral of its derivative), we
can write

o K o K o o
C(K):C(K)—F/? 8}0(2’)6&20([()4—/? §dz=c(K)+§(K—K)—>oo as K — oo,

which is a contradiction. Overall, we have shown [ = 0.

14 0fc(K) if K>0

. Show that F'is a cumulative distribution
0 if K <0.

4. Define the function F'(K) = {

function on R.

Answer. By construction, F' is right continuous, identically zero on (—o0,0), increasing on
[0,00). By the previous question, we have limy_,o F(K) = 1. Finally, we just have to note that
F(0) = 1+ 9f¢c(0) > 0 by question 1, so that F is increasing on the whole R. Overall, F is a cdf on R.
[

5. Let v be a probability measure on R such that Fy(K) = v((—o0, K|) = F(K) for all K. Show
that [(y — K)"y(dy) = ¢(K) for all K.

Answer. Using the result in Exercise 1, we have

o0

/ (v — K (dy) = / (1— F,(x))dz
R

K

[eS) A
= / (—=0%c(z))dz = lim (=0kc(z))dz = lim (¢(K) — c(A)) = ¢(K),

K A—oo [ A—o0

! Actually, a convex function is locally Lipschitz, so that the derivative ¢/(K) exists for almost every K.



by condition e. O

. Conclude on the proof of the Proposition above.

Answer. Going back to the function C, we have shown that
C(K) = Te(Ie 0T = T [ (g Ko 0T 5 ()
R
-r T— —r r— +
= /Re T(er=dTy — K)Fy(dy) = Ele T(e( DT X, — K)'],

where X7 is a random variable defined on a (any) probability space (€2, F,P), distributed according to
the law . [l



