Stratified Regression Monte Carlo method for BSDEs and GPU implementation

emmanuel.gobet@polytechnique.edu

In the honor of Vlad Bally

Joint work with J. Salas (U. da Coruña), P. Turkedjiev (EP), C. Vasquez (UdC).

STRUCTURE OF THE TALK

- 1. BSDE setting
- 2. Usual Regression Monte Carlo methods [G'-Turkedjiev, Math Comp 2015]
 - \checkmark Algorithm
 - \checkmark Error estimates
 - $\checkmark\,$ Stronger implementation constraint: memory
- 3. Stratified version
 - $\checkmark\,$ Randomization and norms equivalence
 - \checkmark Error estimates
 - $\checkmark\,$ Complexity and memory analysis

4. Numerical tests

1) BSDE SETTING

Standard BSDE with fixed terminal time T:

$$\mathbf{Y}_{\mathbf{t}} = \xi + \int_{\mathbf{t}}^{\mathbf{T}} \mathbf{f}(\mathbf{s}, \mathbf{Y}_{\mathbf{s}}, \mathbf{Z}_{\mathbf{s}}) d\mathbf{s} - \int_{\mathbf{t}}^{\mathbf{T}} \mathbf{Z}_{\mathbf{s}} d\mathbf{W}_{\mathbf{s}},$$

 $\checkmark~{\rm driving~noise}={\rm Brownian}~{\rm Motion}~W$

- ✓ Lipschitz driver f, terminal condition $\xi \in L_2$
- ✓ Markovian BSDE: $f(s, \omega, y, z) = f(s, X_s, y, z)$ and $\xi = g(X_T)$ for a diffusion X with coefficients (b, σ)
- \checkmark Reaction-diffusion equations, neuroscience, non-linear pricing in finance

Multidimensional unknown: $X \in \mathbb{R}^d$, $Y \in \mathbb{R}$, $Z \in \mathbb{R}^q$.

Markovian BSDE: $\mathbf{Y}_{t} = \mathbf{u}(t, \mathbf{X}_{t}) \dots$

Approximation/simulation in 2 stages:

- 1. time-discretization (numerous works under rather general settings)
- 2. solving the dynamic programming equation (nested cond. expect., few works)

Fime discretization of
$$Y_t = \xi + \int_t^T f(s, Y_s, Z_s) ds - \int_t^T Z_s dW_s$$

Refs: Bally (1997) ...

Discretization along equidistant time grid $\pi := \{0 = t_0 < \ldots < t_N = T\}$:

$$\checkmark$$
 (i+1)-th time-step is $\Delta_i = t_{i+1} - t_i = T/N;$

 \checkmark related Brownian motion increments $\Delta W_i := W_{t_{i+1}} - W_{t_i}$.

(Heuristic derivation)

From $Y_{t_i} = Y_{t_{i+1}} + \int_{t_i}^{t_{i+1}} f(s, X_s, Y_s, Z_s) ds - \int_{t_i}^{t_{i+1}} Z_s dW_s$, we derive $\mathbf{Y}_{\mathbf{t}_i} = \mathbb{E}(Y_{t_{i+1}} + \int_{t_i}^{t_{i+1}} f(s, X_s, Y_s, Z_s) ds | \mathcal{F}_{t_i})$ $\approx \mathbb{E}(\mathbf{Y}_{\mathbf{t}_{i+1}} + \mathbf{f}(\mathbf{t}_i, \mathbf{X}_{\mathbf{t}_i}, \mathbf{Y}_{\mathbf{t}_{i+1}}, \mathbf{Z}_{\mathbf{t}_i}) \Delta_{\mathbf{i}} | \mathcal{F}_{\mathbf{t}_i}),$ $\mathbf{Z}_{\mathbf{t}_i} \Delta_{\mathbf{i}} \approx \mathbb{E}(\int_{t_i}^{t_{i+1}} Z_s ds | \mathcal{F}_{t_i}) = \mathbb{E}([Y_{t_{i+1}} + \int_{t_i}^{t_{i+1}} f(s, X_s, Y_s, Z_s) ds] \Delta W_i^{\top} | \mathcal{F}_{t_i})$ $\approx \mathbb{E}(\mathbf{Y}_{\mathbf{t}_{i+1}} \Delta \mathbf{W}_{\mathbf{i}}^{\top} | \mathcal{F}_{\mathbf{t}_i}) \quad \text{(where }^{\top} \text{ denotes the transpose).}$

Dynamic programming equations

 \star One-step forward Dynamic Programming equation

$$Y_{i} = \mathbb{E}_{i} \left(Y_{i+1} + f_{i}(Y_{i+1}, Z_{i})\Delta_{i} \right), \quad 0 \leq i < N, \qquad Y_{N} = \xi.$$

$$\Delta_{i} Z_{i} = \mathbb{E}_{i} \left(Y_{i+1} \Delta W_{i}^{\top} \right), \quad 0 \leq i < N.$$
(ODP)

- ✓ X could be approximated by a path-wise approximation (e.g. Euler scheme) ✓ For f and g Lipschitz, the L_2 -error is of order $N^{-\frac{1}{2}}$
- \bigstar Multi-Step forward Dynamic Programming equation:

$$\begin{cases} Y_i = \mathbb{E}_i \left(\xi + \sum_{k=i}^{N-1} f_k(Y_{k+1}, Z_k) \Delta_k \right), \\ \Delta_i Z_i = \mathbb{E}_i \left([\xi + \sum_{k=i+1}^{N-1} f_k(Y_{k+1}, Z_k) \Delta_k] \Delta W_i^\top \right). \end{cases}$$
(MDP)

- \checkmark Without extra approximation, **ODP** \iff **MDP**.
- \checkmark $\stackrel{\frown}{\Sigma}$ Differences occur when conditional expectations are approximated: **MDP** > **ODP**

2) USUAL REGRESSION MONTE CARLO METHOD

- ✓ Markovian representations: $Y_i = y_i(X_i)$ and $Z_i = z_i(X_i)$
- ✓ Computations of y and z on approximation spaces $\mathcal{F}_i^Y, \mathcal{F}_i^Z$ (finite dimensional vector spaces: global/local polynomials, Fourier basis, wavelets...)
- ✓ N independent learning samples: at time i, $[(X_j^{i,m})_{0 \le j \le N}, \Delta W_i^{i,m}]_{1 \le m \le M}$.
- → Initialization : for i = N take $y_N^{\mathcal{F},M}(\cdot) = g(\cdot)$.
- \rightarrow Iteration : for $i = N 1, \dots, 0$, solve the empirical least-squares problems

$$z_{i}^{\mathcal{F},M} = \underset{\varphi \in \mathcal{F}_{i}^{Z}}{\operatorname{arginf}} \sum_{m=1}^{M} \left| \left[g(X_{N}^{i,m}) + \sum_{j \ge i+1} f(t_{j}, X_{j}^{i,m}, y_{j+1}^{\mathcal{F},M}(X_{j+1}^{i,m}), z_{j}^{\mathcal{F},M}(X_{j}^{i,m})) \Delta_{j} \right] \frac{\Delta W_{i}^{i,m}}{\Delta_{i}} - \varphi(X_{i}^{i,m}) \right|^{2},$$
$$y_{i}^{\mathcal{F},M} = \underset{\varphi \in \mathcal{F}_{i}^{Y}}{\operatorname{arginf}} \sum_{m=1}^{M} \left| g(X_{N}^{i,m}) + \sum_{j \ge i} f(t_{j}, X_{j}^{i,m}, y_{j+1}^{\mathcal{F},M}(X_{j+1}^{i,m}), z_{j}^{\mathcal{F},M}(X_{j}^{i,m})) \Delta_{j} - \varphi(X_{i}^{i,m}) \right|^{2}.$$

 $\checkmark\,$ Apply soft thresholding with explicit constants.

Theorem (Non asymptotic error estimates). $\exists C \text{ (explicit) s.t.}$

$$\mathbb{E}\Big[\|y_i^{\mathcal{F},M}(\cdot) - y_i(\cdot)\|_{i,M}^2\Big] \le C \inf_{\varphi \in \mathcal{F}_i^Y} \mathbb{E}|\varphi(X_i) - y_i(X_i)|^2 + C \frac{\dim(\mathcal{F}_i^Y)}{M} + C \sum_{j=i}^{N-1} \mathcal{E}(j)\Delta_j,$$
$$\sum_{j=i}^{N-1} \mathbb{E}\Big[\|z_j^{\mathcal{F},M}(\cdot) - z_j(\cdot)\|_{j,M}^2\Big]\Delta_j \le C \sum_{j=i}^{N-1} \mathcal{E}(j)\Delta_j,$$
$$\mathcal{E}(j) := \inf_{\varphi \in \mathcal{F}_i^Y} \mathbb{E}|\varphi(X_j) - y_j(X_j)|^2 + \inf_{\varphi \in \mathcal{F}_i^Z} \mathbb{E}|\varphi(X_j) - z_j(X_j)|^2 + \Big(\dim(\mathcal{F}_j^Y) + \frac{\dim(\mathcal{F}_j^Z)}{\Delta_j}\Big)\frac{\log(M)}{M}.$$

Estimates are sharp

Explicit error bounds, robust w.r.t. the model and the basis

- $@ Simulation effort: \mathbf{M} \geq \mathbf{\Delta}_{i}^{-1} \max(\mathbf{N}\dim(\mathcal{F}_{i}^{\mathbf{Z}}), \dim(\mathcal{F}_{i}^{\mathbf{Y}}))$
- Memory effort: $\max\left(\sum_{i=1}^{N} \dim(\mathcal{F}_{i}^{\mathbf{Z}}) + \dim(\mathcal{F}_{i}^{\mathbf{Y}}), \mathbf{NM}\right) = \mathbf{NM}$
- hicksimes In this form, no clear parallelization

 \checkmark **Optimal parameters**: L_2 -error = Computational Cost

1

8

dimension

Two objectives:

- $\checkmark\,$ Relaxing the requirement on M
- \checkmark Allowing parallel computations

First choice: local approximations

- ✓ partition of the state space \mathbb{R}^d in strata III finite number of disjoints sets $(\mathcal{H}_k)_k$
- \checkmark on each set \mathcal{H}_k , (local) polynomial
 - ► **LP0**: piecewise constant approximation
 - ► LP1: linear approximation
- \checkmark function spaces $\mathcal{L}_{Y,k}, \mathcal{L}_{Z,k}$ of dimension 1 or d+1
- \checkmark to get a statistical error of order N^{-1} , only N^2 simulations in \mathcal{H}_k are required

Second choice: stratified simulations and regressions

- $\checkmark \nu = \text{probability distribution on } \mathbb{R}^d$
- $\checkmark \quad \nu_k = \text{restriction of } \nu \text{ to } \mathcal{H}_k$ $\textcircled{2} \text{ one should be able to simulate according to } \nu_k$
- ✓ In our test: take \mathcal{H}_k as hypercube and ν with independent coordinates, having the logistic distribution (1d-CDF is $F_{\mu}(x) = e^{\mu x}/(1 + e^{\mu x})$)
- ✓ At each date t_i and each stratum \mathcal{H}_k , draw M simulations according to ν_k and start independent M diffusion/Euler scheme from these M points.

$$\begin{split} z_{i}^{\mathcal{F},M}\Big|_{\mathcal{H}_{k}} &= \underset{\varphi \in \mathcal{L}_{Z,k}}{\operatorname{arginf}} \sum_{m=1}^{M} \Big| \Big[g(X_{N}^{i,k,m}) + \sum_{j \geq i+1} f(t_{j}, X_{j}^{i,k,m}, y_{j+1}^{\mathcal{F},M}(X_{j+1}^{i,k,m}), z_{j}^{\mathcal{F},M}(X_{j}^{i,k,m})) \Delta_{j} \Big] \\ &\quad \times \frac{\Delta W_{i}^{i,k,m}}{\Delta_{i}} - \varphi(X_{i}^{i,k,m}) \Big|^{2}, \\ y_{i}^{\mathcal{F},M}\Big|_{\mathcal{H}_{k}} &= \underset{\varphi \in \mathcal{L}_{Y,k}}{\operatorname{arginf}} \sum_{m=1}^{M} \Big| g(X_{N}^{i,k,m}) + \sum_{j \geq i} f(t_{j}, X_{j}^{i,k,m}, y_{j+1}^{\mathcal{F},M}(X_{j+1}^{i,k,m}), z_{j}^{\mathcal{F},M}(X_{j}^{i,k,m})) \Delta_{j} - \varphi(X_{i}^{i,k,m}) \Big|^{2} \\ & \widehat{\textcircled{P}} \\ \text{This can be done in parallel on different processors.} \end{split}$$

CONVERGENCE ANALYSIS

To allow the control of errors propagation, one should wonder whether

$$X_j^{i,\nu} \stackrel{d}{=} X_j^{j,\nu} (=\nu)?$$

 $\checkmark\,$ In general NO, since ν is not a stationary distribution and X is not ergodic

✓ But, we have the **BM equivalence property**: under mild assumptions on b and σ ,

$$\mathbb{E}\left(|\mathbf{h}(\mathbf{X}_{\mathbf{j}}^{\mathbf{i},\nu})|^{2}\right) \leq_{\mathbf{c}} \int_{\mathbb{R}^{\mathbf{d}}} |\mathbf{h}(\mathbf{x})|^{2} \nu(\mathrm{d}\mathbf{x}), \quad \text{for any } \mathbf{h},$$

with a constant c uniform in $0 \le i \le j \le N$.

✓ Satisfied for distributions with Sub Exponential tails (like logistic distribution)

Theorem (Error estimates for LP0 and LP1 spaces). For some explicit constant C, one has

$$\mathbb{E}\Big[\int_{\mathbb{R}^d} |y_i^{\mathcal{F},M}(x) - y_i(x)|^2 \nu(\mathrm{d}x)\Big] \le C\mathcal{E}(i) + C\sum_{j=i}^{N-1} \mathcal{E}(j)\Delta_j,$$

$$\sum_{j=i}^{N-1} \mathbb{E}\Big[\int_{\mathbb{R}^d} |z_j^{\mathcal{F},M}(x) - z_j(x)|^2 \nu(\mathrm{d}x)\Big]\Delta_j \le C\sum_{j=i}^{N-1} \mathcal{E}(j)\Delta_j,$$

$$\mathcal{E}(j) := \sum_k \nu(\mathcal{H}_k) \inf_{\varphi \in \mathcal{L}_{Y,k}} \int_{\mathcal{H}_k} |\varphi(x) - y_j(x)|^2 \nu_k(\mathrm{d}x)$$

$$+ \sum_k \nu(\mathcal{H}_k) \inf_{\varphi \in \mathcal{L}_{Z,k}} \int_{\mathcal{H}_k} |\varphi(x) - z_j(x)|^2 \nu_k(\mathrm{d}x) + \frac{\log(\mathbf{M})}{\Delta_j \mathbf{M}}.$$

Better dependency on M.

STRATIFIED ALGORITHM (SRMDP) VS NON-STRATIFIED (LSMDP)

Algorithm	Num	per of	Computational		
	simulations		$\cos t$		
	LP0 LP1		$\mathbf{LP0}$	LP1	
SRMDP	N^2	N^2	$N^{4+d/2}$	$N^{4+d/4}$	
LSMDP	$N^{2+d/2}$	$N^{2+d/4}$	$N^{4+d/2}$	$N^{4+d/4}$	

Comparison of numerical parameters as a function of N.

Algorithm	LP0	LP1	
SRMDP	$N^{1+d/2}$	$N^{1+d/4} \vee N^2$	
LSMDP	$N^{2+d/2}$	$N^{2+d/4}$	

Comparison of shared memory requirement as a function of N.

 $\textcircled{\mathbf{S}}$ Recall that LSMDP can not take advantage of parallel architecture.

4) NUMERICAL TESTS

Define the function $\omega(t, x) = \exp(t + \sum_{j=1}^{d} x_j).$

We perform numerical experiments on the BSDE with data

$$\checkmark \quad g(x) = \omega(T, x)(1 + \omega(T, x))^{-1}$$
$$\checkmark \quad f(t, x, y, z) = \left(\sum_{j=1}^{d} z_j\right) \left(y - \frac{2+d}{2d}\right)$$

Explicit solution:

$$y_i(x) = \omega(t_i, x)(1 + \omega(t_i, x))^{-1}, \qquad z_{j,i}(x) = \omega(t_i, x)(1 + \omega(t_i, x))^{-2}.$$

Computer:

- $\checkmark\,$ GPU GeForce GTX TITAN Black with 6 GBytes of global memory
- ✓ Intel Xeon CPU E5-2620 v2 clocked at 2.10 GHz with 62 GBytes of RAM, CentOS Linux, NVIDIA CUDA SDK 7.0 and GNU C compiler 4.8.2.
- $\checkmark~256\times 64$ threads configuration

$$MSE_{Y,\max} := \ln \left\{ 10^{-3} \max_{0 \le i \le N-1} \sum_{m=1}^{10^3} |y_i(R_{i,m}) - y_i^{\mathcal{F},M}(R_{i,m})|^2 \right\},$$
$$MSE_{Y,\mathrm{av}} := \ln \left\{ 10^{-3} N^{-1} \sum_{m=1}^{10^3} \sum_{i=1}^{N-1} |y_i(R_{i,m}) - y_i^{\mathcal{F},M}(R_{i,m})|^2 \right\},$$
$$MSE_{Z,\mathrm{av}} := \ln \left\{ 10^{-3} N^{-1} \sum_{m=1}^{10^3} \sum_{i=1}^{N-1} |z_i(R_{i,m}) - z_i^{\mathcal{F},M}(R_{i,m})|^2 \right\}.$$

 $\bigstar d = 4, \, \mathbf{LP0}$

Δ_t	#CUBES	M	$MSE_{Y,\max}$	$MSE_{Y,\mathrm{av}}$	$MSE_{Z,\mathrm{av}}$	CPU	GPU
0.2	8	25	-3.712973	-3.774071	-0.964842	1.74	2.00
0.1	12	100	-4.066741	-4.303750	-1.607104	112.64	2.20
0.05	17	400	-4.337988	-4.698645	-2.302092	6462.19	12.39
0.02	28	2500	-4.472564	-4.988069	-3.225411		3070.92

$\bigstar d = 6, \, \mathbf{LP0}$

Δ_t	#CUBES	M	$MSE_{Y,\max}$	$MSE_{Y,\mathrm{av}}$	$MSE_{Z,\mathrm{av}}$	CPU	GPU
0.2	4	25	-2.707882	-2.784022	-0.477751	2.52	1.94
0.1	6	100	-3.195937	-3.294488	-1.133834	374.19	2.44
0.05	8	400	-3.505867	-3.664396	-1.795697	29172.89	52.20

 $\bigstar d = 12, \mathbf{LP1}$

Δ_t	#CUBES	M	$MSE_{Y,\max}$	$MSE_{Y,\mathrm{av}}$	$MSE_{Z,\mathrm{av}}$	CPU	GPU
0.2	2	2000	-3.111153	-3.232051	-1.297737	646.55	10.03
0.2	3	4000	-3.214096	-3.272644	-1.821935		2086.94

$\bigstar d = 16, \mathbf{LP1}$

Δ_t	#CUBES	M	$MSE_{Y,\max}$	$MSE_{Y,\mathrm{av}}$	$MSE_{Z,\mathrm{av}}$	CPU	GPU
0.2	2	6000	-2.795353	-2.959375	-1.588716	45587.17	669.28

Happy Birthday Vlad!

