Statistics versus mean-field limit for Hawkes process

with Sylvain Delattre (P7)

The model

We have N individuals.
$Z_{t}^{i, N}:=$ number of actions of the i-th individual until time t.
$Z_{t}^{i, N}$ jumps (is increased by 1) at rate

$$
\lambda_{t}^{i, N}=\mu+\frac{1}{N} \sum_{j=1}^{N} \theta_{i j} \int_{0}^{t} \varphi(t-s) d Z_{s}^{j, N}, \quad 1 \leq i \leq N
$$

where

$$
\begin{gathered}
\mu \in(0, \infty), \quad \varphi:[0, \infty) \rightarrow[0, \infty) \\
\left(\theta_{i j}\right)_{i, j=1, \ldots, N} \quad \text { i.d.d. } \operatorname{Bernoulli}(p)
\end{gathered}
$$

Two types of actions: autonomous and by mimetism.
Example : $\varphi=\mathbf{1}_{[0, K]}$.

Goal

We observe the activity of the N individuals until time t that is

$$
Z_{s}^{i, N}, \quad i=1, \ldots, N, \quad s \in[0, t]
$$

and we want to estimate p (i.e. the main characteristic of the interaction graph), in the asymptotic

$$
N \rightarrow \infty \quad \text { and } \quad t \rightarrow \infty
$$

We consider μ and φ as nuisance parameters.
Intuitively: not very easy... how to know if a jump is autonomous or is due to excitation by another individual (and which one) ?

Hawkes 1971, Hawkes-Oakes 1974.
Finance, Neurons, Earthquake replicas, etc.
Estimation of (more general) μ and (nonparametric) $\varphi_{i j}$ at N fixed as $t \rightarrow \infty$: Hansen, Reynaud, Rivoirard, Gaiffas, Hoffmann, Bacry, Muzzy, Rasmussen, etc.

Mean-field limit $(N \rightarrow \infty, t$ fixed $)$

For each given $k \geq 1$ and $t>0$, the process

$$
Z_{s}^{i, N}, \quad i=1, \ldots, k, \quad s \in[0, t]
$$

goes in law as $N \rightarrow \infty$ to

$$
Y_{s}^{i}, \quad i=1, \ldots, k, \quad s \in[0, t]
$$

a family of i.i.d. inhomogeneous Poisson processes with intensity $\left(\lambda_{s}\right)_{s \in[0, t]}$ satisfying

$$
\lambda_{s}=\mu+p \int_{0}^{s} \varphi(s-u) \lambda_{u} d u, \quad s \in[0, t] .
$$

The limit depends only on μ and $p \varphi$ thus it is not identifiable.

Main result

Set $\Lambda:=\int_{0}^{\infty} \varphi(t) d t$.

- Subcritical case: $\Lambda p<1$. Then roughly, $\bar{Z}_{t}^{N} \simeq t$ (on an event where ($\theta_{i j}$) behaves reasonably). We put $m_{t}=t$
- Supercritical case : $\Lambda p>1$. Then roughly, $\bar{Z}_{t}^{N} \simeq e^{\alpha_{0} t}$, with α_{0} defined by $p \int_{0}^{\infty} e^{-\alpha_{0} t} \varphi(t) d t=1$. We put $m_{t}=e^{\alpha_{0} t}$.
- Critical case: zoology, we do not treat.

Theorem

Under some (reasonnable) technical assumptions on φ and if $\Lambda p \neq 1$, there exists an (explicit) estimator \hat{p}_{t}^{N} such that

$$
\operatorname{Pr}\left(\left|\hat{p}_{t}^{N}-p\right| \geq \varepsilon\right) \leq \frac{C}{\varepsilon}\left(\frac{1}{\sqrt{N}}+\frac{\sqrt{N}}{m_{t}}\right)^{1-}
$$

where C depends only on p, μ, φ.
The precision $\frac{1}{\sqrt{N}}+\frac{\sqrt{N}}{m_{t}}$ seems to be optimal (Gaussian toy model). We need t large if N large because the MF limit is not identifiable.

Subcritical case 1

Very pleasant point: we will not have to estimate the non-parametric nuisance parameter φ (this would of course lead to a much less precise estimation).
We will build 3 estimators

$$
\mathcal{E}_{t}^{N} \simeq \frac{\mu}{1-\Lambda p}, \quad \mathcal{V}_{t}^{N} \simeq \frac{\mu^{2} \Lambda^{2}}{(1-\Lambda p)^{2}} p(1-p), \quad \mathcal{W}_{t}^{N} \simeq \frac{\mu}{(1-\Lambda p)^{3}}
$$

One then easily find Φ such that $\hat{p}_{t}^{N}=\Phi\left(\mathcal{E}_{t}^{N}, \mathcal{V}_{t}^{N}, \mathcal{W}_{t}^{N}\right) \simeq p$ (as well as estimators of Λ and μ).

Subcritical case 2

It is easily seen that

$$
\mathrm{E}_{\theta}\left[Z_{t}^{i, N}\right]=\mu t+\frac{1}{N} \sum_{j=1}^{N} \theta_{i j} \int_{0}^{t} \varphi(t-s) \mathrm{E}_{\theta}\left[Z_{s}^{j, N}\right] d s
$$

Assuming that $Z_{t}^{i, N} \approx \mathrm{E}_{\theta}\left[Z_{t}^{i, N}\right] \simeq \gamma_{N}(i) t$ for large $t(N$ fixed $)$.

$$
\gamma_{N}(i) \simeq \mu+\frac{1}{N} \sum_{j=1}^{N} \theta_{i j} \wedge \gamma_{N}(j)
$$

Thus, with $A_{N}=\left(\frac{1}{N} \theta_{i j}\right)_{1 \leq i, j \leq N}$ and $Q_{N}=\left(I-\Lambda A_{N}\right)^{-1}$.

$$
\gamma_{N}(i)=\mu \sum_{j=1}^{N} Q_{N}(i, j)=\mu \sum_{j=1}^{N} \sum_{k \geq 0} \Lambda^{k} A_{N}^{k}(i, j)
$$

Conclusion: $Z_{t}^{N}(i) \simeq \mu \ell_{N}(i) t$ with $\ell_{N}(i)=\sum_{j=1}^{N} Q_{N}(i, j)$.
Remark: Q_{N} exists with high probability in the subcritical case.

Subcritical case 3

We study now ℓ_{N}. True (and quantified) that

$$
\ell_{N}(i)=\sum_{\ell \geq 0} \Lambda^{\ell} \sum_{j=1}^{N} A_{N}^{\ell}(i, j) \approx\left(1+\frac{\Lambda}{1-\Lambda p} \frac{1}{N} \sum_{j=1}^{N} \theta_{i j}\right)
$$

since for $\ell \geq 1$

$$
\begin{aligned}
\sum_{j=1}^{N} A_{N}^{\ell}(i, j) & =\frac{1}{N^{\ell}} \sum_{j} \sum_{i_{1}, \ldots, i_{\ell-1}} \theta_{i, i_{1}} \theta_{i_{1}, i_{2}} \ldots \theta_{i_{\ell-1}, j} \\
& =\frac{1}{N^{\ell}} \sum_{i_{1}} \theta_{i, i_{1}} \underbrace{\sum_{i_{2}, \ldots, i_{\ell-1}, j}} \theta_{i_{1}, i_{2}} \ldots \theta_{i_{\ell-1}, j}
\end{aligned} p^{\ell-1} \frac{1}{N} \sum_{j} \theta_{i j}
$$

Not related to known eigenvalues problems, no way to use moments, because all expectations are infinite, because A_{N} does not exist on a small event.

Subcritical case 4

Thus $Z_{t}^{N}(i) \simeq \mu\left(1+\frac{\Lambda}{1-\Lambda p} L_{N}(i)\right) t$ with $L_{N}(i)=\frac{1}{N} \sum_{j=1}^{N} \theta_{i j}$.
First estimator:

$$
\mathcal{E}_{t}^{N}=\frac{\bar{Z}_{t}^{N}}{t} \simeq \mu\left(1+\frac{\Lambda}{1-\Lambda p} p\right)=\frac{\mu}{1-\Lambda p}
$$

Subcritical case 5

Thus $Z_{t}^{N}(i) \simeq \mu\left(1+\frac{\Lambda}{1-\Lambda p} L_{N}(i)\right) t$ with $L_{N}(i)=\frac{1}{N} \sum_{j=1}^{N} \theta_{i j}$.
Second estimator:

$$
\mathcal{V}_{t}^{N}:=\sum_{i=1}^{N}\left(\frac{1}{t} Z_{t}^{i, N}-\frac{1}{t} \bar{Z}_{t}^{N}\right)^{2}-\frac{N}{t} \bar{Z}_{t}^{N}
$$

$$
\begin{aligned}
\frac{1}{N} \sum_{i=1}^{N}\left(\frac{1}{t} Z_{t}^{i, N}-\frac{1}{t} \bar{Z}_{t}^{N}\right)^{2} & \approx \operatorname{Var}\left(\frac{1}{t} Z_{t}^{1, N}\right) \\
& =\operatorname{Var}\left(\mathrm{E}_{\theta}\left[\frac{1}{t} Z_{t}^{1, N}\right]\right)+\frac{1}{t^{2}} \mathrm{E}\left[\operatorname{Var}_{\theta}\left(Z_{t}^{1, N}\right)\right]
\end{aligned}
$$

and $\operatorname{Var}_{\theta}\left(Z_{t}^{1, N}\right) \approx \mathrm{E}_{\theta}\left[Z_{t}^{1, N}\right]$ since $Z_{t}^{1, N} \approx$ Poisson. Thus

$$
\mathcal{V}_{t}^{N} \approx \frac{N}{t^{2}} \operatorname{Var}\left(\mathrm{E}_{\theta}\left[Z_{t}^{1, N}\right]\right) \approx \frac{\mu^{2} \Lambda^{2}}{(1-\Lambda p)^{2}} p(1-p)
$$

Subcritical case 6

Third estimator: temporal empirical variance

$$
\mathcal{W}_{\Delta, t}^{N}=\frac{N}{t} \sum_{k=1}^{t / \Delta}\left(\bar{Z}_{k \Delta}^{N}-\bar{Z}_{(k-1) \Delta}^{N}-\frac{\Delta}{t} \bar{Z}_{t}^{N}\right)^{2}
$$

where $1 \ll \Delta \ll t$ (theory: $\Delta=t^{0.0001}$)

$$
\mathcal{W}_{\Delta, t}^{N} \approx N \frac{1}{\Delta} \operatorname{Var}_{\theta}\left(\bar{Z}_{\Delta}^{N}\right) \approx \frac{\mu}{(1-\Lambda p)^{3}}
$$

More complicated. Really uses that \bar{Z}^{N} is not Poisson. Actually, $N \bar{Z}^{N}$ resembles, very roughly, an autonomous (1D) Hawkes process with parameters $N \mu$ and $p \varphi$.

Subcritical case 7

Remark: everything starts from $\Gamma(t):=\int_{0}^{t} s \varphi(t-s) d s \simeq \Lambda t$.
With e.g. $\varphi=e^{-t}$, we have $\int_{0}^{t} s \varphi(t-s) d s=\Lambda t-1+e^{-t}$. So $\Gamma(2 t)-\Gamma(t)$ resembles Λt considerably much more precisely than $\Gamma(t)$ (always true when φ has a fast decay).
We thus modify the 3 estimators. For example, we use

$$
\mathcal{E}_{t}^{N}=\frac{\bar{Z}_{2 t}^{N}-\bar{Z}_{t}^{N}}{t} \quad \text { instead of } \quad \mathcal{E}_{t}^{N}=\frac{\bar{Z}_{t}^{N}}{t}
$$

This is crucial to get the nearly optimal (??) precision.

Supercritical case 1

We expect that $Z_{t}^{i, N} \simeq H_{N} \mathrm{E}_{\theta}\left[Z_{t}^{i, N}\right]$ for some r.v. $H_{N}>0$; and that $\mathrm{E}_{\theta}\left[Z_{t}^{i, N}\right] \simeq \gamma_{N}(i) e^{\alpha_{N} t}$. But

$$
\mathrm{E}_{\theta}\left[Z_{t}^{i, N}\right]=\mu t+\frac{1}{N} \sum_{j=1}^{N} \theta_{i j} \int_{0}^{t} \varphi(t-s) \mathrm{E}_{\theta}\left[Z_{s}^{j, N}\right] d s
$$

So, with $A_{N}(i, j)=\frac{1}{N} \theta_{i j}$,

$$
\gamma_{N}=A_{N} \gamma_{N} \int_{0}^{\infty} e^{-\alpha_{N} s} \varphi(s) d s
$$

The vector γ_{N} being positive, it is a Perron-Frobenius eigenvector of A_{N}, so that $\rho_{N}=\left(\int_{0}^{\infty} e^{-\alpha_{N} s} \varphi(s) d s\right)^{-1}$ is its Perron-Frobenius eigenvalue. Since $A_{N}(i, j) \simeq p$, we conclude that $\rho_{N} \simeq p$ and thus $\alpha_{N} \simeq \alpha_{0}$.
We consider the Perron-Frobenius eigenvector V_{N} such that $\sum_{i=1}^{N}\left(V_{N}(i)\right)^{2}=N$ and conclude that (with another r.v. $K_{N}>0$)

$$
Z_{t}^{i, N} \simeq K_{N} V_{N}(i) e^{\alpha_{0} t}
$$

Supercritical case 2

Thus $Z_{t}^{i, N} \simeq K_{N} V_{N}(i) e^{\alpha_{0} t}$. Single estimator:

$$
\mathcal{U}_{t}^{N}=\frac{1}{\left(\bar{Z}_{t}^{N}\right)^{2}}\left[\sum_{1}^{N}\left(Z_{t}^{i, N}-\bar{Z}_{t}^{N}\right)^{2}-N \bar{Z}_{t}^{N}\right] \simeq \frac{1}{\left(\bar{V}_{N}\right)^{2}} \sum_{1}^{N}\left(V_{N}(i)-\bar{V}_{N}\right)^{2}
$$

Indeed,

$$
\begin{aligned}
\frac{1}{N} \sum_{i=1}^{N}\left(Z_{t}^{i, N}-\bar{Z}_{t}^{N}\right)^{2} & \approx \operatorname{Var}\left(Z_{t}^{1, N}\right) \\
& =\operatorname{Var}\left(\mathrm{E}_{\theta}\left[Z_{t}^{1, N}\right]\right)+\mathrm{E}\left[\operatorname{Var}_{\theta}\left(Z_{t}^{1, N}\right)\right]
\end{aligned}
$$

and $\operatorname{Var}_{\theta}\left(Z_{t}^{1, N}\right) \approx \mathrm{E}_{\theta}\left[Z_{t}^{1, N}\right]$ since $Z_{t}^{1, N} \approx$ Poisson. Thus

$$
\mathcal{U}_{t}^{N} \approx \frac{N}{\left(\bar{Z}_{t}^{N}\right)^{2}} \operatorname{Var}\left(\mathrm{E}_{\theta}\left[Z_{t}^{1, N}\right]\right) \approx \frac{1}{\left(\bar{V}_{N}\right)^{2}} \sum_{1}^{N}\left(V_{N}(i)-\bar{V}_{N}\right)^{2}
$$

Supercritical case 3

$\mathcal{U}_{t}^{N} \approx \frac{1}{\left(\bar{V}_{N}\right)^{2}} \sum_{1}^{N}\left(V_{N}(i)-\bar{V}_{N}\right)^{2}$.
But V_{N} is almost colinear to L_{N} (with $L_{N}(i)=\sum_{1}^{N} A_{N}(i, j)$):
very roughly, the matrix A_{N}^{2} is almost constant $\left(A_{N}^{2}(i, j) \simeq p\right)$, so that its Perron Frobenius eigenvector $\left(V_{N}\right)$ is almost constant $\left(V_{N}(i) \simeq 1\right)$, so that $A_{N} V_{N}=\rho_{N} V_{N}$ gives $V_{N}(i) \simeq \rho_{N}^{-1} \sum_{j} A_{N}(i, j)=\rho_{N}^{-1} L_{N}(i)$ (not very convincing).
Since L_{N} is a vector of i.i.d. Binomial (N, p), we conclude that

$$
\mathcal{U}_{t}^{N} \approx \frac{1}{\left(\bar{L}_{N}\right)^{2}} \sum_{1}^{N}\left(L_{N}(i)-\bar{L}_{N}\right)^{2} \simeq \frac{p(1-p)}{p^{2}}=\frac{1}{p}-1
$$

Choice between sub and super

We thus have two different estimators $p_{1}(N, t) \simeq p$ (if $\left.\Lambda p<1\right)$ and $p_{2}(N, t) \simeq p$ (if $\Lambda p>1$). If we do not know, we set

$$
p(N, t)=p_{1}(N, t) \mathbf{1}_{\left\{\bar{Z}_{t}^{N} \leq \exp \left((\log t)^{2}\right)\right\}}+p_{2}(N, t) \mathbf{1}_{\left\{\bar{Z}_{t}^{N}>\exp \left((\log t)^{2}\right)\right\}}
$$

(does not affect the precision).

Optimality ? A Gaussian toy model

$\Gamma>0$ and $p \in(0,1]$ unknown, $\left(\theta_{i j}\right)_{i, j=1, \ldots, N}$ i.i.d. $\operatorname{Ber}(p)$ and the observations are

$$
Z_{t}^{i, N} \sim \operatorname{Poisson}\left(\Gamma t \sum_{j=1}^{N} \theta_{i j}\right), \quad i=1, \ldots, N
$$

Then roughly,

$$
X_{t}^{i, N}=\frac{1}{t} Z_{t}^{i, N} \sim \operatorname{Normal}\left(\Gamma p, \frac{\Gamma^{2} p(1-p)}{N}+\frac{1}{t} \Gamma p\right)
$$

Assume that Γp is known (this can only increase the precision). $S_{t}^{N}=N^{-1} \sum_{1}^{N}\left(X_{t}^{i, N}-\Gamma p\right)^{2}$ is the B.E. of $N^{-1} \Gamma^{2} p(1-p)+t^{-1} \Gamma p$.
Thus $T_{t}^{N}=N(\Gamma p)^{-2}\left(S_{t}^{N}-t^{-1} \Gamma p\right)$ is the B.E. of $(1 / p-1)$.
And $\operatorname{Var} T_{t}^{N} \simeq\left(N^{-1 / 2}+t^{-1} N^{1 / 2}\right)^{2}$.
Thus optimal precision in $N^{-1 / 2}+t^{-1} N^{1 / 2}$.

Mersi pour votre attansion.

