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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Integration

Background: understand
∫
fdg for trajectories of stochastic processes; these

are rough, e.g. only α-Hölder continuous as for Brownian motion: α < 1
2: rough

path analysis

f, g : [0, 1]→ R; Riemann-Stieltjes’ theory: g of bounded variation with
(signed) interval measure mg on the Borel sets of [0, 1]:∫ t

0

f(s)dg(s) =

∫ t

0

f(s)dmg(s).

f of bounded variation with interval measure mf , integration by parts:∫ t

0

f(s)dg(s) = f(t)g(t)− f(0)g(0)−
∫ t

0

g(s)dmf(s).

Remark: obvious tradeoff between regularity of f and of g.

Young’s integral : f is α-, g β-Hölder, and α+ β > 1,
∫
fdg defined.

Aim: Present Fourier based approach to Young’s integral, embedded in new
approach of rough paths.
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Application: rough SPDE

Application goal: approach SPDE with rough path techniques in the spirit of
Hairer’s paper on regularity structures

E. g.: on torus

∂

∂t
u(t, x) = −Au(t, x)+g(u(t, x))Du(t, x) + ξ(t, x),

with u : R+ × Td → Rn, −A = −(−∆)σ fractional Laplacian with σ > 1
2, D

spatial gradient, ξ space-time white noise
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Fourier decomposition and Young’s integral

Fourier decomposition of Hölder continuous functions f studied by Ciesielski
(1961):

f(t) =

∞∑
p≥0,0≤m≤2p

〈Hpm, df〉Gpm(t)

with piecewise linear Gpm, p ≥ 0, 0 ≤ m ≤ 2p (Schauder functions).

Then define∫ t

0

f(s)dg(s) =

∞∑
p,m, q,n

〈Hpm, df〉〈Hqn, dg〉
∫ t

0

Gpm(s)dGqn(s).

Lit: Baldi, Roynette ’92: LDP; Ciesielski, Kerkyacharian, Roynette ’93: calculus
on Besov spaces; Roynette ’93: BM on Besov spaces
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Haar and Schauder functions

Define the Haar functions for p ≥ 0, 1 ≤ m ≤ 2p

Hpm(t) =
√

2p1[m−1
2p

,2m−1
2p+1

)(t)−
√

2p1[2m−1
2p+1 ,

m
2p

)(t)

and H00 = 1, Hp0 = 0, p ≥ 0.

Haar functions form an orthonormal basis of L2([0, 1]).

The primitives of the Haar functions

Gpm(t) =

∫ t

0

Hpm(s)ds, t ∈ [0, 1], p ≥ 0, 1 ≤ m ≤ 2p,

are the Schauder functions.

(Hpm)p≥0,0≤m≤2p is orthonormal basis. So if f =
∫ ·
0
ḟ(s)ds with ḟ ∈ L2([0, 1])

(write f ∈ H)

f(t) =

∫ t

0

∑
p≥0,0≤m≤2p

〈Hpm, ḟ〉Hpm(s)ds =
∑

p≥0,0≤m≤2p
〈Hpm, ḟ〉Gpm(t)
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Ciesielski’s isomorphism

Two observations: t0pm = m−1
2p , t

1
pm = 2m−1

2p+1 , t
2
pm = m

2p; then

〈Hpm, ḟ〉 =

∫
Hpmdf =

√
2p
[
2f(t1pm)− f(t0pm)− f(t2pm)

]
.

Hence
|
∫
Hpmdf | ≤ c2p(

1
2−α)|f |α.

Since ||Gpm||∞ = 2−p/2−1, Schauder functions of one family with disjoint
support ∥∥∥∥∥∥

∑
p≥K

2p∑
m=0

(∫
Hpmdf

)
Gpm

∥∥∥∥∥∥
∞

≤ C2−αK|f |α.

Thus series representation extends to closure of H w.r.t. | · |α.

This is Cα, the space of α-Hölder continuous functions.
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A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Ciesielski’s isomorphism

Define
χpm = 2

p
2Hpm, ϕpm = 2

p
2Gpm, p ≥ 0, 0 ≤ m ≤ 2p.

Then for p ≥ 0, 0 ≤ m ≤ 2p

f =
∑
pm

〈Hpm, df〉Gpm =
∑
pm

〈2−pχpm, df〉ϕpm =
∑
pm

fpmϕpm, ||ϕpm||∞ =
1

2
,

with fpm = 〈2−pχpm, df〉 = 2f(t1pm)− f(t0pm)− f(t2pm).

Since ϕpm vanishes at tjpm for j = 0, 2, this implies that

fp =
∑
q≤p

2q∑
m=1

fqmϕqn

is the linear interpolation of f on the dyadic points tipm, i = 0, 1, 2,m = 0, ..., 2p.
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Ciesielski’s isomorphism

According to observation on previous slide

||f ||α = sup
pm

2pα|fpm| = sup
pm

2p(α−
1
2)|〈Hpm, df〉| ∼ |f |α.

Ciesielski: Map

Tα : Cα → `∞, f 7→ (2pα fpm)p≥0,1≤m≤2p

isomorphism between a

function space and a sequence space.

Can be extended to Besov spaces Bα
p,q normed by || · ||α,p,q: for a function

f : [0, 1]→ R, 0 < α < 1, 1 ≤ p, q ≤ ∞, t ∈ [0, 1]

ωp(t, f) = sup
|y|≤t

[

∫ 1

0

|f(x+ y)− f(x)|pdx]
1
p, ||f ||α,p,q = ||f ||p + [

∫ 1

0

(
ωp(t, f)

tα
)q

1

t
dt]

1
q .

Lit: Ciesielski, Kerkyacharian, Roynette ’93: study of Brownian motion on
Besov spaces, stochastic integral.
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Back to integration

Let now f ∈ Cα, g ∈ Cβ.

Then we may write

f =
∑
p,m

fpmϕpm, g =
∑
p,m

gpmϕpm.

The Schauder functions are piecewise linear, thus of bounded variation.
Therefore it is possible to define∫ t

0

f(s)dg(s) =
∑

p,m, q,n

fpmgqn

∫ t

0

ϕpm(s)dϕqn(s)

=
∑

p,m, q,n

fpmgqn

∫ t

0

ϕpm(s)χqn(s)ds.

To study the behaviour of the integrals on the rhs as functions of t we have to
control for i, j p,m q, n

〈2−iχij, ϕpmχqn〉.
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Universal estimate, Paley-Littlewood packages

Lemma 1
For i, p, q ≥ 0, 0 ≤ j ≤ 2i, 0 ≤ m ≤ 2p, 0 ≤ n ≤ 2q

|〈2−iχij, ϕpmχqn〉| ≤ 2−2(i∨p∨q)+p+q,

except in case p < q = i, in which we have

|〈2−iχij, ϕpmχqn〉| ≤ 1.

For f =
∑
pm fpmϕpm as above let

∆pf =

2p∑
m=0

fpmϕpm, Spf =
∑
q≤p

∆qf.

According to Ciesielski’s isomorphism

f ∈ Cα iff ||f ||α = sup
p
||(2pα||∆pf ||∞)||l∞ <∞.
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Key lemma in Paley-Littlewood language

Corollary 1
f, g continuous functions. For i, p, q ≥ 0, 0 ≤ j ≤ 2i, 0 ≤ m ≤ 2p, 0 ≤ n ≤ 2q

||∆i(∆pf∆qg)||∞ ≤ 2−(i∨p∨q)−i+p+q||∆pf ||∞||∆qg||∞,

except in case p < q = i, in which we have

||∆i(∆pf∆qg)||∞ ≤ ||∆pf ||∞||∆qg||∞.

For p > i or q > i we have

∆i(∆pf∆qg) = 0.
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Decomposition of the integral

The corollary indicates that different components of the integral have different
smoothness properties. We may write∫

fdg =
∑
p,q

∫
∆pfd∆qg

=
∑
p<q

∫
∆pfd∆qg +

∑
p≥q

∫
∆pfd∆qg

=
∑
q

∫
Sq−1fd∆qg+

∑
p

∫
∆pfd∆pg+

∑
p

∫
∆pfdSp−1g.

In view of the second part of Corollary 1, we expect the first part to be
rougher. Integration by parts gives∑

q

∫
Sq−1fd∆qg =

∑
q

Sq−1f∆qg−
∑
q

∫
∆qgdSq−1f

= π<(f, g)−
∑
q

∫
∆qgdSq−1f.
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Decomposition of the integral

π<(f, g) : Bony paraproduct

Defining further

L(f, g) =
∑
p

(∆pfdSp−1g −∆pgdSp−1f),

(antisymmetric Lévy area)

S(f, g) =
∑
p

∆pfd∆pg = c+
1

2

∑
p

∆pf∆pg

(symmetric part)

we have ∫
fdg = π<(f, g) + S(f, g) + L(f, g).
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The Young integral

In case the Hölder regularity coefficients of f and g are large enough, the
three components of the integral behave well.

According to the Corollary, we estimate for i ≥ 0

||∆if∆ig||∞ ≤ ||∆if ||∞||∆ig||∞ ≤ 2−(α+β)i||f ||α||g||β.

This implies for any α, β ∈]0, 1[

||S(f, g)||α+β ≤ C||f ||α||g||β.

Similarly
||π<(f, g)||β ≤ C||f ||∞||g||β.

and, but only if α+ β > 1

||L(f, g)||α+β ≤ C||f ||α||g||β.
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The Young integral

We can summarize the findings above.

Thm (Young’s integral)
Let α, β ∈ (0, 1) be such that α+ β > 1, and let f ∈ Cα and g ∈ Cβ. Then

I(f, dg) :=
∑
p,q

∫ ·
0

∆pfd∆qg ∈ Cβ and ‖I(f, dg)‖β . ‖f‖α‖g‖β.

Furthermore

‖I(f, dg)− π<(f, g)‖α+β . ‖f‖α‖g‖β.

It is important to note that we get a version of the Lévy area only in case
α+ β > 1. If f and g arise in the context of Brownian motion, we usually have
only α, β < 1

2, and Lévy area has to be given externally.
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Beyond Young’s integral: an example

The following example illustrates for α+ β < 1 the Lévy area may fail to exist,
and indicates what may be missing. Let f, g : [−1, 1]→ R be given by

f(t) :=

∞∑
k=1

ak sin(2kπt) and g(t) :=

∞∑
k=1

ak cos(2kπt),

where ak := 2−αk and α ∈ [0, 1]. For m ∈ N let fm, gm : [−1, 1]→ R be the mth
partial sum of the series. fm, gm are α-Hölder continuous uniformly in m. For
s, t ∈ [−1, 1] and k ∈ N such that 2−k−1 ≤ |s− t| ≤ 2−k with C independent of
m by simple calculation:

|fm(t)− fm(s)| ≤ C|t− s|α, |gm(t)− gm(s)| ≤ C|t− s|α.

Hence also f, g α-Hölder continuous.
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Beyond Young’s integral: an example

Lévy’s area for (fm, gm) given by

∫ 1

−1
gm(s)dfm(s)−

∫ 1

−1
fm(s)dgm(s)

=

m∑
k,l=1

akal

∫ 1

−1

(
sin(2kπs) sin(2lπs)2lπ + cos(2lπs) cos(2kπs)2kπ

)
ds

=

m∑
k,l=1

akal
(
2lπ

∫ 1

−1

1

2
(cos((2k − 2l)πs)− cos((2k + 2l)πs))ds

+2kπ

∫ 1

−1
(cos((2k − 2l)πs) + cos((2k + 2l)πs))ds

)
= 2

m∑
k=1

a2k2
kπ= 2

m∑
k=1

2(1−2α)kπ.

This diverges as m tends to infinity for α ≤ 1
2. Hence (f, g) possesses no Lévy

area.
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Beyond Young’s integral: an example

Note that for −1 ≤ s ≤ t ≤ 1, and 0 6= fg(s) ∈ R by trigonometry

|f(t)− f(s)− fg(s)(g(t)− g(s))|

=

∣∣∣∣2 ∞∑
k=1

ak sin(2k−1π(s− t))
√

1 + fg(s)2sin[2k−1π(s+ t) + arctan((fg(s))−1)]

∣∣∣∣.
Hölder regularity for s = 0, t = 2−n, fg(0) > 0 (fg(0) < 0 analogous): quantity
≥ ∣∣∣∣2 n∑

k=1

ak sin(2k−1−nπ)
√

1 + (fg(0))2sin[2k−1−nπ + arctan((fg(0))−1)]

∣∣∣∣
≥ 2−αnsin

(π
2

+ arctan((fg(0))−1)
)

6= O(|t− s|2α).

– Typeset by FoilTEX – 17



A FOURIER ANALYSIS BASED APPROACH OF ROUGH INTEGRATION

Beyond Young’s integral
Hölder regularity at 0 not better than α; hence f not controlled by g for α < 1

2 in
the sense of following notion.

(para)controlled path formalizes heuristics of fractional Taylor expansion.

For α > 0 let x ∈ Cα. Then

Dα
x =

{
f ∈ Cα : ∃fx ∈ Cα s.t. f ] = f − π<(fx, x) ∈ C2α

}
.

f ∈ Dα
x is called controlled by x, fx derivative of f w.r.t. x. On Dα

x define norm

||f ||x,α = ||f ||α + ||fx||α + ||f ]||2α.

If α > 1/3, then since 3α > 1 the term L(f − π<(fx, x), x) is well defined. It
suffices to make sense of L(π<(fx, x), x). This is done by commutator
estimate:

||L(π<(fx, x), x)−
∫ ·
0

fx(s)dL(x, x)(s)||3α ≤ ||fx||α||x||2α,

and the integral is well defined provided L(x, x) exists.
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Beyond Young’s integral

Thm (Rough path integral)
Let α ∈ (1/3, 1), α 6= 1/2, α 6= 2/3. Let x ∈ Cα, f, g ∈ Dα

x . Assume that the
Lévy area

L(x, x) := lim
N→∞

(
L(SNx

k, SNx
`)
)
1≤k≤d,1≤`≤d

converges uniformly, such that supN‖L(SNx, SNx)‖2α <∞. Then

I(SNf, dSNg) =
∑
p≤N

∑
q≤N

∫ ·
0

∆pf(s)d∆qg(s)

converges in Cα−ε for all ε > 0. Denote the limit by I(f, dg). Then
I(f, dg) ∈ Dα

x with derivative fgx, and

||I(f, dg)||x,α . ||f ||x,α
(
1 + ||g||x,α

)(
1 + ||x||α + ||x||2α + ||L(x, x)||2α

)
.
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Happy Birthday Vlad
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Rough quadratic variation and ergodic averages

So far not clear what approach has to do with ergodic theory.

Curious observation: For some 0 < α < 1 let f ∈ Cα. For p ≥ 0, 1 ≤ m ≤ 2p,
consider the sequence of dyadic intervals Jpm = [m−12p ,

m
2p[, and

fpm = 〈Hpm, df〉. Then

2p∑
m=1

(f(
m

2p
)− f(

m− 1

2p
))2 = 2−p

p−1∑
q=0

2q∑
n=1

f2qn.

Hence pathwise existence of quadratic variation reduces to Césaro
summability of Ciesielski coefficients.

In case of Brownian paths the Ciesielski coefficients are all i.i.d Gaussian
variables Wpm = 〈Hpm, dW 〉, p ≥ 0, 1 ≤ m ≤ 2p, and

2p∑
m=1

(W (
m

2p
)−W (

m− 1

2p
))2 = 2−p

p−1∑
q=0

2q∑
n=1

W 2
qn,

so that existence of quadratic variation is linked to law of large numbers.
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Rough quadratic variation and ergodic averages

Goals:

• pathwise approach of quadratic variation via ergodic theory

• may need a pathwise concept of self similarity

• f self-similar e.g. if fpm = 1 for p ≥ 0, 1 ≤ m ≤ 2p.
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An approximation of the Lévy area

Aim: approximate Lévy’s area by dyadic martingales.

Filtration:

Fq = σ(χ2k+l : k ≤ q, l ≤ 2k − 1), q ≥ 0.

Martingales:

Mf
q =

∑
p≤q

∑
m<2p

〈χpm, df〉χpm,

Ng
q=

∑
p≤q

∑
m<2p

〈χpm, dg〉χpm.

Rademacher functions: rq = 2−q/2
∑
n<2q χqn and the associated martingale

Rq =
∑
p≤q rq.
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An approximation of the Lévy area

Discrete time stochastic integral of X,Y :

(X · Y )n =
∑
k≤n

Xk−1∆Yk =
∑
k≤n

Xk−1(Yk − Yk−1).

Then

I(Skf, dSkg)=
∑

0<q<k

2−q−2E
[
∆Rq(N

g
q−1∆M

f
q −M

f
q−1∆N

g
q )
]

+
1

2
f00g00 +O(2−αk)

=
∑

0<q<k

2−q−2E
[
∆[R,Ng ·Mf −Mf ·Ng]q

]
+

1

2
f00g00 +O(2−αk).

Expectation is w.r.t. Lebesgue measure on [0, 1].
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An approximation of the Lévy area

A discrete analogue of Lévy’s area appears naturally.

Geometric interpretation:

Proposition 1. M,N discrete time processes. Denote linear interpolation by
X,Y respectively:

Xs = Mk−1 + (s− (k − 1))∆Mk, s ∈ [k − 1, k],

similarly for Y . Then discrete time Lévy area

1

2
{((M −M0) ·N)n − ((N −N0) ·M)n}

equals the area between the curve {(Xs, Ys) : s ≤ n} and line chord from
(M0, N0) to (Mn, Nn).
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Construction of the Lévy area
For a d-dimensional process X = (X1, . . . , Xd) we construct the area
L(X,X) = L(Xi, Xj)1≤i,j≤d. Assume the components are independent. Let
R(s, t) = (E(Xi

sX
j
t ))1≤i,j≤d. Increment of R over rectangle [s, t]× [u, v]

R[s,t]×[u,v] = R(t, v) +R(s, u)−R(s, v)−R(t, u) = (E(Xi
s,tX

j
u,v))1≤i,j≤d.

Let us make the following assumptions.

(ρ-var) There exist ρ ∈ [1, 2) and C > 0 such that for all 0 ≤ s < t ≤ 1 and for every
partition s = t0 < t1 < · · · < tn = t of [s, t]

n∑
i,j=1

|R[ti−1,ti]×[tj−1,tj]|
ρ ≤ C|t− s|.

(HC) The process X is hypercontractive, i.e. for every m,n ∈ N and every p > 2
there exists Cp,m,n > 0 such that for every polynomial P : Rn → R of
degree m, for all i1, · · · , in, and for all t1, . . . , tn ∈ [0, 1]

E(|P (Xi1
t1
, . . . , Xin

tn)|2p) ≤ Cp,m,nE(|P (Xi1
t1
, . . . , Xin

tn)|2)p.
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Construction of the Lévy area

Lemma 3
Assume that the stochastic process Y : [0, 1]→ R satisfies (ρ-var). Then for all
p and for all 0 ≤M ≤ N ≤ 2p

N∑
m1,m2=M

|E(Xpm1Xpm2)|
ρ . (N −M + 1)2−p.

Lemma 4
Let Y, Z : [0, 1]→ R be independent continuous processes, both satisfying
(ρ-var) for some ρ ∈ [1,∞]. Then for all i, p ≥ 0 and all q < p, and for all
0 ≤ j ≤ 2i

E


∣∣∣∣∣∣

2p∑
m=0

2q∑
n=0

XpmYqn〈2−iχij, ϕpmχqn〉

∣∣∣∣∣∣
2
 . 2(p∨i)(1/ρ−4)2(q∨i)(1−1/ρ)2−i2p(4−3/ρ)2q/ρ.
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Construction of the Lévy area

Thm 2
Let X : [0, 1]→ Rd be a continuous stochastic process with independent
components, and assume that X satisfies (ρ-var) for some ρ ∈ [1, 2) and (HC).
Then for every α ∈ (0, 1/ρ) almost surely∑

N≥0

‖L(SNX,SNX)− L(SN−1X,SN−1X)‖α <∞,

and therefore the limit L(X,X) = limN→∞L(SNX,SNX) is almost surely an
α-Hölder continuous process.

Condition (HC) is fulfilled by all Gaussian processes, also by all processes in
fixed Gaussian chaos (Hermite processes), (ρ-var) by fractional Brownian
motion or bridge of Hurst index H > 1

4.
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