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Framework

W = (WP)3° independent Wiener processes
dlue(x) = [L(D)e(x) + F(£, )]t + [M(£)Pue(x) + g°(t.x)] dWY,
for (t,x) € [0, T] x RY, up € HO = L(RY),

L(t)¢ = Da(a**(t,.)Dg¢), MP(t)¢ = b**(t,.)Dag,

for o, B € {0,1,--- ,d} and P ® B(RY)-measurable bounded
e real-valued bounded processes a®”?
e -valued bounded processes b = (b**)7°
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for o, B € {0,1,--- ,d} and P ® B(RY)-measurable bounded
e real-valued bounded processes a®”?

e -valued bounded processes b = (b**)7°

f and g = (g”),2; are P ® B(R)-measurable processes with
values in R and b



First assumptions
Fix an integer m > 0 and a positive constant K > 0
e (A1) Bounds on the coefficients For (t,x) € [0, T] x RY, the
coefficients a®?(t, x) (resp. b(t,x) = (6P (t,x))52, are
P @ B(RY) measurable and their partial derivatives in x up to
order m+ 1 are a.s. bounded by K in R (resp. h).
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ug is an H™-valued Fy-measurable random variable



First assumptions
Fix an integer m > 0 and a positive constant K > 0
e (A1) Bounds on the coefficients For (t,x) € [0, T] x RY, the
coefficients a®?(t, x) (resp. b(t,x) = (6P (t,x))52, are
P @ B(RY) measurable and their partial derivatives in x up to
order m+ 1 are a.s. bounded by K in R (resp. h).
e (A2) Regularity of free terms and initial condition
f (resp. g = (g”)52, ) predictable H™~ (resp. H™(k))-valued,

K2,(T) = / () + 180 < oo(a5)
0

ug is an H™-valued Fy-measurable random variable
e (A3) Stochastic parabolicity For o, 5 € {1,--- , k},
a®8(t,x) = a®*(t, x) and there exists a constant x > 0 s.t.

d
Z 23”‘6 t, x) b”‘”’(t,x)bﬁ”’(t,x)]z”zﬁ > k|z|?
a,B=1

for all (w,t,x) € QA x [0, T] x RY, z € RY,



Well-posedeness

Theorem

Under the above assumptions the semi-linear parabolic SPDE has a
unique solution u = u(t,.) such that

E( sup_|uf \Hm+/y madt) < C[Eluofim+EK3(T)]
te[0,T]

for a constant C depending on k, T, m and K.



Power expansion of u”

Aim Define

» some particular "regular” finite elements approximations u
(depending on some scaling factor h and the corresponding
grid points Gp)

h

» random fields u(o), u(l), e ,u(k) and r, form> k+1+ %
s.t. u(o(t x) = u(t, x)fortE[O T] x € Gy
o uh(t,x) = uO(t,x) —1—2 U)(t, X)J + rep(t, x) as.
for t € [0, T] and x € Gy,
e there exists a constant C := C(T, K, m, k, k) such that for
every h >0

(suph > ria(t,x) ) < Chz(k+l)(E|¢|%—/m + E’an(T))

t<T x€Gy



Richardson extrapolation
Once the above expansion '
uh(t, x) = u(t,x) + 31 g uD(t,x) 5 4 rn(t, %)
is proved for a "regular grid" Gy, let V be a Vandermonde matrix
defined by V/(i,j) = 2-0-10-1) for j,j=1,2,....,k+1 and set

" ="\t where (Ao, ... Ak) = (1,0...,0)V
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Then we have the following Richardson extrapolation: There
exists a constant N depending only on T, K, k and k such that for
every h > 0 and m>k—|—1+%

E(sup_ h? " Ju(t,x) — 2"(t.%)F)
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Richardson extrapolation
Once the above expansion '
uh(t, x) = u(t,x) + 31 g uD(t,x) 5 4 rn(t, %)
is proved for a "regular grid” Gy let V be a Vandermonde matrix
defined by V/(i,j) = 2= (=101 for j,j=1,2,....k+ 1 and set

k
0" =Y Aju" where (Ao, .., \) = (1,0..,0)V !
j=0
Then we have the following Richardson extrapolation: There

exists a constant N depending only on T, K, k and k such that for
every h > 0 and m>k—|—1+%

E( sup h? Z lu(t,x) — Uh(t,x)\2>
te[0,T] x€Gy

< NP (E|p3m + EK2(T)),

Example: For k = 1 then " = 2u//2 — yh and
i’ — u=2(uh?—u) — (v - u)



Some known related results
e many results on diffusion about these power expansions and the
corresponding Richardson-Romberg acceleration method of the
weak speed of convergence of the Euler scheme with various
time meshes (coarsest h = T /n > 0). (Talay&Tubaro,
Bally&Talay, Malliavin &Thalmaier, Lemaire & Pages, ...)
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Some known related results

e many results on diffusion about these power expansions and the
corresponding Richardson-Romberg acceleration method of the
weak speed of convergence of the Euler scheme with various
time meshes (coarsest h = T /n > 0). (Talay&Tubaro,
Bally&Talay, Malliavin &Thalmaier, Lemaire & Pages, ...)

e (Gyongy & Krylov) Richardson’s method for strong speed of
semi-linear parabolic SPDEs and (space) finite difference schemes
i(t,.) based on Gp = {hA\1 + -+ hX\,:n> 1\ € AU(=N)}
where A finite subset of RY, h > 0

There exist processes iU)(t,.), j=0,1,--- , k with u(®) =y,

C > 0 such that for m>k+1+2 ,

ih(t,x) = o M0 (£, x) 4 Ry i(t, x)
E( sup sup \f?h_k(t,x)F) < ChPkt)
te[0, T x€Gy, '

e Finite elements approximations for parabolic SPDEs (Brzezniak,
Carelli, Debussche, Hausenblas, Larson, Printems, Prohl, Walsh,
Yan, ...)



d=1 ; piecewise linear finite elements

Let ¢(x) =1 — |x] for —1 < x <1 and 9(x) = 0 otherwise

Fix h>0,set Gy = {x;:=ih:i € Z}, ¥I(x)=(1— |x—x]|/h)T
and V), = {Ziez U,'?/)Ib : (Ui)ieZ € /2(Z)}

The finite approximation v := (u"(t),t € [0, T]) of uis a
V,-valued process such that a.s.

(u"(t), 0]) =(uo, )+ /O t[(—l)""‘ (a®%(s)Dgul(s), Dat)]') + (F(s), ¥])] ds

+)° /0 t[(bo‘p(s)Dauh(s) +g°(s), )] dW*(s), jEZ
P

Set u"(t,x) = 3z UM ()07 (x)
equivalent with a system of SDEs for a /(7Z)-valued process
UP = (Ul (t), t € [0, T])



d=1 ; piecewise linear finite elements - continued

The definition of u”(t) can be rewritten as a system of SDEs on
(UP(t)iez € b(Z):

MhUA(t) = UP(0) / > ALk, s)Uf(s) + Fi(h,s)) ds
0

a,5=0,1

+Z/ >~ B (h,s)UP(s) + GP(h,s)) dW?(s), jE L,

a=0,1
where for i, j € Z one sets R} = (], 41) , U(0) = (uo,%]),
Fi(h,s) = (f(s),4]), G/(h,s) = (g"(s),4)),

A7 (h,s) = (~1)*(a"(s)Dgvof, Dat)
B} /(h. ) = (6""(s)Datf, )



Forp:R—Rand acRlet Typo(x)=¢(x+a)

for a# 0, set 02 = (T, — Id)

For a€ {—h, h} T, and 62 are operators on v : G, — R
Identify U"(s) and U"(s,x;) for s € [0, T] and i € Z.

matrix R = hR where R is associated with the operator R on
12(Z) = 12(Gy)

h2
ld+6(T1—2Id+T 1) = /d+—5”5—"

For U e 2(Z), set ||U||?> =3, |Ui|? then Hh she—hu| < 3HUH
The operators on />(Gp) R (or Z x Z-matrices R") are invertible.
Multiply by (R")™; rewrite the system as a linear SPDE on the
Hilbert space /?(7Z)

Uh(t) =(RM~1uh(0) +/t[(Rh)1A(h,s)*Uh(s) + (RMF(h,s)]ds
0

+ /;[(R")lB”(h, s)"U"(s) + (R") TGP (h, s)|dW?(s).



"discrete L2 (resp. H') space Uy (resp. Uy p) with the norm

UG h=h) UP(x), [UR,:=h> [U(x)+16"U(x)[]

i€Z iEZL

Set Wy, : U — V, defined by W,,(U) = 5. U(x;)w; then

1
g\U’i,h < Wh(U) 7 < ’U‘i,hv k=0,1



"discrete L2" (resp. H') space Up p (resp. Ui p) with the norm
Ugni=h) U206), [URs=h)_ [U*(x) + 10" U(x)]
iz i€z

Set Wy, : U — V, defined by W,,(U) = 5. U(x;)w; then
1
g\U’i,h < Wh(U) 7 < ’Uﬁ(,ha k=0,1

Theorem

Let the Assumptions (A1)-(A3) be satisfied with m = 0. Then for
every h > 0 there exists a unique FE approximation

(UN(t)); € I(Z) = U'(t, x;) € L2(Gy) on [0, T]. Furthermore,

.
E( sup |Uh(t)(2)7,,+/ ]Uh(t)|ihdt) < C(E|uolf2 + EXF(T))
te[0,T] 0

for a constant C depending on k, K and T, that is

T
E( sup Uu(U)(OE+ [ MU)(OfEdt) < C(Elunfit EXE(T)
te[0,T] 0



Expansion of the finite elements approximation u”

» Aim: Find processes v 4 ... u(K) and ry, for
m > k + 2 (that is for integer-valued m for m > k + 3) s.t.
o u(t,x) = u(t,x) +Z u9(t, x) + rep(t, x) a.s. for
t€[0,T] and x € Gy,
e there exists a constant C := C(T, K, m, k, k) such that for
every h > 0

E(tsggh %(;hrkh (t, x)]2> < ChKFD) (E]uo\2 + EKZ( ))
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e rewrite the equation of u” with operators £(t) and
/le’h(t) on functions defined on R and get power expansions
of these operators, of the free terms and initial conditon
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coefficients of these expansions



Expansion of the finite elements approximation u”

» Aim: Find processes u ) (2) . ,u(k) and ryp for
m > k + 2 (that is for |nteger—valued m' for m> k +3) s.t.
o u(t,x) = u(t,x) +Z U(t,x) 7+ ren(t,x) as. for

t€[0,T] and x € Gy,
e there exists a constant C := C(T, K, m, k, k) such that for
every h >0

E(suph 3 Iroa(t.x)P) < CHED (Elunfn + EXZ(T))

t<T (G,

» Sketch of proof
e rewrite the equation of u” with operators £"(t) and
MP(t) on functions defined on R and get power expansions
of these operators, of the free terms and initial conditon
e Define inductively the processes vU) on R in terms of the
coefficients of these expansions
e Prove the upper estimate of the discrete norm of error term
using the previous "general” result



Rewrite the system of SDEs
2
R = Id + =5"5~" invertible operator on /?(Gy) ; set

£h(s)U = %R—l{a—h(agﬁ)(s)ahU)wh( ()5 0)}

R*l{afh(a}fh(s)u) +5h (39, (s)U) + 3% (s)6"U

—_

R—l{ () T_pU + 45%°(s) U + 3%, (s )Thu},

1 — _
MPP(s) 5R—l{bif’h(s)<s—hu+b}fh(s)cshu}
+%R’1{E°ph(s)T nU+ 45 (s)U + b%, (s )T,,U}.

for various space averages of the coefficients " of the form”
x) = Cfol o(t,x + ehy)¢(y)dy for some function &.

Set 3n(x) = np * ¢ where n,(x) = 1(x/h) and

n(x) = (1= [x)1-1,41(x).



The related scheme
The system of equations defining Uh(t,xj) can be rewritten
t
U"(t, x;) = R~ ilo(x;) +/ (LP(s)U(s, ) () + R (s, ) (%)) ds
ot O
b [ MU, )05) + RE (s, )05) dW(s), J € 2
0

The operators £/(s) and M"?(s) can be extended to functions
defined on R. Related evolution equation (of functions on R)

M) =R+ [ (EHH) + R(S)) o
0

o [ noptts) Rt owe(s)



Expansions of the initial condition and free term

» Free terms For n < mand j =0,---, n, there exist
HO-valued Fo r.v. u(J) and HO (resp. H°(/?))-valued adapted
processes U)(t) (resp. gU)P(t)) with u(()o) = up, and

®O)(t) = d(t) for ® = f or & = g, and if we set,

®pa(t) = R7Idp(t) — =Y Holl(r)/

1<<n

then [®p ()| < Ch™ H®(t)|grensa for r+n+1 < m.
> Operators Suppose (A1) and (A3); then for v € H™1,

o 4= Lu(t)v, (‘fh,/\/l (t)v continuous from (0, 00) to H™ 1~/
Their limits as h — 0 : £U)(t)v and MP(t)v exist in
H™=1=7 forall i=0,..,m—1
L£O(t) = £(t) and M©r(t) = M~ (t) for every t € [0, T].
Furthermore, for i +/<m—1, t € [0, T] and v € H™*1.

LDV < ClVlass IMO(EOV] < ClV]ine



Consider the system of SPDEs (solved inductively) for j =1, --
dugﬂ_( +Z<) tyul” ’)+f()()> dt
. J fi ) .
+ (Mp(t)uﬁf) +3 ( /)M’)P(t)uﬁf )+ g(J)P(t)> dWP(t),
=1

with initial condition u(()J) = u(()J)
Theorem
Let Assumptions (A1), (A2) and (A3) hold; let k € [1, m] be an
integer. The system of SPDEs for uV), .. 1) has a unique
solution (u®),- - uk)) where each u¥) is a continuous H™~J

valued processes and for some constant C depending on k, K, T
and m we have for j =1,--- | k

t<T

k

T .
Esup |ud -, + E /0 0 2ymias dt < C(E|g[3m + EK2(T)).



Forn<m-—1,te[0,T]and h> 0, let

h
Ln,n(t) = led , MY (t) = MP(t Z,IM()p

i=0 i=0

Then for o € H*"*3 and ¢ € H/T+2,

Lan()elur < Ch"™ Hoplyniiss, Man()9]p2) < Ch™ )] prinsa



Forn<m-—1,te[0,T]and h> 0, let

Lpa(t) = L£h(t)— ,'Tﬁ(i)(t)’ Mi,n( = M (¢) Z ,|M()p
=0 i=0

Then for ¢ € H'T"*3 and ¢ € HT "2,

Lan()elur < Ch"™ Hoplyniiss, Man()9]p2) < Ch™ )] prinsa

Let rpi(t) = uf — Uy — Y 1<ick j’,’ u?) ; then (set u(® = u)

_/I

drii(t) = (LPra k() + Fru(t) + fiax(t)) dt
(M?’prh k(t) + Gf ( (t) + g (£) dWE, 1 k(0) = Pk,
k : k .
W W
Fhi( Z—I t)ud), G,f’k => —Mf, (¢ ud.
—/

Jj=0



Expansion of the solution
Recall that ry x(t) = ul' — u; — doi<i<k %ug) where u" is the finite
elements approximation and u is the solution to the semi-linear
SPDE. By the Sobolev embedding theorem (m > d/2) we have
the existence of a modification of r, , continuous on [0, T] x R
whose restriction to [0, T| x Gy, is an adapted Up-valued process.
Then the restriction of r, ,(t,x) to [0, T] x Gy, is the solution
an abstract equation similar to that of Uh. Fork<m-3

T
E suplrmi(t) 20 + E / s (D) dt
t<T 0

dt

;
< CE/O [’Fk,h(t)’g,h + [Fuklpo + Z(’G/f,h(
p

;
< CE/ |Fie (03 + | Gion(0) [ + k|2 + |83 dt
0

< CRODE (|6fm + Kn(T))



Another convergence estimate
If we want to get estimates uniformly on [0, 7] x G, one needs
stronger " stochastic parabolicity assumptions

(A3Bis) There exists a positive constant x > 0 such that

(t,x) -3 >0 |b(t,x)|? > K a.s. forevery t €0, T], x € R

Then for any function f € L?(R),
(LhF,F) + Z\M’wmz < g\(s”fyiz + CIf

This yields the existence of a unique solution v/ such that

-

E( sup_ V(&) +/ 0" (8) Bmdlt) < CE (|61 + K2(T))
te[0,T] 0

One proves H' estimates of ry x(t); since d = 1 and H! C C, we

deduce that for k +3 < m and a constant C := C(K, k,k, T)

E( sup sup |fh,k(f,><)|2> < CPUTVE (|91 + K3 15(T))
te[0,T] x€Gy,

This yields a Richardson extrapolation for the sup norm.



An example for d = 2; linear finite elements

Fix h > 0 and let 1) be defined on R? as follows:

»on 1={x:0<x <x <1} ¢¥(x)=1-x,

» on2={x:0<x3 <x <1}, ¢¥(x)=1-x,
»on3={x:-1<x<0,0<x <x+1}, ¥(x) =1+x —x,
»ond={x:—-1<x3 <xp <0}, ¥(x) =1+ x,

» on 5={x:—-1<x < x3 <0}, ¥(x) =1+ x,
»onb6={x:0<x<1,xg—1<x<0},¥(x)=1+x—x




An example for d = 2; linear finite elements

Fix h > 0 and let 1) be defined on R? as follows:
»on 1={x:0<x <x <1} ¢¥(x)=1-x,
» on2={x:0<x3 <x <1}, ¢¥(x)=1-x,
»on3={x:-1<x<0,0<x <x+1}, ¥(x) =1+x —x,
»ond={x:—-1<x3 <xp <0}, ¥(x) =1+ x,
» on 5={x:—-1<x < x3 <0}, ¥(x) =1+ x,
»onb6={x:0<x<1,xg—1<x<0},¥(x)=1+x—x
For i € Z2 let 4/'(x) = 1 (}(x — hi)) (centered at (iih, ih) and
rescaled by h)




Set on RY
P(x) = NM{_; (1 — |x|) for x € [-1,1]? and 0 otherwise
Fori= (i1,h, - ,ig) € Z9 and h > 0 set
Wh(x) = w(xl—hilh, Xg—hl'gh, e Xd—hidh).
In both examples, if Wy, : U, — V}, is the extension operator

Vh(U) = X icze inih
[Wh(U)|2 ~ |Ulo,p and |V L(U)|2 ~ |U|1,4 recall the
discrete L2 (resp. H') norms

Ulg =0 U7, U= h" Y [V + 16" Uif?]
iezd iezd
the infinite matrix thj = (wih,@bjh) = h2(ld — R), where R is

associated with a linear invertible operator R on
I?(Gp,) = I?(Z?) such that (for d = 2)

IRU2 < gHUH? in example 1 (linear FE)

17
|IRU|I? < 1—8||UH2 in example 2 (quadratic FE for d = 2)



» Then the finite elements approximation
uh(t,x) = Y ieza UM (£)0f(x) satisfies with for i € Z9

(u"(t), 03") = (uo, v +/Ot[(1)'“‘ (a*(s)Dsu"(s), Daty)
+(f(s), )] ds + /Ot [(6%(s)Dau"(s) + g”(s), )] dW?(s)

» It can be rephrased using the inverse of the operator R (which
can be expressed as combinations of compositions of
translations T, for e € {—1,+1}, I =1,--- ,d)

"discrete” differential operators (using various averages of the
coefficients which depend on the finite elements and the free
terms), and the operators d.e, and T,

A similar expansion of the corresponding functions extended
on the grid Gj, and the processes defined on R is proved
Hence the Richardson extrapolation is true



Going further

» One can formulate an abstract convergence result based on
the expansion of the free terms and the operators; the
convergence on the grid holds for the approximation (discrete
norms); that of the functions is unclear in an abstract setting.

» Dealing with an infinite system is not realistic.
Choose a radius R and introduce a "smooth” cut-off function
for the coefficients outside this ball
gives a solution ug(t, x) defined on the whole space (there is
well-posedness)
exponentially good control of the difference v — ugr
The finite elements approximation u,’% of ug is a finite sum of
the wih
There is well-posedness and good estimates for uf, but the
uniform stochastic parabolicity fails
(work in progress) the expansion of u,’; — ug holds.



Last but not least

LA MULTI ANI VLAD !



