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Kusuoka-Stroock results Kusuoka-Stroock results for diffusion semigroups

A classical result

In the eighties, Kusuoka and Stroock analyzed the smoothness properties of
the (perturbed) semigroup associated to a diffusion process:

(Pc
t φ)(x) = E

[
φ(X x

t ) exp

(∫ t

0
c (X x

s ) ds

)]
, t ≥ 0, x ∈ Rd1 ,

where

X x
t = x +

∫ t

0
V0(X x

s )ds +
N∑

i=1

∫ t

0
Vi(X x

s ) ◦ dBi
s, t ≥ 0. (1)

{Vi i = 0, ...,N} are smooth and bounded satisfying the UFG condition
the stochastic integrals in (1) are of Stratonovich type
B is an N-dimensional standard Brownian motion
c : Rd1 → R are smooth and bounded functions
φ : Rd1 → R is an arbitrary bounded measurable function.
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Kusuoka-Stroock results The UFG condition

The UFG condition
states that the C∞

b

(
Rd1
)
−module W generated by the vector fields

{Vi i = 1, ...,N} within the Lie algebra generated by {Vi , i = 0, ...,N} is
finite dimensional.
the condition does not require that the vector space {W (x)|W ∈ W} is
homeomorphic to Rd1 .
in this sense, the UFG condition is weaker than the Hörmander condition.

.
Theorem (Kusuoka and Stroock, 1987)
..
......P

c
t φ is differentiable in the direction of any vector field W belonging to W.

.
Theorem (Kusuoka and Stroock, 1987)
..

......

For any smooth compactly supported function φ : Rd1 → R,

∥W1 . . .WmPc
t (Wm+1 . . .Wm+nφ)∥p ≤ Cm,nt−l∥φ∥p, p ∈ [1,∞], (2)

where l = l(Wi ∈ W, i = 1, ...,m + n).
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Kusuoka-Stroock results Randomly perturbed semigroup

Define the randomly perturbed semigroup

ρ
Y (ω)
t (φ)(x) = E [φ(X x

t )Zt(X x ,Y )| Yt ] (ω) , t ≥ 0, x ∈ Rd1 , (3)

where

Zt(X x ,Y ) = exp

(
d2∑

i=1

∫ t

0
hi (X x

s ) dY i
s −

1
2

d2∑
i=1

∫ t

0
hi (X x

s )
2 ds

)
.

Y =
{(

Y i
t
)d2

i=1 , t ≥ 0
}

is a d2-dim Bm independent of X ,
Yt = σ{Ys, s ∈ [0, t ]}.
hi : Rd1 → R, i = 1, ..., d2 are smooth bounded functions with bounded
derivatives of all orders.

.
Theorem (Crisan, Litterer and Lyons)
..

......

There exists a random variable ω → Cm,n (ω) such that for any smooth
compactly supported φ : Rd1 → R

∥W1 . . .Wmρ
Y (ω)
t (Wm+1 . . .Wm+nφ)∥p ≤ Cm,n(ω)t−l∥φ∥p, p ∈ [1,∞], (4)

where l = l(Wi ∈ W, i = 1, ...,m + n).
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. . . . . .

Kusuoka-Stroock results Applications to nonlinear filtering

ρ
Y (ω)
t (φ)(x) =

∫
φ(y)ρx

t (dy) = ρx
t (φ)

The measure valued process {ρx
t , t ≥ 0} solves the following linear parabolic

stochastic PDE (written in its weak form), called the called the
Duncan-Mortensen-Zakai equation:

dρx
t (φ) = ρx

t (Aφ)dt +
d2∑

k=1

ρx
t (hkφ)dY k

t , (5)

ρx
0 = δx .

Here A is the differential operator

Aφ = V0φ+
1
2

N∑
i=1

V 2
i φ

and φ is a suitably chosen test function. The normalized solution of (5) gives
the conditional distribution of a partially observed stochastic process.
Particular case:

dρx
t (y) =

1
2
∆ρx

t (y)dt + h(y)ρx
t (y)dYt .
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Kusuoka-Stroock results Applications to nonlinear filtering

(Ω,F , P̃) probability space, (Ft)t≥0 satisfies the usual conditions.

• the signal process:

dXt = V0(Xt)dt +
N∑

i=1

Vi(Xt) ◦ dBi
t , X0 = x , t ≥ 0, (6)

W an Ft -adapted d2-dimensional Brownian motion independent of X .
• the observation process:

Yt =

∫ t

0
h(Xs)ds + Wt , (7)

Yt = σ(Ys, s ∈ [0, t ]) ∨N , N comprises all P̃-null sets.

The filtering problem. Determine πt , the conditional distribution of the signal X
at time t given Y in the interval [0, t ].

πt (φ) = Ẽ[φ(Xt) | Yt ] , φ Borel bounded function. (8)
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Kusuoka-Stroock results Applications to nonlinear filtering

Let P be absolutely continuous with respect to P̃ such that

d P̃
dP

∣∣∣∣∣
Ft

= Zt(X ,Y ).

Zt(X ,Y ) = exp

(
d2∑

i=1

∫ t

0
hi (Xs) dY i

s −
1
2

d2∑
i=1

∫ t

0
hi (Xs)

2 ds

)
.

By Girsanov’s theorem, under P, Y is a Brownian motion independent of X ;
additionally the law of X under P̃ is the same as its law under P.

Kallianpur-Striebel formula

πt(φ) =
ρ

Y (ω)
t (φ)

ρ
Y (ω)
t (1)

P̃(P)− a.s., (9)

ρ
Y (ω)
t (φ) = E [φ(Xt)Zt(X ,Y )| Yt ] (ω) , t ≥ 0, (10)

• 1 is the constant function 1 (x) = 1 for any x ∈ Rd1 .
• ρx

t the unnormalised conditional distribution the signal.
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Kusuoka-Stroock results The UFG condition

Let (Vi)0≤i≤N ∈ CK
b (Rd1 ,Rd1). Notation

V[i] = Vi , V[α⋆i] =
[
V[α],Vi

]
, i ∈ {0, . . . ,N},

where [·, ·] is the commutator and α ⋆ i = (α1, . . . , αn, i) when α is given by
(α1, . . . , αn) with αj ∈ {0, . . . ,N}, j = 1, . . . , n.

The following “lengths” of a multi-index α = (α1, . . . , αn) are used:

|α| = |(α1, . . . , αn)| = n,

∥α∥ = ∥(α1, . . . , αn)∥ = n + ♯{i : αi = 0}.

A0(m) = the set of multi-indices α different from (0) for which ∥α∥ ≤ m.
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Kusuoka-Stroock results The UFG condition

.
Definition
..

......

Let m ∈ N∗ such that K ≥ m + 3. The vector fields {Vi , 0 ≤ i ≤ N} satisfy the
UFG condition of order m if for any α ∈ A0(m + 1) there exists
φα,β ∈ CK+1−|α|

b (Rd1), with β ∈ A0(m) such that

V[α](x) =
∑

β∈A0(m)

φα,β(x)V[β](x), x ∈ Rd1 .
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Kusuoka-Stroock results The UFG condition

The vector fields {Vi ,0 ≤ i ≤ N} satisfy the uniform Hörmander condition
if there exists m > 0 such that

inf
{x,ξ∈Rd1 |∥ξ∥=1}

∑
β∈A0(m)

(V[β](x), ξ)2 > 0.

If the vector fields {Vi ,0 ≤ i ≤ N} satisfy the uniform Hörmander
condition then they satisfy the UFG condition.
In particular if the vector fields {Vi , 1 ≤ i ≤ N} satisfy the strict ellipticity
condition then they satisfy the UFG condition.
The following

V0(x1, x2) = sin x1
∂

∂x1
V1(x1, x2) = sin x1

∂

∂x2

satisfy the UFG condition of order m = 4, but not the Hörmander
condition.
For smooth vector fields, let W be the C∞

b (Rd1)-module generated by the
vector fields {Vi , i = 1, ...,N} within the Lie algebra generated by
{Vi , i = 1, ...,N}. Then, the UFG condition means that W is finitely
generated as a vector space and {V[α], α ∈ A0(m)} is a finite set of
generators for W.
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Kusuoka-Stroock results Main Results

Vi , i = 0, . . . ,N satisfy UFG condition, α1, . . . , αj , . . . , αm ∈ A0(m) m ≥ j ≥ 0.
.
Theorem (Crisan, Litterer and Lyons)
..

......

Let h ∈ C∞
b

(
Rd1 ,Rd2

)
. There exists c∞ (ω) a.s. finite such that∥∥∥(V[α1] · · ·V[αj ]ρ

Y (ω)
t

(
V[αj+1] · · ·V[αm]φ

))∥∥∥
∞

≤ c∞ (ω) t−(∥α1∥+···+∥αm∥)/2 ∥φ∥∞

for any φ ∈ C∞
b

(
RN
)
.

Let h ∈ C∞
0

(
Rd1 ,Rd2

)
. There exists cp (ω) a.s. finite such that∥∥∥(V[α1] · · ·V[αj ]ρ

Y (ω)
t

(
V[αj+1] · · ·V[αm]φ

))∥∥∥
p
≤ cp (ω) t−(∥α1∥+···+∥αm∥)/2 ∥φ∥p

for all φ ∈ C∞
0

(
RN
)
, p ∈ (1,∞].
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Kusuoka-Stroock results Main Results

.
Corollary
..

......

Let h ∈ C∞
b

(
Rd1 ,Rd2

)
. There exists c̄∞ (ω) a.s. finite such that∥∥∥(V[α1] · · ·V[αj ]π

Y (ω)
t

(
V[αj+1] · · ·V[αm]φ

))∥∥∥
∞

≤ c̄∞ (ω) t−(∥α1∥+···+∥αm∥)/2 ∥φ∥∞

for any φ ∈ C∞
b

(
RN
)
.

Proof: Assume j = 1, and m = 2. We have

V[α1]πt
(
V[α2]φ

)
= V[α1]

[
ρ

Y (ω)
t

(
V[α2]φ

)
/ρ

Y (ω)
t (1)

]
= V[α1]ρ

Y (ω)
t

(
V[α2]φ

)
(ρ

Y (ω)
t (1))−1

+ρ
Y (ω)
t

(
V[α2]φ

)
V[α1]((ρ

Y (ω)
t (1))−1).

Then ∣∣V[α1]πt
(
V[α2]φ

)
(x)
∣∣ ≤ C̄T (ω) t−(∥α1∥+∥α2∥)/2 max ∥φ∥∞ ,

where C̄T (ω) = CT (ω) ((ρ
Y (ω)
t (1))−1(x) + (ρ

Y (ω)
t (1))−2(x)).
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Kusuoka-Stroock results Main Results

If Vi , i = 0, ..., d1 satisfy the UFG condition, we cannot guarantee the
existence of a density of ρ̄Y (ω)

t w.r.t. the Lebesgue measure given any
starting point.

ρ
Y (ω)
t will have a density y → ρ̄

x,Y (ω)
t (y) if for any vector field V with

coefficients in C∞
b (RN), there exist uV ,β ∈ C∞

b (RN) satisfying

V =
∑

β∈A1(k)

uα,βV[β]. (11)

(11) is equivalent to the existence of a positive integer k such that for
i = 1, ...,N, there exist ui,β ∈ C∞

b (RN) satisfying

∂i =
∑

β∈A1(k)

ui,βV[β]. (12)

In particular this means that

Span{V[α](x) : α ∈ A(k)} = RN

holds for all x ∈ RN .
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Kusuoka-Stroock results Main Results

.
Corollary
..

......

Assume that Vi , i = 0, ...,d1 satisfy condition (11), π0 = δx and h ∈ C∞
b (RN).

Then, for all t > 0, the unnormalised conditional distribution of the signal ρY (ω)
t

has a smooth density y → ρ̄
x,Y (ω)
t (y).

Moreover for any T > 0, and any multi-index ι = (i1, ..., in) ∈ A there exists a
random variable C̄T ,ι (ω) almost surely finite such that∥∥∥∂i1 ...∂in ρ̄

x,Y (ω)
t

∥∥∥
1
≤ C̄T ,ι (ω) t−

kn
2 , t ∈ (0,T ]. (13)

If, in addition, h ∈ C∞
0

(
RN
)

then, or any T > 0, any multi-index
ι = (i1, ..., in) ∈ A there exists a random variable C̄T ,ι (ω) almost surely finite
such that for any p ∈ [1,∞], we have∥∥∥∂i1 ...∂in ρ̄

x,Y (ω)
t

∥∥∥
p
≤ C̄T ,ι (ω) t−

kn
2 , t ∈ (0,T ]. (14)
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Kusuoka-Stroock results Building blocks of the proof

Step 1. Chaos expansion of ρY (ω)
t

Introduce the set of operators: Rq,q̄ where q = (t1, t2, . . . , tk ) is a non-empty
multi-index with entries t1, t2, . . . , tk ∈ [0,∞) that have increasing values
t1 < t2 < ... < tk and q̄ = (i1, ..., ik−1) is a multi-index with entries
i1, ..., ik−1 ∈ {1, 2, ...,m} defined

R(s,t),∅(φ) = Pt−s (φ)

and, inductively, for k > 1,

R(s,t1,t2,...,tk ),(i1,...,ik−1) (φ) = R(s,t1,t2,...,tk−1)

(
hik−1Ptk−tk−1(φ)

)
= Pt1−s

(
hi1Pt2−t1 . . .

(
hik−1Ptk−tk−1(φ)

))
= Pt1−s

(
hi1R(t2−t1,t3−t1,...,tk−t1)(φ)

)
Note that the length of the multi-index q̄ is always one unit less that q.
S (m) all multi-indices q̄ with entries in the set {1, ...,m}.
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Kusuoka-Stroock results Building blocks of the proof

.
Lemma
..

......

We have almost surely that

ρx
t (φ) = Pt(φ)(x) +

∞∑
m=1

∑
q̄∈S(m)

Rm,q̄
0,t (φ) (15)

where, for q̄ = (i1, ..., im),

Rm,q̄
0,t (φ) =

∫ t

0

∫ tm

0
. . .

∫ t2

0︸ ︷︷ ︸
m times

R(0,t1,...,tm,t),q̄(φ)(x)dY i1
t1 . . . dY im

tm .

.
Proof.
..
......Induction.
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Kusuoka-Stroock results Building blocks of the proof

Step 2. Pathwise representation of the iterated integrals Rm
t (φ).

qk
s,t (Y ) =

∫ t

s

∫ tk

s
. . .

∫ t2

s︸ ︷︷ ︸
k times

dY i1
t1 ...dY ik

tk

and qk̄
t̄ (Y ) , k̄ = (k1, ..., kr ) t = (t1, ...tr ) be the products of iterated integrals

qk̄
s,̄t (Y ) =

r∏
i=1

qki
s,ti (Y ) .

We define a formal degree on these products of iterated integrals by letting

deg
(

qk̄
s,̄t (Y )

)
=

r∑
i=1

ki .

Next define the sets Θk

Θk = sp

{
qk̄

t̄ (Y ) , k̄ = (k1, ..., kr ) ,
r∑

i=1

ki ≤ k

}
.
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Kusuoka-Stroock results Building blocks of the proof

Also for q̄ ∈ S (k) let q̄ ∈ (i1, ..., ik ) define Φq̄ , Ψq̄ , be the following operators

Φq̄φ = hi1 ...hikφ

Ψq̄φ = [Φq̄ ,A] (φ) = A(hi1 ...hik )φ+
d∑

i=1

Vi(hi1 ...hik )Viφ.

and Γ be the set of operators

Γ = {Φq̄1 ,Ψq̄2 ,Ψq̄1Φq̄2 , q̄1, q̄2 ∈ S (k) , k ≥ 1} .
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Kusuoka-Stroock results Building blocks of the proof

.
Theorem
..

......

Rm
s,t (φ)=Pt−s(hmφ)(x)

∫ t

s

∫ tm

s
. . .

∫ t2

s︸ ︷︷ ︸
m times

dYt1 ...dYtm

+
m−1∑
k=1

qk,m
s,t (Y )

∫ t

s

∫ tk

s
. . .

∫ t2

s︸ ︷︷ ︸
k times

qk,m
(s,t1,...,tk )

(Y ) R̄k
(s,t1,...,tk ,t)(φ)(x)dt1...dtk

+
m∑

k=1

∫ t

s

∫ tk

s
. . .

∫ t2

s︸ ︷︷ ︸
k times

q̄k,m
(s,t1,...,tk )

(Y ) R̄k
(s,t1,...,tk ,t)(φ)(x)dt1...dtk , (16)

and qk,m
(s,t1,...,tk )

(Y ), q̄k,m
(s,t1,...,tk )

(Y ) ∈ Θm are linear combinations of iterated
integrals of Y and R̄k

(t1,...,tk ,t)
(φ) are given by

R̄k
(s,t1,...,tk ,t)(φ) = Pt1−s

(
Φ̄1Pt2−t1 . . .

(
Φ̄k Pt−tk (φ)

))
and Φ̄i , Φ̃i ∈ Γ, i = 1, .., k .
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Moreover we have

deg
(

qk,m
s,t (Y )

)
+ deg

(
qk,m
(s,t1,...,tk )

(Y )
)
= deg

(
q̄k,m
(s,t1,...,tk )

(Y )
)
= m. (17)

.
Proof.
..
......Integration by parts.

Step 3. Pathwise control of the iterated integrals qk
s,t (Y (ω)).

.
Lemma
..

......

For any 1/3 < γ < 1/2 there exists a positive random variable
c = c (ω, k , γ, ∥h∥∞) independent of x and some β > 0 such that, almost
surely ∣∣∣qk

s,t (Y (ω))
∣∣∣ ≤ (c (ω, γ, ∥h∥∞) |s − t |)kγ

β (kγ)!

for all 0 ≤ s ≤ t ≤ 1.
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Kusuoka-Stroock results Building blocks of the proof

Step 4. Pathwise control of the terms Rm
s,t

.
Theorem
..

......

Let h ∈ C∞
b

(
Rd1 ,Rd2

)
. There exists cm

∞ (ω) such that∥∥∥(V[α1] · · ·V[αj ]R
m
s,t

(
V[αj+1] · · ·V[αm]φ

))∥∥∥
∞

≤ cm
∞ (ω) t−(∥α1∥+···+∥αm∥)/2 ∥φ∥∞

for any φ ∈ C∞
b

(
RN
)

and
∑

m cm
∞ (ω) < ∞ a.s.

Let h ∈ C∞
0

(
Rd1 ,Rd2

)
. There exists cm (ω) such that∥∥∥(V[α1] · · ·V[αj ]R

m
s,t

(
V[αj+1] · · ·V[αm]φ

))∥∥∥
p
≤ cm (ω) t−(∥α1∥+···+∥αm∥)/2 ∥φ∥p

for all φ ∈ C∞
0

(
RN
)
, p ∈ [1,∞] and

∑
m cm (ω) < ∞ a.s.

.
Proof.
..
......Kusuoka-Stroock estimates and rough paths techniques.
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Final remarks

We obtain sharp gradient bounds for perturbed diffusion semigroups. In
contrast with existing results, the perturbation is here random and the
bounds obtained are pathwise.
The results build on the classical work of Kusuoka and Stroock and
extend their program developed for the heat semi-group to solutions of
stochastic partial differential equations.
The analysis allows us to derive pathwise gradient bounds for the
un-normalised conditional distribution of a partially observed signal. We
use a pathwise representation of the perturbed semigroup in the spirit of
classical work by Ocone.
The estimates we derive have sharp small time asymptotics.

Dan Crisan (Imperial College London) Smoothness properties 9 October 2015 24 / 25
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A message from Professor Ioan Cuculescu

Vlad attended my undergraduate course in Probability at the Faculty
of Mathematics in Bucharest and, in the following year, my course in
Stochastic processes for Master students. He graduated in 1979 with
distinction. Vlad stood out among his peers through his commitment for
high level achievements, never being happy with the easy ones. I re-
call that he always said that if a lecture course is not a challenge in what
concerns the effort of understanding it, then it is boring and it is not worth-
while taking. This attitude continued after his graduation: He enjoyed the
challenge of reading the chapter on Local Time in the famous Itô and

McKean book. This led him to his Ph.D. thesis in 1985 entitled ”The structure of a class of Markov
processes” (I was the supervisor). By its contents, the thesis is remarkable in that it tackles most
of the essential problems of the Markov processes theory. Indeed, Vlad’s thesis is an honour for
the Romanian Doctoral School in Probability Theory.

Recently, Vlad gave a talk at the annual conference of our ”Romanian Society of Probability,
Statistics and Operational Research” and I was happy to learn that he continues to carry the
Probability Theory flag as strong as ever.

Professor Vlad Bally, I wish you Happy Birthday, long life and continuous mathematical
satisfactions!

La multi ani !

Ioan Cuculescu
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