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The American put price in the Black-Scholes model

In the Black-Scholes model, the stock price at time t is given by
2
S; = Spelr—0-%)t+oBe

where r > 0 is the interest rate, 6 > 0 the dividend rate, and, under
the risk neutral, measure, (Bt)¢>0 is a standard Brownian motion.
The price at time t of the American put with maturity T and
strike price K, is given by P(t,S;), where

P(t,s)= sup Es (e ""f(S;)),

T€T0, T+

with f(x) = (K —x)T, and Es = E (- | So = s). Here Tg+ denotes
the set of all stopping times with respect to the Brownian filtration
F.



The American put price in the Black-Scholes model

Note that we also have P(t,s) = U(T — t,Ins), if we define

U(T,x) = sup E (e "p(X))),
T€T0,T
where

2
X =x+ut+oBy, with p= r—5—%, and p(x) = (K —e*)™.



The American put price in the Black-Scholes model

We know that U solves the variational inequality
ou
max —E(t,x) + AU(t,x) — rU(t, x),o — U(t,x) | =0,
with initial condition U(0,.) = ¢ where

2 92 2
AU:(LaU ou o
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With these notations, the exercise boundary (parameterized by
time until maturity) is given by

b(t) =inf{x > 0| U(t,x) > ¢(x)}, t>0,

and we have lim;g b(t) = In K A In(rK/§)(=: b(0)). We have, for
tl0,

CVtifr<s,
b(0) = b(t) ~ { C/tlnt]if r> 6.



The binomial approximation

The binomial approximation

We now introduce the random walk approximation of Brownian
motion. To be more precise, assume (X,),>1 is a sequence of i.i.d.
real random variables satisfying IEX,? =1 and EX, = 0, and define,
for any positive integer n, the process B(") by

[nt/T]

B = \/T/n ;1 X, 0<t<T,

where [nt/T] denotes the greatest integer in nt/T. We will make
the additional assumptions that Xj is bounded and E(X;) = 0.
Note that X will denote a random variable with the same
distribution as Xi, independent of the sequence (Xp)n>1.



The binomial approximation

In the following, we fix Sy and set
Po = P(O, 50) = U(T, In 50)

Note that, if we introduce the notation g(x) = (K — Spe? )%, we
have
Po= sup E(e""g(por + B;))

T€To, T

with po = /0. We now have a natural approximation of Py, given
by
P = sup E (e_rTg(MoT + Bﬁ"))) ;
7'675(7'3,)—

where 76('3,2 denotes the set of all stopping times (with respect to

the natural filtration of B("), with values in
{0, T/n,2T/n,...,(n—1)T /n, T}.



The binomial approximation

Theorem

There exists a positive constant C, such that for any positive
integer n,
B @
n n
with
5/4, if§ <r,
o =
1, ifé>r.
and
3/2, if6 <,
8=
1, ifd>r.




Upper bound

Upper bound for P(g") — P,

Introduce the modified value function
u(t,x) = e "U(T —t,In(Sp) + pt + ox), t>0,x €R.

We have Po = sup 7, , E(e™"g(po7 + B-)) = u(0,0) and, for
te[0,T],

u(t,x) > e (K — Spet™ )t = e " g(uot + x),
so that

P — Py < sup E (”(ﬂ B{") — ”(0’0))
7'675(,’1,)—



We will also use the notation:

he L.
n
With this notation, we have
[t/h]
BM =vhY X, 0<t<T.
k=1

We have , for all t € {0, h,2h,...,(n—1)h,nh =T},

t/h
u(t, B") = u(0,0) + M + > Du((j — 1)h, B ).
j=1

where (M;)o<t<T is a martingale (with respect to the natural
filtration of B("), such that My = 0, and

Du(t,x):E(u(t+h,x+\/EX))—u(t,x), 0<t<T—-h, xeR



Note that, if v is smooth,
Dv(t,x) = hov(t,x) + hO(h),
where
v 1o
Ot 20x2
On the other hand, we have and

ov

Su(t,x) = e " <—€;ll{ +(A— r)U) (T —t,In(So) + put + ox)
= e "(A=r)p(In(So) + put + ox) L))
where bo(t) = (b(T — t) — ut —In(Sp))/o. In particular, we have
ou<o0

and du=0ontheset C = {(t,x) € (0, T) x R | x > bo(t)}.



Upper bound
A representation for the operator D

Proposition

Assume that v is a function of class C3 on [0, T] x R. We have,
for0 <t<T—handxeR,

i
Dv(t, x) :ﬁv(t,x)+2/ hdg/s dzB (X26v(t + €, x + 2X))
0 0

where

:
Dv(t,x) = 2/ hdf/édz(g—z)Rv(t,x,g,z),
0 0

with

Rv(t,x,6,z) =E l)@ (g _x2l8 ; Z)) 8(3;\;2(1“ + e x+2X)| .

v




From the definition of D, using the boundedness of X, we derive
the following estimates.

IN

ﬁv(t,x)‘ c/ €2deR U dz|x||a 50 t+£2,x+zX)H

t+h 83‘/
C*/E/t ds/dyE (L —r<vixy) ‘W(s,y) )

where we have set s = t + &2 and y = x 4 zX.

IN
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IN

C/ 2dER U dz|x||68 . t+£2,x+zX)H

t+h 83V
C*/E/t ds/dyE (L —r<vixy) ‘W(s,y) )

where we have set s = t + &2 and y = x 4 zX.
It can be proved, using classical Berry-Esseen estimates, that, for

IN

ke (1,3],
P (‘B.(”) —y‘ <VhX|) < B
i - T Vi ylR)
Hence
n2 T—h ds d 93
Bvih, B) < Chv2 / had Y s, y)|.
= (‘ U Jh)) =~k o sJ 14]|ylk gtax2 V)




Upper bound

Quadratic estimates for the second order time derivative

We now introduce the difference U = U — U, where U is defined by
O(t,x) = e "E(p(X;)), t>0, x€R.

We have the following Ly-estimate for the second time derivative
of U= U— U. Here vy(dx) = dx/(1 + x?)k/?

Theorem

Fix T > 0 and k > 1. There exists a constant C > 0 such that, for
all¢ € (0, T],

T 92{) 2
[ =95z d<ca+ingy,
3 Lo(w)
with
3/2, ifd <r,
o =

1, ifd>r.




Lower bound

Lower bound for P{" — P,

To derive a lower bound for P(") — P, we introduce the following
stopping time:

T=7ilicropy+ Tl o7 4y,
where

1 =inf{te[0,T—h|t/heNand d(B{", leip) < s/},

and lypp = (—o0, bo(t + h)] (and I+ = R). The positive constant
k is chosen so that

x > bo(t-+h)+wv'h = [t, t+h]x [x—Vh|X]|oo, x+Vh|X]|c] C C,
which implies Du(t, x) = Du(t, x).



Lower bound

Lower bound for P{" — P,

To derive a lower bound for P(") — P, we introduce the following
stopping time:

T=7ilicropy+ Tl o7 4y,
where

1 =inf{te[0,T—h|t/heNand d(B{", leip) < s/},

and lypp = (—o0, bo(t + h)] (and I+ = R). The positive constant
k is chosen so that

x > bo(t-+h)+wv'h = [t, t+h]x [x—Vh|X]|oo, x+Vh|X]|c] C C,

which implies Du(t, x) = Du(t, x).
We have

P —p > E (e g(por + BM) - u(0,0))
= E (e g(uor + BM) — u(r, B"))
+E (u(r, B™) — 4(0,0)) .



Note that {7 > T —h} = {r =T}, and, on {7 = T},

u(T, Bﬁ”)) — e ""g(uot + Bi")). On the other hand, on
{7 < T — h}, one can prove that

(7, B) — e~""g(por + B)| < €
——

Lemma

| O

There exists a positive constant C such that

1 «
E <m1{7§T2h}) < C(logn)®,

with
3/2, if6 <r,

1, ifé>r.
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