On the binomial approximation of the American put

Damien Lamberton
Université Paris-Est Marne-la-Vallée

Workshop in honor of Vlad Bally,
Stochastic Calculus, Monte Carlo Methods and Mathematical Finance. Le Mans, 6-9 October 2015

Outline

The American put price in the Black-Scholes model

Outline

The American put price in the Black-Scholes model

The binomial approximation

Outline

The American put price in the Black-Scholes model

The binomial approximation

Upper bound

Outline

The American put price in the Black-Scholes model

The binomial approximation

Upper bound

Lower bound

In the Black-Scholes model, the stock price at time t is given by

$$
S_{t}=S_{0} e^{\left(r-\delta-\frac{\sigma^{2}}{2}\right) t+\sigma B_{t}}
$$

where $r>0$ is the interest rate, $\delta \geq 0$ the dividend rate, and, under the risk neutral, measure, $\left(B_{t}\right)_{t \geq 0}$ is a standard Brownian motion. The price at time t of the American put with maturity T and strike price K, is given by $P\left(t, S_{t}\right)$, where

$$
P(t, s)=\sup _{\tau \in \mathcal{T}_{0, T-t}} \mathbb{E}_{s}\left(e^{-r \tau} f\left(S_{\tau}\right)\right),
$$

with $f(x)=(K-x)^{+}$, and $\mathbb{E}_{s}=\mathbb{E}\left(\cdot \mid S_{0}=s\right)$. Here $\mathcal{T}_{0, t}$ denotes the set of all stopping times with respect to the Brownian filtration \mathbb{F}.

Note that we also have $P(t, s)=U(T-t, \ln s)$, if we define

$$
U(T, x)=\sup _{\tau \in \mathcal{T}_{0, T}} \mathbb{E}\left(e^{-r \tau} \varphi\left(X_{\tau}^{x}\right)\right)
$$

where

$$
X_{t}^{x}=x+\mu t+\sigma B_{t}, \quad \text { with } \mu=r-\delta-\frac{\sigma^{2}}{2}, \text { and } \varphi(x)=\left(K-e^{x}\right)^{+}
$$

We know that U solves the variational inequality

$$
\max \left(-\frac{\partial U}{\partial t}(t, x)+A U(t, x)-r U(t, x), \varphi-U(t, x)\right)=0
$$

with initial condition $U(0,)=.\varphi$ where

$$
A U=\frac{\sigma^{2}}{2} \frac{\partial^{2} U}{\partial x^{2}}+\mu \frac{\partial U}{\partial x}, \text { with } \mu=r-\delta-\frac{\sigma^{2}}{2}
$$

We know that U solves the variational inequality

$$
\max \left(-\frac{\partial U}{\partial t}(t, x)+A U(t, x)-r U(t, x), \varphi-U(t, x)\right)=0
$$

with initial condition $U(0,)=.\varphi$ where

$$
A U=\frac{\sigma^{2}}{2} \frac{\partial^{2} U}{\partial x^{2}}+\mu \frac{\partial U}{\partial x}, \text { with } \mu=r-\delta-\frac{\sigma^{2}}{2} .
$$

With these notations, the exercise boundary (parameterized by time until maturity) is given by

$$
b(t)=\inf \{x>0 \mid U(t, x)>\varphi(x)\}, \quad t>0
$$

and we have $\lim _{t \downarrow 0} b(t)=\ln K \wedge \ln (r K / \delta)(=: b(0))$. We have, for $t \downarrow 0$,

$$
b(0)-b(t) \sim\left\{\begin{array}{l}
C \sqrt{t} \text { if } r<\delta, \\
C \sqrt{t|\ln t|} \text { if } r \geq \delta
\end{array}\right.
$$

The binomial approximation

We now introduce the random walk approximation of Brownian motion. To be more precise, assume $\left(X_{n}\right)_{n \geq 1}$ is a sequence of i.i.d. real random variables satisfying $\mathbb{E} X_{n}^{2}=1$ and $\mathbb{E} X_{n}=0$, and define, for any positive integer n, the process $B^{(n)}$ by

$$
B_{t}^{(n)}=\sqrt{T / n} \sum_{k=1}^{[n t / T]} X_{k}, \quad 0 \leq t \leq T
$$

where $[n t / T]$ denotes the greatest integer in $n t / T$. We will make the additional assumptions that X_{1} is bounded and $\mathbb{E}\left(X_{1}^{3}\right)=0$.
Note that X will denote a random variable with the same distribution as X_{1}, independent of the sequence $\left(X_{n}\right)_{n \geq 1}$.

In the following, we fix S_{0} and set

$$
P_{0}=P\left(0, S_{0}\right)=U\left(T, \ln S_{0}\right)
$$

Note that, if we introduce the notation $g(x)=\left(K-S_{0} e^{\sigma x}\right)^{+}$, we have

$$
P_{0}=\sup _{\tau \in \mathcal{T}_{0, T}} \mathbb{E}\left(e^{-r \tau} g\left(\mu_{0} \tau+B_{\tau}\right)\right)
$$

with $\mu_{0}=\mu / \sigma$. We now have a natural approximation of P_{0}, given by

$$
P_{0}^{(n)}=\sup _{\tau \in \mathcal{T}_{0, T}^{(n)}} \mathbb{E}\left(e^{-r \tau} g\left(\mu_{0} \tau+B_{\tau}^{(n)}\right)\right)
$$

where $\mathcal{T}_{0, T}^{(n)}$ denotes the set of all stopping times (with respect to the natural filtration of $B^{(n)}$), with values in $\{0, T / n, 2 T / n, \ldots,(n-1) T / n, T\}$.

Theorem

There exists a positive constant C, such that for any positive integer n,

$$
-C \frac{(\ln n)^{\beta}}{n} \leq P_{0}^{(n)}-P_{0} \leq C \frac{(\ln n)^{\alpha}}{n}
$$

with

$$
\alpha=\left\{\begin{array}{l}
5 / 4, \text { if } \delta \leq r, \\
1, \text { if } \delta>r .
\end{array}\right.
$$

and

$$
\beta=\left\{\begin{array}{l}
3 / 2, \text { if } \delta \leq r, \\
1, \text { if } \delta>r
\end{array}\right.
$$

Upper bound for $P_{0}^{(n)}-P_{0}$

Introduce the modified value function

$$
u(t, x)=e^{-r t} U\left(T-t, \ln \left(S_{0}\right)+\mu t+\sigma x\right), \quad t \geq 0, x \in \mathbb{R}
$$

We have $P_{0}=\sup _{\tau \in \mathcal{T}_{0}, T} \mathbb{E}\left(e^{-r \tau} g\left(\mu_{0} \tau+B_{\tau}\right)\right)=u(0,0)$ and, for $t \in[0, T]$,

$$
u(t, x) \geq e^{-r t}\left(K-S_{0} e^{\mu t+\sigma x}\right)^{+}=e^{-r t} g\left(\mu_{0} t+x\right)
$$

so that

$$
P_{0}^{(n)}-P_{0} \leq \sup _{\tau \in \mathcal{T}_{0, T}^{(n)}} \mathbb{E}\left(u\left(\tau, B_{\tau}^{(n)}\right)-u(0,0)\right)
$$

We will also use the notation:

$$
h=\frac{T}{n} .
$$

With this notation, we have

$$
B_{t}^{(n)}=\sqrt{h} \sum_{k=1}^{[t / h]} X_{k}, \quad 0 \leq t \leq T .
$$

We have, for all $t \in\{0, h, 2 h, \ldots,(n-1) h, n h=T\}$,

$$
u\left(t, B_{t}^{(n)}\right)=u(0,0)+M_{t}+\sum_{j=1}^{t / h} \mathcal{D} u\left((j-1) h, B_{(j-1) h}^{(n)}\right)
$$

where $\left(M_{t}\right)_{0 \leq t \leq T}$ is a martingale (with respect to the natural filtration of $\left.B^{(n)}\right)$, such that $M_{0}=0$, and
$\mathcal{D} u(t, x)=\mathbb{E}(u(t+h, x+\sqrt{h} X))-u(t, x), \quad 0 \leq t \leq T-h, \quad x \in \mathbb{R}$.

Note that, if v is smooth,

$$
\mathcal{D} v(t, x)=h \delta v(t, x)+h O(h)
$$

where

$$
\delta v=\frac{\partial v}{\partial t}+\frac{1}{2} \frac{\partial^{2} v}{\partial x^{2}}
$$

On the other hand, we have and

$$
\begin{aligned}
\delta u(t, x) & =e^{-r t}\left(-\frac{\partial U}{\partial t}+(A-r) U\right)\left(T-t, \ln \left(S_{0}\right)+\mu t+\sigma x\right) \\
& =e^{-r t}(A-r) \varphi\left(\ln \left(S_{0}\right)+\mu t+\sigma x\right) \mathbf{1}_{\left\{x \leq b_{0}(t)\right\}}
\end{aligned}
$$

where $b_{0}(t)=\left(\tilde{b}(T-t)-\mu t-\ln \left(S_{0}\right)\right) / \sigma$. In particular, we have

$$
\delta u \leq 0
$$

and $\delta u=0$ on the set $\mathcal{C}=\left\{(t, x) \in(0, T) \times \mathbb{R} \mid x>b_{0}(t)\right\}$.

A representation for the operator \mathcal{D}

Proposition

Assume that v is a function of class C^{3} on $[0, T] \times \mathbb{R}$. We have, for $0 \leq t \leq T-h$ and $x \in \mathbb{R}$,

$$
\mathcal{D} v(t, x)=\tilde{\mathcal{D}} v(t, x)+2 \int_{0}^{\sqrt{h}} d \xi \int_{0}^{\xi} d z \mathbb{E}\left(X^{2} \delta v\left(t+\xi^{2}, x+z X\right)\right)
$$

where

$$
\tilde{\mathcal{D}} v(t, x)=2 \int_{0}^{\sqrt{h}} d \xi \int_{0}^{\xi} d z(\xi-z) R v(t, x, \xi, z)
$$

with

$$
R v(t, x, \xi, z)=\mathbb{E}\left[X^{2}\left(\xi-X^{2} \frac{(\xi-z)}{2}\right) \frac{\partial^{3} v}{\partial t \partial x^{2}}\left(t+\xi^{2}, x+z X\right)\right]
$$

From the definition of $\tilde{\mathcal{D}}$, using the boundedness of X, we derive the following estimates.

$$
\begin{aligned}
|\tilde{\mathcal{D}} v(t, x)| & \leq C \int_{0}^{\sqrt{h}} \xi^{2} d \xi \mathbb{E}\left[\int_{0}^{\xi} d z|X|\left|\frac{\partial^{3} v}{\partial t \partial x^{2}}\left(t+\xi^{2}, x+z X\right)\right|\right] \\
& \leq C \sqrt{h} \int_{t}^{t+h} d s \int d y \mathbb{E}\left(\mathbf{1}_{\{|y-x| \leq \sqrt{h}|X|\}}\right)\left|\frac{\partial^{3} v}{\partial t \partial x^{2}}(s, y)\right|
\end{aligned}
$$

where we have set $s=t+\xi^{2}$ and $y=x+z X$.

From the definition of $\tilde{\mathcal{D}}$, using the boundedness of X, we derive the following estimates.

$$
\begin{aligned}
|\tilde{\mathcal{D}} v(t, x)| & \leq C \int_{0}^{\sqrt{h}} \xi^{2} d \xi \mathbb{E}\left[\int_{0}^{\xi} d z|X|\left|\frac{\partial^{3} v}{\partial t \partial x^{2}}\left(t+\xi^{2}, x+z X\right)\right|\right] \\
& \leq C \sqrt{h} \int_{t}^{t+h} d s \int d y \mathbb{E}\left(\mathbf{1}_{\{|y-x| \leq \sqrt{h}|X|\}}\right)\left|\frac{\partial^{3} v}{\partial t \partial x^{2}}(s, y)\right|,
\end{aligned}
$$

where we have set $s=t+\xi^{2}$ and $y=x+z X$.
It can be proved, using classical Berry-Esseen estimates, that, for $k \in(1,3]$,

$$
\mathbb{P}\left(\left|B_{j h}^{(n)}-y\right| \leq \sqrt{h}|X|\right) \leq \frac{C_{k}}{\sqrt{j}\left(1+|y|^{k}\right)}
$$

Hence
$\sum_{j=1}^{n-2} \mathbb{E}\left(\left|\tilde{\mathcal{D}} v\left(j h, B_{j h}^{(n)}\right)\right|\right) \leq C_{k} h \sqrt{2} \int_{0}^{T-h} \frac{d s}{\sqrt{s}} \int \frac{d y}{1+|y|^{k}}\left|\frac{\partial^{3} v}{\partial t \partial x^{2}}(s, y)\right|$.

Quadratic estimates for the second order time derivative

We now introduce the difference $\tilde{U}=U-\bar{U}$, where \bar{U} is defined by

$$
\bar{U}(t, x)=e^{-r t} \mathbb{E}\left(\varphi\left(X_{t}^{x}\right)\right), \quad t \geq 0, x \in \mathbb{R}
$$

We have the following L_{2}-estimate for the second time derivative of $\tilde{U}=U-\bar{U}$. Here $\nu_{k}(d x)=d x /\left(1+x^{2}\right)^{k / 2}$

Theorem

Fix $T>0$ and $k>1$. There exists a constant $C>0$ such that, for all $\xi \in(0, T]$,

$$
\int_{\xi}^{T}(t-\xi)\left\|\frac{\partial^{2} \tilde{U}}{\partial t^{2}}(t, .)\right\|_{L_{2}\left(\nu_{k}\right)}^{2} d t \leq C\left(1+|\ln \xi|^{\alpha}\right)
$$

with

$$
\alpha=\left\{\begin{array}{l}
3 / 2, \text { if } \delta \leq r, \\
1, \text { if } \delta>r .
\end{array}\right.
$$

Lower bound for $P_{0}^{(n)}-P_{0}$

To derive a lower bound for $P^{(n)}-P$, we introduce the following stopping time:

$$
\tau=\tau_{1} \mathbf{1}_{\left\{\tau_{1}<T-h\right\}}+T \mathbf{1}_{\left\{\tau_{1}=T-h\right\}}
$$

where

$$
\tau_{1}=\inf \left\{t \in[0, T-h] \mid t / h \in \mathbb{N} \text { and } d\left(B_{t}^{(n)}, I_{t+h}\right) \leq \kappa \sqrt{h}\right\}
$$

and $I_{t+h}=\left(-\infty, b_{0}(t+h)\right.$] (and $\left.I_{T}=\mathbb{R}\right)$. The positive constant κ is chosen so that
$x>b_{0}(t+h)+\kappa \sqrt{h} \Rightarrow[t, t+h] \times\left[x-\sqrt{h}\|X\|_{\infty}, x+\sqrt{h}\|X\|_{\infty}\right] \subset \mathcal{C}$, which implies $\mathcal{D} u(t, x)=\tilde{\mathcal{D}} u(t, x)$.

Lower bound for $P_{0}^{(n)}-P_{0}$

To derive a lower bound for $P^{(n)}-P$, we introduce the following stopping time:

$$
\tau=\tau_{1} \mathbf{1}_{\left\{\tau_{1}<T-h\right\}}+T \mathbf{1}_{\left\{\tau_{1}=T-h\right\}}
$$

where

$$
\tau_{1}=\inf \left\{t \in[0, T-h] \mid t / h \in \mathbb{N} \text { and } d\left(B_{t}^{(n)}, I_{t+h}\right) \leq \kappa \sqrt{h}\right\}
$$

and $I_{t+h}=\left(-\infty, b_{0}(t+h)\right]$ (and $\left.I_{T}=\mathbb{R}\right)$. The positive constant κ is chosen so that
$x>b_{0}(t+h)+\kappa \sqrt{h} \Rightarrow[t, t+h] \times\left[x-\sqrt{h}\|X\|_{\infty}, x+\sqrt{h}\|X\|_{\infty}\right] \subset \mathcal{C}$, which implies $\mathcal{D} u(t, x)=\tilde{\mathcal{D}} u(t, x)$.
We have

$$
\begin{aligned}
& P^{(n)}-P \geq \mathbb{E}\left(e^{-r \tau} g\left(\mu_{0} \tau+B_{\tau}^{(n)}\right)-u(0,0)\right) \\
&= \mathbb{E}\left(e^{-r \tau} g\left(\mu_{0} \tau+B_{\tau}^{(n)}\right)-u\left(\tau, B_{\tau}^{(n)}\right)\right) \\
&+\mathbb{E}\left(u\left(\tau, B_{\tau}^{(n)}\right)-u(0,0)\right)
\end{aligned}
$$

Note that $\{\tau \geq T-h\}=\{\tau=T\}$, and, on $\{\tau=T\}$, $u\left(\tau, B_{\tau}^{(n)}\right)-e^{-r \tau} g\left(\mu_{0} \tau+B_{\tau}^{(n)}\right)$. On the other hand, on $\{\tau<T-h\}$, one can prove that

$$
\left|u\left(\tau, B_{\tau}^{(n)}\right)-e^{-r \tau} g\left(\mu_{0} \tau+B_{\tau}^{(n)}\right)\right| \leq C \frac{h}{\sqrt{T-\tau-h}}
$$

Lemma

There exists a positive constant C such that

$$
\mathbb{E}\left(\frac{1}{\sqrt{T-\tau-h}} \mathbf{1}_{\{\tau \leq T-2 h\}}\right) \leq C(\log n)^{\alpha},
$$

with

$$
\alpha=\left\{\begin{array}{l}
3 / 2, \text { if } \delta \leq r, \\
1, \text { if } \delta>r .
\end{array}\right.
$$

