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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Integration

Background: understand | fdg for trajectories of stochastic processes; these
are rough, e.g. only a-Holder continuous as for Brownian motion: o < %: rough
path analysis

f,g:10,1] — R; Riemann-Stieltjes’ theory: g of bounded variation with
(signed) interval measure m, on the Borel sets of [0, 1]:

/fdg /fdmg

f of bounded variation with interval measure m, integration by parts:

/0 F(s)dg(s) = F(t)g(t) — F(0)g(0) — / g(s)dmy(s).

Remark: obvious tradeoff between regularity of f and of g.

Young's integral: f is a-, g 5-HOlder, and « + 5 > 1, | fdg defined.
Aim: Present Fourier based approach to Young’s integral, embedded in new
approach of rough paths.
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Application: rough SPDE

Application goal: approach SPDE with rough path techniques in the spirit of
Hairer’s paper on regularity structures

E. g.: on torus

%U(ta r) = —Au(t,x)+g(u(t,z))Du(t,x) + £(t, x),

with u : Ry x T — R™, —A = —(—A) fractional Laplacian with o > %, D
spatial gradient, £ space-time white noise
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Fourier decomposition and Young’s integral

Fourier decomposition of HOlder continuous functions f studied by Ciesielski
(1961):

oo

f(t) = Z (Hpm df ) Gpm(t)

p>0,0<m<2p
with piecewise linear G,,,,,p > 0,0 < m < 2P (Schauder functions).

Then define
t 00 t
/ f(s)dg(s) = Z <Hpmadf><qud9>/ Gpm(8)dGan(s).
0 - 0

Lit: Baldi, Roynette '92: LDP; Ciesielski, Kerkyacharian, Roynette '93: calculus
on Besov spaces; Roynette '93: BM on Besov spaces
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Haar and Schauder functions

Define the Haar functions forp > 0,1 <m < 2P

HPM(t) — @1[m—1 2m—1) (t> — \/27)1[27”_1 m) (t)

2P 7 gp+1 op+1 2P

\V)

and Hyy = 1,Hp0 =0,p > 0.
Haar functions form an orthonormal basis of L?(]0, 1]).

The primitives of the Haar functions
t
Gom(t) = / Ho(s)ds, te[0,1],p>0,1<m <2
0

are the Schauder functions.

(Hpm)p>0,0<m<2v is orthonormal basis. So if f = | f(s)ds with f € L2([0,1])
(write f € H)

F(t) = / S Hy A Hp(s)ds = S (Hymo F)Gpm (0

p>0,0<m<2P p>0,0<m<2P
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Ciesielski’s isomorphism

: .40 _ m—1 41 _ 2m-—1 42 __ .
Two observations: ¢, = %55, t,,, = S5, ty, = 525 then

<mmj%j/%m#:¢§Pﬂ%0—ﬂ%0—ﬂ%0]

Hence

{/HM@HScW%ﬂwﬂw

Since ||Gpmlle = 27P/271, Schauder functions of one family with disjoint
support

2P

pS </ Hoed ) Gpm|| = €27l

p> K m=0

o0

Thus series representation extends to closure of H w.r.t. | - |,.

This is C'“, the space of a-Holder continuous functions.
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Ciesielski’s isomorphism

Define
g

Xpm — 2 Hpm; Sopm — 2§Gpm, p Z 0,0 S m S 2p.

Thenforp > 0,0 <m < 2P

_ 1
[ = Z<Hpm7 df> Gpm — Z<2 poma Sppm prm%ppma ngpmHoo — _7
pm

ppm

Since ¢, vanishes at ¢/, for j = 0,2, this implies that
24
=2 2 fam¥an
g<p m=1

is the linear interpolation of f on the dyadic points ¢ _,i=0,1,2,m =0, ..., 2P.

pm>
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Ciesielski’s isomorphism

According to observation on previous slide

[ flla = SUPQPQ‘fpm‘ - Sup2p(a 2)‘< Hpm, df)| ~ | fla-

pm pm

Ciesielski: Map

T :0% = 07, S (2P fpm)pzo,lgmgm’

isomorphism between a
function space and a sequence space.
Can be extended to Besov spaces B normed by || - ||a,p,4: for a function
f:00,1] D R,0<a<1,1<p,q<oo,te]|0,1]

wp(t, f)
tCM

=
=

wp(t, f) —sup/ e +y) — f(@)Pdal?, =0

ly|<t

1 g = HprH/O (

Lit: Ciesielski, Kerkyacharian, Roynette '93: study of Brownian motion on

Besov spaces, stochastic integral.
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Back to integration
Letnow [ € C°, g e CF.

Then we may write
f — Z fpm@pma g = ngmgopmo
p,m p,m

The Schauder functions are piecewise linear, thus of bounded variation.
Therefore it is possible to define

/Of(S)dg(S) = Z fpmgqn/o O (8)dpn (5)
- Z fpmgan @pm(S)an(S)dS.

To study the behaviour of the integrals on the rhs as functions of ¢ we have to
control for i, 5 p,m q,n |

<2_2Xija Spmeqn>—
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Universal estimate, Paley-Littlewood packages

Lemma 1
Fori,p,q>0,0<;7<2,0<m<2P,0<n<29

(27X a7y ComXqn)| < 27 2VPVO+PEa

except in case p < ¢ = 1, in which we have

(27X 55 OpmXqn)| < 1.

For f = me fom@pm as above let

op
Apf = Z Som@pm, Spf = ZAqf-
m=0

q<p

According to Ciesielski’s isomorphism

fe Cit|[flla = sup [[(2°*]|[Apflloo) 100 < 0.
p
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Key lemma in Paley-Littlewood language

Corollary 1
f, g continuous functions. Fori,p,¢>0,0<j <2,0<m <2P,0<n < 24

A (ApfAg)oo < 27 VPVDZHPRY A F| o] 1A 49|,
except in case p < ¢ = 7, in which we have

12i(ApfAgg)llco < |[Apfllool[Ag9]loo-

For p > 1 0r g > i we have

Ai(ApfAug) =0,
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Decomposition of the integral

The corollary indicates that different components of the integral have different
smoothness properties. We may write

[fis = 3 [ Avsang
_ Z/Apfqug+Z/Apfqug

p<q P>q

— Z/Sq_lfqug+Z/ApfdApg+Z/Apfdsp_lg,

In view of the second part of Corollary 1, we expect the first part to be
rougher. Integration by parts gives

S [ Siiddng = Y S 1800- 3 [ Bugds,as

— 7T<(f,g)—Z/AquSq_1f.
q
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Decomposition of the integral
w<(f,g) : Bony paraproduct

Defining further

L(f,9) =Y (ApfdSp-19 — ApgdS,_1f),

p

(antisymmetric Lévy area)
1
S(f.9) =) Apfddpg=c+5) Apfiug
p p

(symmetric part)

we have

/fdg =7<(f,9)+S(f,9)+ L(f,9)
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

The Young integral

In case the Holder regularity coefficients of f and g are large enough, the
three components of the integral behave well.

According to the Corollary, we estimate for i > 0

180 f Aiglloo < 1Aif ool Aiglloo < 2727 |Fllallglls.

This implies for any «, 8 €]0, 1]

1S(f, 9)llars < Cllfllallglls.

Similarly
m<(f;9)lls < Cll fllocllglls-

and, butonly if o + 3 > 1

LS, 9)llars < Cllfllallglls-
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

The Young integral
We can summarize the findings above.

Thm (Young’s integral)
Let o, 3 € (0,1) be suchthata + 3 > 1,and let f € C“ and g € C”. Then

I(f,dg) Z / ApfdDg e CP and  |1(f,dg)ls < IIflallgls

Furthermore

11(f,dg) = 7<(f,9)lars S [ fllallglls-

It is important to note that we get a version of the Lévy area only in case
o+ > 1.1f f and g arise in the context of Brownian motion, we usually have
only o, 8 < 1, and Lévy area has to be given externally.
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Beyond Young’s integral: an example

The following example illustrates for o + 3 < 1 the Lévy area may fail to exist,
and indicates what may be missing. Let f,g: |[—1,1] — R be given by

f(t) := Z a,sin(2°7t)  and g(t) := Z aj, cos(2°t),
k=1 k=1

where a;, == 2" and o € [0,1]. Form € Nlet f™, ¢™: [-1,1] — R be the mth
partial sum of the series. [, ¢"* are a-Holder continuous uniformly in m. For

s,t € [-1,1] and k € N such that 27%~1 < |s — ¢| < 27 with C independent of
m by simple calculation:

[F7) = [ (s) < Clt = s[%, |g™(t) — g™ (s)] < CJt — 5|

Hence also f, g a-Holder continuous.
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Beyond Young’s integral: an example

Léevy’s area for (™, ¢"") given by

/_11 $)df™(s /fm )dg™ (s)

— Z akal/ (sin(kas) sin(2'7s)2im + cos(2'ms) COS(2k7TS)2k7T)dS

k=1 —1
m 1

= S aya(2r / - (cos((2F — 2)ms) — cos((2" +2)ms))ds
k=1 —1

=2 Z ai2Fm=2 Z g(1=2a)k
k=1 k=1

This diverges as m tends to infinity for o < % Hence (f, g) possesses no Lévy
area.
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Beyond Young’s integral: an example

Note that for —1 < s <t < 1,and 0 # f9(s) € R by trigonometry

[f(t) = f(s) = f2(s)(g(t) — g(s))

oo

Z sin(2° (s — £))\/1 + f9(s)2sin[2" (s + t) + arctan((f9(s)) " H)]|.

k=1

Holder regularity for s = 0,¢t = 27", f9(0) > 0 (f9(0) < 0 analogous): quantity
>

(25717 ) /1 4+ (f9(0))sin[2° 71" + arctan((£9(0)) )]

> 27 "gin (g + arctan((f9(0))™"))

# O(|t — s|™).
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Beyond Young’s integral

Holder regularity at 0 not better than «; hence f not controlled by ¢ for o < % in
the sense of following notion.

(para)controlled path formalizes heuristics of fractional Taylor expansion.

Fora > 0letx € C*. Then
D= {feC*:3f* € C*st. ff=f—n_(f* ) € C**}.
f € D% is called controlled by z, f* derivative of f w.r.t. xz. On D¢ define norm

[ Fllzsa = 1 lla + 1Mo + [1F*]20-

If « > 1/3, then since 3o > 1 theterm L(f — n(f*, x),z) is well defined. It
suffices to make sense of L(w-(f”*,z),x). This is done by commutator
estimate:

[ L(m<(f*,2), ) — /O.fi”(S)dL(fC,fc)(S)Hsa < [IF*[lall2lla

and the integral is well defined provided L(x, x) exists.
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Beyond Young’s integral

Thm (Rough path integral)
Let v € (1/3,1), a # 1/2, o # 2/3. Letz € C%, f,g € DS. Assume that the
Lévy area

L(x,x) = &E’%@(L(SNIIC’SN#))KKd 1<0<d

converges uniformly, such that sup 5 || L(Snz, Snyx)||2a < 00. Then

I(Snf,dSng) = Z Z /O.Apf(s)qug(s)

p<N q<N

converges in C“~¢ for all e > 0. Denote the limit by 7(f, dg). Then
I(f,dg) € D¢ with derivative fg¢*, and

1I(f: dg)lwa SN fllasa (L +11gllea) (1 + zlla +[|2][a + [1L(z, 2)||24)-
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Happy Birthday Viad
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Rough quadratic variation and ergodic averages
So far not clear what approach has to do with ergodic theory.

Curious observation: Forsome O < a<1llet f e C* Forp > 0,1 <m < 2P,
consider the sequence of dyadic intervals J,,, = [Z=1, Z[, and

fom = (Hpm, df). Then

2P p—1 249
> (flg) — I =25

Hence pathwise existence of quadratic variation reduces to Césaro
summability of Ciesielski coefficients.

In case of Brownian paths the Ciesielski coefficients are all i.i.d Gaussian
variables W, = (H,,,,dW),p > 0,1 <m < 27 and

2P - p—1 29
m= q=0n=

so that existence of quadratic variation is linked to law of large numbers.
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Rough quadratic variation and ergodic averages

Goals:

e pathwise approach of quadratic variation via ergodic theory
e may need a pathwise concept of self similarity

o f self-similare.g.if fy,, =1forp>0,1 <m < 2P,
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

An approximation of the Lévy area
Aim: approximate Lévy’s area by dyadic martingales.

Filtration:

fqza(X2k+l:k§q,l§2k—1), qg > 0.

Martingales:

M({: Z Z Xpms Af ) Xpm»

p<qgm<2P

ng: Z Z (Xpm> dg) Xpm-

p<g m<2P

Rademacher functions: », = 2 9/? > .21 Xqn @nd the associated martingale
Rq - Zpgq Tq-
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

An approximation of the Lévy area

Discrete time stochastic integral of X, Y':

(X V)= Xe1AVi=> Xp_1(Vi — Y1)
k<n E<n

Then

I(Sf,dSyg)= Y 2797°E [AR( g_lAMg—M;_lANg)}

0<qg<k
1 —ak
+§f00900 + O(27*)

— Z 9—1—2| [A[R, N9 . M — M Ng]q]
0<g<k

1 —«
+§foogoo + 027,

Expectation is w.r.t. Lebesgue measure on |0, 1].
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

An approximation of the Lévy area
A discrete analogue of Lévy’s area appears naturally.

Geometric interpretation:

Proposition 1. M, N discrete time processes. Denote linear interpolation by
X,Y respectively:

Xy= M1+ (s—(k—1)AM,, sck—1,k,

similarly for Y. Then discrete time Lévy area

(M — My) - N) — (N = No) - M)}

equals the area between the curve {(X,,Y,) : s < n} and line chord from
(Mo, No) to (M,,, N,,).
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Construction of the Lévy area

For a d-dimensional process X = (X1, ..., X9 we construct the area
L(X, X) = L(X", X7)1<;,j<a- Assume the components are independent. Let
R(s,t) = (E(X!X/))1<; j<a- Increment of R over rectangle [s, ] x [u,v]

R[s,t]x[u,v} — R(t7 U) + R(57 u) o R(Sa U) o R(t7 u) — (E(X;;,tXZ,U))lﬁi,de’
Let us make the following assumptions.

p-var) There exist p € [1,2) and C > 0 such that for all 0 < s <t < 1 and for every
partition s =ty <t < --- <t, =tof st

n
Z ’R[ti—lati [tj—1,t5 |p < Clt — 5.

1,7=1

(HC) The process X is hypercontractive, i.e. for every m,n € N and every p > 2
there exists C,, ,,, , > 0 such that for every polynomial P : R" — R of
degree m, for all i1,--- ,i,, and forall ¢, ..., t, € [0, 1]

E(|P(X;], - X)) < CpmnB(IP(Xy], .. X()P)P.
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Construction of the Lévy area

Lemma 3
Assume that the stochastic process Y : [0, 1] — R satisfies (p-var). Then for all

pandforall 0 < M < N < 2P

N
> B Xpm)lP S (N — M +1)277,

mi,mo=M

Lemma 4

Let Y, Z : [0,1] — R be independent continuous processes, both satisfying
(p-var) for some p € [1,00]. Then for all 7,p > 0 and all ¢ < p, and for all
0<j<2

2P 24 °

E Z ZXmeqn<2_iXij7 ©OpmXaqn) < o(pVi)(1/p—4)9(qVi)(1=1/p)9—igp(4=3/p)9a/p

m=0 n=0
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Construction of the Lévy area

Thm 2

Let X : [0,1] — R? be a continuous stochastic process with independent
components, and assume that X satisfies (p-var) for some p € [1,2) and (HC).
Then for every a € (0,1/p) almost surely

ST IL(SNX, SN X) — L(Sn—1X, Sy—1X)], < o0,
N>0

and therefore the limit L(X, X) = limy_,~ L(SnyX, Sy X) is almost surely an
a-Holder continuous process.

Condition (HC) is fulfilled by all Gaussian processes, also by all processes in
fixed Gaussian chaos (Hermite processes), (p-var) by fractional Brownian
motion or bridge of Hurst index H > =.
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