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Monte-Carlo framework

» Consider a diffusion process X, a time horizon T and a function v, we
are interested in the computation of E[¢)(X7)].

» Usually, one discretizes X on a time grid with n time steps and
considers the Monte Carlo approximation of E[¢)(X})].
» How to improve things, ie reduce the mean squared error?

» Use importance sampling to reduce the variance.
» Use multilevel Monte Carlo to reduce both the bias and the variance.

» In this work, we aim at mixing both techniques.

A. Kebaier Importance sampling



Outline

@ General framework
@ Importance sampling for SDEs
@ Multilevel Monte Carlo

9 Coupling Importance sampling and multilevel MC

© Numerical examples

A. Kebaier Importance sampling MLMC



General framework

General framework

dX; = b(X,)dt + o(X,)dW,, X, =xc R4
where W is a Brownian motion in R?.
Consider the continuous time Euler approximation X" with time step
d=T/n
dX;l = b(X’,rlj,,(l))dt + O-(X:Z]n([) )th, T}n(t) = Lt/(SJ 0.
Assume b and o are globally Lipschitz.
» Strong error

K,(T)
nl’/2 ’

Vp>1, and E| sup |X, — X[’

0<I<T

< with K,(T) > 0.

» Weak error: if ¢ is only C'

for some y € [1/2,1],  n"(E[¢(X7)] — E[$(X7)]) = Cy(T,7), (1)
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General framework

Monte Carlo approach

Approximate E[y) (Xr)] by MYM$ = LS o (x7.)

MSE =E [}Mﬁ{,ﬁ — E[(X7)] ﬂ

= [|M5 — Bl (xp]] + B (p) - By ()’

Bias®

Variance
=O(N"Y+0o(mn™).
Choose N = n?"! This yields MSE = O(n~2") for a complexity of order
O(n27+1)_
» Use some variance reduction technique to cut down on the constants
appearing in the variance for instance using Importance Sampling.

» Use multilevel Monte Carlo to reduce the complexity.
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Multilev

Importance Sampling for SDEs

Assume we work on (Q, (F;);<r, P).

>

Introduce for § € R?, Py ~ P s.t.
%If =L =exp (—0-W,—1|0]*) = £ (W,0)
Define (B?), <7 by BY = W, + 0t, which is a BM under Py.

Introduce X(#) solution of

dX(6), = b(X,(0))di + o(X,(0))dBY,
dX(6), = {b(X,(0)) + o(X,(6)} di + o(X,(6))dW,

Under P, X has the same distribution as X () under Py.
Ely(Xr)] = Ep, [{(Xr(0))] = E[(Xr(0))E™ (W, 0)].

Widely studied: Arouna (2004), Lemaire and Pages (2009), Lapeyre
and Lelong (2011)
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General framework Emm 3
Importance sampling for SDEs

Multilevel Monte Carlo

Importance Sampling for SDEs

» Then, find # minimizing
W0) = E[0(Xr(0)%e T — B [p(Xp)2E (W, 0)] or

wO) = E[0(xp(6)%e 2T Z E [p(xp)2et (W, 0)]

for £+ (W,0) = e~ Wr319PT or jts Monte Carlo counter part

1 N

_ n \2 e+ ).

van(0) = N ;¢(XT,i) ET(Wi,0).
Set §* = argming v(¢) and 6,y = argming v, y(6).

» The sample average approximation v, y is infinitely differentiable and
strongly convex without smoothness assumptions on . See Jourdain
and Lelong (2009).

» Importance sampling focuses only on the variance.
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Importance sampling for SDEs

Multilevel Monte Carlo

Importance Sampling for SDEs

Proposition 1
Assume for all 0, E[1)(X7)?e "1 < occ.
Let N = N,, be an increasing function of n, lim,_, o, N,, = oo.
» For n large enough, the function v, y, is strongly convex and smooth.

> If1) is locally Holder, for all K > 0, supjg <g |van, (6) — v(0)] — 0
a.s.

> O, N, ——— 0* and \/Ny(Onn, — 0%) 2, N(0,T(0*)) where
n——+oo n——+oo

0* = argminE [¢(X7)*E (W, 6)].

The proof of the Proposition is based on the following technical result.
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General framework Emm 3
Importance sampling for SDEs

Multilevel Monte Carlo

Importance Sampling for SDEs

Theorem 1

Let (X u)nm be a doubly indexed sequence of vector valued random
variables such that for all n, E[X,, ] = X with limy,—, 1 oo X,y = x . We define

Xovm — % E?:I X; m. Assume that the two following assumptions are satisfied

@ sup, sup,, n Var (X, ) < +oo.
@ sup, sup,, Var (X, ;) < +o0.

Then, for all functions p : N — N, 7,

Xn,p(n) —— x a.s. and in L2

n——+oo
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General framework Emm 3
Importance sampling for SDEs

Multilevel Monte Carlo

Importance Sampling for SDEs

Define the adaptive Monte Carlo estimator

N,
1 n ~n _ B
M, = §- ;w(XT,i(on,Nn))g (Wi, 0w, )-

Proposition 2
If v is locally Holder o« > 1 and a weak error holds with rate n” then
> M, n, — E[Y(Xr)] a.s. as n — oo.

> VNa(Ma, = E[f (Xr)]) —— N(Cy(T, @), 0%) where
0> = E[p(Xr2E* (W, 6%)] - E[p(Xr)P.

<

We achieve the same variance as if we could directly sample X7 without any
bias.
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General framework Importa pling for SDEs

Mulule\el Mome (;uln

Statistical Romberg algorithm

» We construct two Euler schemes X7 and X}/ﬁ with time step 7'/n and

T/\/n.
> Let
E=Ey (XTW) .
» We set
0= v (xY") +E
» Note that

E(Q) = Ep(X}) and Var(Q) = O (1>
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General framework Importa pling for SDEs

Mulule\el Mome (;uln

Statistical Romberg method

» The statistical Romberg routine that approximates E(X7) using only
two empirical means

1 Vi n
Vo= — D WY + — S w(xg) — v (X)),
» For N; = n?7, N, = n?7=1/2 we have

n(V, — Ev(Xr)) = N(Cy(T, @), 0%), with

02 = Var (v(Xr)) + Var (V(X7) - Ur),
Csp = C x 213,
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General framework Importa pling for SDEs

Mulule\el Mome (;uln

Statistical Romberg method

» The process U is the weak limit process of the error \/n(X" — X) and is
solution to

q q
dU, = b(X,)Uidt + Y _ 6;(X,) UrdW] — Z (X)oo(X)dW
j=1 jl=1

where W is a qz-dimensional standard Brownian motion, independent
of W, and b (respectively (5;)1<j<,) is the Jacobian matrix of b
(respectively (07)1<j<q)-

» This result is due to Jacod-Kurtz-Protter (1991-1998)provided that b
and o are C!.
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General framework Importa pling for SDEs

Mulule\el Mome (;uln

Multilevel Monte Carlo

Choose n of the form m*.

E[v(xi)| = E [pox)] + SE v’y —po ).

=1

Define the Monte Carlo approximation as

1 No 0 L Ny , -
Ou = 3o DV XF 0+ % > (b7 — v (XE))
k=1 =1 k=1

» The samples used in two different blocks £ # ¢’ are independent.

. Ly,
» In block ¢, we use m’ time steps and N; = '"(+1)TL samples.

. . . . L - . .
» Inside block ¢, the discretizations X', and X7', " are obtained using the
same Brownian paths.
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General framework Importa pling for SDEs

Mulule\el Mome (;uln

Multilevel Monte Carlo

We know from Ben Alaya and K. (2015) that
m*(Q1 — E[¢(Xp)]) = N(Cy(T, 7). E[(Ve(X7) - Ur)?))
e If v = 1 then, the optimal sample sizes
Ny = m*=(m — 1)TL.
e The optimal complexity is then
Cumc = C x m*1* = nz(log n)2

e However the complexity for a crude Monte Carlo is

CMC:CXH2
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9 Coupling Importance sampling and multilevel MC
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Coupling Importance sampling and multilevel MC

Coupling Importance sampling and MLMC: a first idea

From the previous CLT

m*(Q1 — E[¢(X7)]) = N(Cy(T, 7). E[(Ve(X7) - Ur)?))

> Apply MLMC to ¢(X7(0))E~ (W, 0) instead of ¥ (X7).
» Compute §* = argmin E[(Vy)(X7) - Ur)2ET (W, 0)].
» We would obtain the optimal limiting variance but the computational
price would be far too high:
» V1) requires extra implementation and smoothness (in practice, not only
for the theory)
> Sample both X and U.

See Ben Alaya, Hajji and K. (2015) in the setting of Statistical Romberg
method.
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Coupling Importance sampling and multilevel MC

Coupling IS and MLMC: a better approach

» Introduce an importance sampling parameter per level.
> Define for any A, = (o, ..., A1) € (R9)",

Or(Xos -5 AL Ozl/’ TOk E™(Wo, Mo)
k=1
#3030 D (WOHO) — SO () € (Waes A
=1 k=1
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Coupling Importance sampling and multilevel MC

Coupling IS and MLMC: a better approach

» Compute Aj minimizing Var(Q(Ay)).

> As all the levels are independent, it is clear that A7 minimizes the
variance of level ¢

1

w3 = | ( (v 0) - vty ) &) |
— 5 |(vexr") - w0 ) er )|

» Approximate v, using a Monte Carlo method with N, samples

1 Né mé mt mt! 2 +
e, (A) = N > =T ’w(xm,k) —¥( T,Z,k)‘ ET (Wi, A)
k=1

with Ny 75 Né
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Coupling Importance sampling and multilevel MC

The algorithm

for/=0:Ldo B
1. Generate (X?fg’“X’T”ZL . (X;'};-,N}7X¥L;71;2) £ (xp xp )
2. Compute the minimizer A¢ of of ve,n; by solving Vv y, (5%) =0.
end for
for/=1:Ldo
3. Conditionally on Ao, generate
(X3 M) X (M), (X, (). Xy, (he)) "
(X7 (Xg), X" (\¢)) independently of Step 1.
end for
4. Compute the multilevel importance sampling estimator
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Coupling Importance sampling and multilevel MC

Some remarks on our approach

» Each component of Ay is the solution of a strictly convex minimization
problem (can be solved in parallel)

» We directly minimize the true variance of the estimator.

» We do not rely on the asymptotic variance of Q;, no need of V) nor of
the process U.

> In the expression v, v/, the parameter A¢ is not involved in the function

.. £ £—
1. Hence, the quantities 1 (X7 , ;) — (X7 ”1) must only be computed
once. Huge computational time savings.
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Coupling Importance sampling and multilevel MC

Complexity of the algorithm

» Complexity of the standard ML estimator

L
CML = ZNgme.
=0

» Complexity of the ML+IS estimator

L L
Cuuis = ZNé(me + 3K¢) + ZNeme
=0 £=0

> K,: number of Newton’s iterations to approximate e
> the factor 3: building Vi, N and Vzu“,z basically boils down to three
Monte Carlo summations.

V4
In practice, K, < 5. So, if we choose Né = %’ Curis = 2Cuyr.
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Coupling Importance sampling and multilevel MC

SLLN for Multilevel Monte Carlo

e Let us introduce a sequence (ay)en of positive real numbers such that
limy o0 ZLI ay = oo and let

L
N[,’L:—Zak,ée{o,~~,L}forsomep:N%R/‘. )
k=1

e Moreover, we prove a SLLN for Multilevel Monte Carlo method

2
Assume that sup; sup, m < +00. Then, under our assumptions
k=1

Or( Ao, - - 7:\\L) — E[¢(X7)] a.s. when L — +o0.
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Coupling Importance sampling and multilevel MC

Lindeberg Feller CLT

Under ou assumptions, for Ny | given by (2) with p(L) = m* " (m — 1)T and
the sequence (ay)¢ satisfying

L
: 1 2
hmip/zg a‘z/ =0, forp>2

L—o0 L
(Z@:] a[> Z:l

we have

m Qs - -, M) — E[p(Xr)]) —2— N(Cy(T,7),v(A*))

L—+o0o

where v(\) = E | (V¢(X7) - Ur)* EF(W, \)| and \* = argminy, v()\).
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Coupling Importance sampling and multilevel MC

Some remarks

» We recover the optimal rate : v(\*) is the limiting variance obtained
when directly minimizing the asymptotic variance.

» To avoid minimizing (and computing) the limiting variance involving
U, we have to solve L optimization problems but it makes the method
fully automatic. Worth it.

» Even though the limiting variance is given by the blocks ¢ > 0, and the
block ¢ = 0 plays no role in the variance, it is not advisable in practice
(for a finite value of L) not to perform importance sampling for the
block ¢ = 0.
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© Numerical examples
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Numerical examples

Measuring the efficiency

We compare the mean squared errors for
» crude Monte Carlo (MC)
» Monte Carlo with Importance Sampling (MCIS) Jourdain, L. (2009)
» Multi Level Monte Carlo (ML)
» Multi Level Monte Carlo with importance sampling (MLIS)

A “true” value is computed using a ML with a large number of levels
(L = 7). In this case, for m = 4, Ny = 5.6 10°. Computing the benchmark
price takes ages, use parallel computing to split the resolution of one level.
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Numerical examples

Basket option in a local volatility model

> dS' = Si(rdt + o:(t,S))dW!) fori = 1,--- ,I
with 0;(,x) = 0.6(1.2 — e~ 017 g~ 0001(xe” =5))") ¢ =005V
and (W', ..., W) correlated Brownian motions Cov (W, W/) = ptif
i)

> payoff : (K — % ,I'zl Sir>+

» Parameters: / =5,r=0.05,T =1, Sy, = 100, K = 100, m = 4.
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Numerical examples

Basket option in a local volatility model

<« 4
T ™A
£
)
o
o
o
o
o
o
o

-3.5 -3.0 -25 -2.0 -1.5 -1.0

log10(RMSE)
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Numerical examples

Best of option in multidimensional Heston model

>
dSi = rSidt + \/oiSidB!
dot = K(a — ol)di + VN/ai(y'dB] + /1 — ()2dB)
with

L p p
p 1 ~

d(B), = dt and d(B), =I;dt
Do,
p p 1

> payoff : (max;<;<; S — K)+
» Parameters:  =5,r=0.03, T =1,5y =100, K = 140, m = 4,
v=0.25rk=2,a=0.04,7v=0.2,p=0.5.
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Numerical examples

Best of option in multidimensional Heston model

log10(CPU time)

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5

log10(RMSE)
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Numerical examples

Thank you ! Thanks to Vlad !
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