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We consider a two scale system of controlled co-dimensional SDEs:

dX;"’ = (AX,;‘W + (X7, QE™MY, ut)) dt +dwi(), x§°=a"

edQp™" = (BQy" "+ F (X", Q7" ) +Gp(vr)) di++/c GAW?(t)  Qf =g,

the slow variable X takes its values in the Hilbert space H
the fast variable Q€ takes its values in the Hilbert space K,
e €]0, 1] is a small parameter.

A:D(A) CH — H and B: D(B) C K —+ K are unbounded linear
operators generating Cp- semigroups.

(Wti)tZOv 1 = 1,2, are independent cylindrical Wiener processes with
values in H and K respectively, moreover G € L(K)

w and v are controls adapted to the filtration generated by (W1, W?2).
They take values in suitable topological spaces U and V respec-
tively.



dX’ = (AX;W +b(X Y, QMY ut)) dt +dwl(), x§° =2,
edQ7"" = (BQY" +F (X", Q""" +Gp(vy)) dt++/c GAW?(t)  Qf = qo

e ' and b Lipschitz and Gateaux differentiable w.r.t. X and @

e b and p are bounded

e the semigroups generated by A and B are Hilbert Schmidt and

L

e =) F1e¥P =k < 1

e B+ F'is dissipative with respect to @ e.g.

((¢—d),Blg—d)+ F(z,q—q)) < —nlg— |
for a suitablen >0 and all x € H, q, ¢ € K



dX’ = (AX,?’” + (XM, Q™ ut)) dt +dwi(), x§°=a"

edQy™" = (BQY" +F (X", Q") +GCp(v)) di+VeGdW2(t) Qb = qo

We consider the following optimal control problem

T
J(u,v) =E /O (1 (X, QE™Y up) + (X, QF™Y ur) ) dt

and the corresponding value function V(e) = infy .y J(u,v)
Our purpose is to study the limit of V(e) as € — 0.

Idea: if we freeze the slow evolution then the control problem for
the quick one behaves like the optimal state of an ergodic control
problem.

Thus Ergodic BSDEs must be involved herel



Ergodic BSDEs

Consider the following system in infinite horizon

_dlv/s — [\U(Us, és) — )\} ds — égdWs, S Z 0
dUSZ [LUS_I_F(Us)]dS_I_GdWS SZ O
Up = ug

Assume that L + F(-) is dissipative and W is Lipschitz w.r.t. =
bounded w.r.t. U then the above system admits a unique solution

((U), (Y1), (Z¢), A) with
Ys <C(1+|Us))

where C' can be chosen to depend only on the Lipschitz constant
of W and on the dissipativity constant of L 4+ F(-).

Moreover X\ is the value function of an ergodic control problem
(both in Cesaro and in Abel sense)

see [M.Fuhrman, Y. Hu, G.T. 2009], [A. Debussche, Y. Hu 2011],
[Y. Hu, P.Y. Madec, A. Richou 2013]] )



BSDE reformulation of the problem

Recall that we have

dX{" = (AX 4+ 6(X, Q0™ up) ) dt 4+ dW (), X5 = a°,

edQy"" = (B + F(X{",Qy"") 4+ Gp(vy)) dt + /e GAW?2(t), Q§ = q,
thus if

Y(x,q,p, &) = Jg{]{pb(w, q,u) +11(x,q,u)} + 525{12(% q,v) + Ep(v)}

[ dXy = AXp+ dW,
] €dQi = (BQS + F(XE,QS) dt + /2 Gaw 2,
—dYS = (X5, Q% Z8, =5/ /€) dt — ZEdWE — Z5dW2,
| X§ = w0, Qf=gq, Y{=0.

then
Vie) = YO6

Proof: Usual elimination of control by change of P argument.
Notice that the 'fast’ controlled equation reeds

dQ:’u’v = . -+ 6_1/2G(€_1/2p(’0t) + thQ)



The parametrized ergodic BSDE

Fix x € H and p € H* we consider the following version of the fast
equation (notice that time has been stretched that is Q; = Q.
W72 = e 1/2W3)

Q5™ = BQS™ + F(x, Qs ™) ds +dW7;  Qp™ = qo

Theorem 1 Vx € H,p € H* (and Qg € K ), 3! solution
(YTI0P =T:4P Z\T:P)
of the infinite horizon ergodic BSDE
—dY;P 0P = [op(z, QT90, p, =P IOPY — \(z,p)] dt — =P POPAWZ, Vi >0
Moreover
V;790P) < e(1+1Q¢™))

where ¢ > 0 only depends on the Lipschitz constants of ¢ with
respect to Q and on the dissipativity constant of B+ F(x, - ).
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The corresponding parametyrized - ergodic Control Problem

A(x,p) is the value function of an ergodic control problem with
state equation

dQs = BQY + F(z,QY) ds + Gp(vs)ds + GdW?2, QY = qo

and cost
o
J(2,p,v) = IMES [~ ey (@, Q1" p) + Loz, Q1" vs)) ds

where we recall ¥1(z,q,p) = inf,cp {pb(:c,Qfg’U,u) + ll(:c,q,u)}

This implies that X is Lipschitz in p and .



Limit equation and main result

We can now introduce the limit forward-backward system:

dY; ~MNXy, Zy)dt+ Zawt, tel0,1), VY1 =0,
dX; = AXydt+ dWl, Xg=xg
Recall the f.b. system for the original, two scales control problem:

y

dX; = AX;+ dW}l, te]0,1)
) edQi = (BQf+ F(X{,Q)dt+/edW?, te[0,1)
—dYf = P(X§,Q5, Z8,=5/\/€) dt — ZEdWE — =5dW?,  t€[0,1)
\ X§ = z0 Q§=4q0, Y{=0.

Theorem 2 (Main result)

lim |[YS —Ys| =0
€—>O| 0 Ol

[Alvarez-Bardi 2001-2007] for the finite dimensional counterpart by
Viscosity solutions techniques.
Also see [Kabanov-Pergamenshchikov 2003], ......



Proof: a freezing/discretization argument

The idea is to freeze the slow equation to give time to the fast
equation to behave as the optimal ergodic state. We start from

VS~ Vo = [ (X0 Qf 25, Z5/VE) — A(Xe, Z0)) d
+/ (Z§ — Z;) dW} +/ =< qw?2.

Adding and subtracting the term: / (Y( X, Qf, Zy, =5 /\/€)dt that

eventually will be easily treated by a change of probability
we are left with

/(w(Xt,QtaZt, i/Ve)— A(Xt,Zt))dt-l-/ (Z§—2Z4t) dW; -l-/ =5 dW7.



Let t, = k2N, k=0,1,...,2Y — 1 and define for t;, <t < tp11:
k k k—+
t _
XN = x(t), ZN(t)ZQN/tk Zs ds.
k—1

Fixed k we consider the system (with stretched time) for ¢t > ¢, /e:

N,k Nk Nk =N,k Nk: —Nk:
_dY — W(th, Qt k: y —¢ ) — )‘(tha )] dt — th )

~Nk ~N.k ~ N,k =~ N,k—1
dQ;" = (BQY " + F(Xy,, Q) ")) dt + dWE, Q) 7l = QY

Recall that the above system admits a unique solutlon
YNk =NE NN, Z))) such that (VY] < e(1 + Q")
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If we set QY Qt , _iv = _Nk for t € [ty/e,tp41/€[ we have

N,k SNk __ tet1/e
}/tk_|_1/€_Ytk/€ T tk/e [¢(X ’Qt ’Zt7_t ) )\(Xet7Zé]¥)] dt

tra1/€
+/ =N a2,

t/e€
therefore:
2" L th41/€ _ N
kzl [( tk/e tk—|—1/€) T /k/e th ] T

1/e
_/ [w(X 7Qt7Zet7—t)_>\(X g)]dt:O
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Recall that we had to estimate (after change of time, that is for:

Qf == Q% Zf:=Z5/Ve)

(w(th Qt7 Gta ég) _ A(Xeih _Et)) dt

+f / Ze) Wi + | V2w

Adding the term (in blue) that we have proved to be null we get

1/ yNE

1/e _
-|-€/O = — :t) th + 65/ (Z& — Zet) AW
[w(XetaQt 7Z€t7—t w(XetaQt 7Z€t7—t )] dt

/ [ (Xet, F, 26, =0) — ¥ (Xet, Qf, Zet, =01 d

where
N AN AN —
RNV < LOXEG — XN +1Q5 — QN | + |1 Za — Z8 ) (1)
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We get rid of some terms by Girsanov. Let:

sL() = Y Xets QF 25, =) — ¥(Xet, QF Zet, =5)
th — Zet
and
N _—
52(t) — (Xet7 Zet?—g (Xet7Q£V7Zet7—t )
=¢ _=N

We set for s € [0, 1]:
— S — S
wl=: /O sL(t/e) dt + WL, W2 =: 6—1/2/0 52(t/€) dt + W2

We denote by E€ the expectation with respect to the probability
Q¢ under which (W21, W2) is a brownian motion (notice that both
61 and 62 are bounded uniformly in e and N).

Since the left hand side is deterministic, we have

1
_ . N,k
Y§ - Yy :]EG/O Ry N dt + R Z( tk/e Ytk+1/e) (2)
k=
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We now have to estimate the expectation on the ‘error’ in the new
probability

1 1
~ N ~ ~ ~ J—
B[ RyY dtl SEL | (X = XN 41— QlYl + 12— 2]yt

_ 1
Let us start from EE/O Xy — X3V |dt

We notice that, with respect to W1, (X¢)¢>0 satisfies

dX(t) = AX(t)dt — s (t)dt + dWi(t), Xg=a°

Again by Girsanov since 51w€ is uniformly bounded

. 1 1
]EG/O X — XN |dt < C51E [/O X — X}V 2dt| = CAX(N)

By the continuity of trajectories of (X;);>0 and integrability of
SUP.c(0,1] | Xt| we get

lim AX(N) =0 (3)

N —00
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Concerning the term
~ 1 _
]EE/O 1Z, — ZN|dt
by the same argument
= (1.5 N LI N2
]EE/O Zy — zN|dt < Oy /O 1Z, — ZN2dt

and A4(N) —-= 0 by construction of zZ¥
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Let us come to the term:

~ 1 . - 1/e N
B [1Q7 - QpYlde = B [ LIQf - Q1Y) at
=2 — ~
With respect to W, := ¢!/2WW3 the process (Qf);c(o 1/ SOIVes

~ . N —2 ~
dQ§ = (BQ§ + F(Xet, Q) dt + 6%(t) dt +dW,, t>0, Qf= qo,
and QY solves

~ - . —~2
dON = (BON + F(XY,0N)) dt + 52dt +dW,, t>0, Qo= qo,

thus Q5 — QY is a the solution to:
d[Qf — QN = B(Q§ — QM) dt + F(Xet, Q) — F(XY, QM) dt, Qo = 0.
And since B + F(x, -) is dissipative we still can say that, P-a.s.

1/e . 1/¢ 1

IR - QM < e [ X - xY = [ 1x0 - x| at
thus
1
E° [ LIQ% — QY| dt < caX ()
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Now we come to the last term.

Recalling that
V3 < e(1+1Q51) and Esup |Q3'|* < €
S_

we get

e Z( NEYNE < 21 ECCLHIQY ([ HIQN ) < eN(1+420)

At last we sum up all results to get

Y — Yo

VAN

/ |R |dt+€|E€ Z( tk;/e tk—i—l/e)l

< AY(N) 4+ A4(N) + eN(l + 20)
So our claim follow letting € tend to O and then N to oo.
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Things to do
I) Allow degenerate noise in the slow equation.

In this case the state equation reeds
dX;"’ = (AX;"“ + b(X"", Qg’“”")) dt + Tr(ug)dt + Fdwl(e),
and after Ghirsanov transf. the solw equation still depends on @
dX; = (AX; + b(X, Q) dt + FdW (1),

We have to use averaging arguments similar to [Cerrai 99] or
[Bréhier 2012] takin into account that the law of the solution to the
fast equation will converge towards an optimal invariant measure.

II 7): Guess some information on the convergence of the optimal
controls
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