On the Richardson acceleration of finite elements schemes for parabolic SPDEs

Annie Millet

SAMM Université Paris 1 (and PMA)
Joint work with I. Gyöngy (University of Edinburgh)
Conference in Honor of Vlad Bally
Le Mans - October 7, 2015

Framework

$W=\left(W^{\rho}\right)_{1}^{\infty}$ independent Wiener processes

$$
d u_{t}(x)=\left[\mathcal{L}(t) u_{t}(x)+f(t, x)\right] d t+\left[\mathcal{M}(t)^{\rho} u_{t}(x)+g^{\rho}(t, x)\right] d W_{t}^{\rho},
$$

$$
\text { for }(t, x) \in[0, T] \times \mathbb{R}^{d}, u_{0} \in H^{0}=L_{2}\left(\mathbb{R}^{d}\right)
$$

$$
\mathcal{L}(t) \phi=D_{\alpha}\left(a^{\alpha \beta}(t, .) D_{\beta} \phi\right), \quad \mathcal{M}^{\rho}(t) \phi=b^{\alpha \rho}(t, .) D_{\alpha} \phi
$$

for $\alpha, \beta \in\{0,1, \cdots, d\}$ and $\mathcal{P} \otimes \mathcal{B}\left(\mathbb{R}^{d}\right)$-measurable bounded

- real-valued bounded processes $a^{\alpha \beta}$
- I_{2}-valued bounded processes $b^{\alpha}=\left(b^{\alpha \rho}\right)_{\rho=1}^{\infty}$

Framework

$W=\left(W^{\rho}\right)_{1}^{\infty}$ independent Wiener processes
$d u_{t}(x)=\left[\mathcal{L}(t) u_{t}(x)+f(t, x)\right] d t+\left[\mathcal{M}(t)^{\rho} u_{t}(x)+g^{\rho}(t, x)\right] d W_{t}^{\rho}$,
for $(t, x) \in[0, T] \times \mathbb{R}^{d}, u_{0} \in H^{0}=L_{2}\left(\mathbb{R}^{d}\right)$,

$$
\mathcal{L}(t) \phi=D_{\alpha}\left(a^{\alpha \beta}(t, .) D_{\beta} \phi\right), \quad \mathcal{M}^{\rho}(t) \phi=b^{\alpha \rho}(t, .) D_{\alpha} \phi
$$

for $\alpha, \beta \in\{0,1, \cdots, d\}$ and $\mathcal{P} \otimes \mathcal{B}\left(\mathbb{R}^{d}\right)$-measurable bounded

- real-valued bounded processes $a^{\alpha \beta}$
- I_{2}-valued bounded processes $b^{\alpha}=\left(b^{\alpha \rho}\right)_{\rho=1}^{\infty}$
f and $g=\left(g^{\rho}\right)_{\rho=1}^{\infty}$ are $\mathcal{P} \otimes \mathcal{B}(\mathbb{R})$-measurable processes with values in \mathbb{R} and I_{2}

First assumptions

Fix an integer $m \geq 0$ and a positive constant $K>0$

- (A1) Bounds on the coefficients For $(t, x) \in[0, T] \times \mathbb{R}^{d}$, the coefficients $a^{\alpha \beta}(t, x)$ (resp. $b^{\alpha}(t, x)=\left(b^{\alpha \rho}(t, x)\right)_{\rho=1}^{\infty}$ are $\mathcal{P} \otimes \mathcal{B}\left(\mathbb{R}^{d}\right)$ measurable and their partial derivatives in x up to order $m+1$ are a.s. bounded by K in $\mathbb{R}\left(\right.$ resp. $\left.l_{2}\right)$.

First assumptions

Fix an integer $m \geq 0$ and a positive constant $K>0$

- (A1) Bounds on the coefficients For $(t, x) \in[0, T] \times \mathbb{R}^{d}$, the coefficients $a^{\alpha \beta}(t, x)$ (resp. $b^{\alpha}(t, x)=\left(b^{\alpha \rho}(t, x)\right)_{\rho=1}^{\infty}$ are $\mathcal{P} \otimes \mathcal{B}\left(\mathbb{R}^{d}\right)$ measurable and their partial derivatives in x up to order $m+1$ are a.s. bounded by K in \mathbb{R} (resp. l_{2}).
- (A2) Regularity of free terms and initial condition $f\left(\right.$ resp. $\left.g=\left(g^{\rho}\right)_{\rho=1}^{\infty}\right)$ predictable H^{m-1} (resp. $\left.H^{m}\left(I_{2}\right)\right)$-valued,

$$
\mathcal{K}_{m}^{2}(T):=\int_{0}^{T}\left(|f(t)|_{H^{m-1}}^{2}+|g(t)|_{H^{m}\left(l_{2}\right)}^{2}\right) d t<\infty(\text { a.s. })
$$

u_{0} is an H^{m}-valued \mathcal{F}_{0}-measurable random variable

First assumptions

Fix an integer $m \geq 0$ and a positive constant $K>0$

- (A1) Bounds on the coefficients For $(t, x) \in[0, T] \times \mathbb{R}^{d}$, the coefficients $a^{\alpha \beta}(t, x)$ (resp. $b^{\alpha}(t, x)=\left(b^{\alpha \rho}(t, x)\right)_{\rho=1}^{\infty}$ are $\mathcal{P} \otimes \mathcal{B}\left(\mathbb{R}^{d}\right)$ measurable and their partial derivatives in x up to order $m+1$ are a.s. bounded by K in \mathbb{R} (resp. l_{2}).
- (A2) Regularity of free terms and initial condition
$f\left(\right.$ resp. $\left.g=\left(g^{\rho}\right)_{\rho=1}^{\infty}\right)$ predictable H^{m-1} (resp. $\left.H^{m}\left(I_{2}\right)\right)$-valued,

$$
\mathcal{K}_{m}^{2}(T):=\int_{0}^{T}\left(|f(t)|_{H^{m-1}}^{2}+|g(t)|_{H^{m}\left(l_{2}\right)}^{2}\right) d t<\infty(\text { a.s. })
$$

u_{0} is an H^{m}-valued \mathcal{F}_{0}-measurable random variable

- (A3) Stochastic parabolicity For $\alpha, \beta \in\{1, \cdots, k\}$, $a^{\alpha \beta}(t, x)=a^{\beta \alpha}(t, x)$ and there exists a constant $\kappa>0$ s.t.

$$
\sum_{\alpha, \beta=1}^{d}\left[2 a^{\alpha \beta}(t, x)-b^{\alpha, \rho}(t, x) b^{\beta, \rho}(t, x)\right] z^{\alpha} z^{\beta} \geq \kappa|z|^{2}
$$

for all $(\omega, t, x) \in \Omega \times[0, T] \times \mathbb{R}^{d}, z \in \mathbb{R}^{d}$.

Well-posedeness

Theorem
Under the above assumptions the semi-linear parabolic SPDE has a unique solution $u=u(t,$.$) such that$
$E\left(\sup _{t \in[0, T]}|u(t, .)|_{H^{m}}^{2}+\int_{0}^{T}|u(t, .)|_{H^{m+1}}^{2} d t\right) \leq C\left[E\left|u_{0}\right|_{H^{m}}^{2}+E \mathcal{K}_{m}^{2}(T)\right]$
for a constant C depending on κ, T, m and K.

Power expansion of u^{h}

Aim Define

- some particular "regular" finite elements approximations u^{h} (depending on some scaling factor h and the corresponding grid points \mathbb{G}_{h})
- random fields $u^{(0)}, u^{(1)}, \cdots, u^{(k)}$ and $r_{k h}$ for $m>k+1+\frac{d}{2}$ s.t. $u^{(0)}(t, x)=u(t, x)$ for $t \in[0, T], x \in \mathbb{G}_{h}$
- $u^{h}(t, x)=u^{(0)}(t, x)+\sum_{j=1}^{k} u^{(j)}(t, x) \frac{h^{j}}{j!}+r_{k, h}(t, x)$ a.s. for $t \in[0, T]$ and $x \in \mathbb{G}_{h}$
- there exists a constant $C:=C(T, K, m, k, \kappa)$ such that for every $h>0$

$$
E\left(\sup _{t \leq T} h^{d} \sum_{x \in \mathbb{G}_{h}}\left|r_{k, h}(t, x)\right|^{2}\right) \leq C h^{2(k+1)}\left(E|\phi|_{H^{m}}^{2}+E \mathcal{K}_{m}^{2}(T)\right)
$$

Richardson extrapolation

Once the above expansion
$u^{h}(t, x)=u(t, x)+\sum_{j=1}^{k} u^{(j)}(t, x) \frac{h^{j}}{j!}+r_{k, h}(t, x)$
is proved for a "regular grid" \mathbb{G}_{h} let V be a Vandermonde matrix defined by $V(i, j)=2^{-(i-1)(j-1)}$ for $i, j=1,2, \ldots, k+1$ and set

$$
\bar{u}^{h}=\sum_{j=0}^{k} \lambda_{j} u^{h 2^{-j}}, \text { where }\left(\lambda_{0}, . ., \lambda_{k}\right)=(1,0 \ldots, 0) V^{-1}
$$

Richardson extrapolation

Once the above expansion
$u^{h}(t, x)=u(t, x)+\sum_{j=1}^{k} u^{(j)}(t, x) \frac{h^{j}}{j!}+r_{k, h}(t, x)$
is proved for a "regular grid" \mathbb{G}_{h} let V be a Vandermonde matrix defined by $V(i, j)=2^{-(i-1)(j-1)}$ for $i, j=1,2, \ldots, k+1$ and set

$$
\bar{u}^{h}=\sum_{j=0}^{k} \lambda_{j} u^{h 2^{-j}}, \text { where }\left(\lambda_{0}, . ., \lambda_{k}\right)=(1,0 \ldots, 0) V^{-1}
$$

Then we have the following Richardson extrapolation: There exists a constant N depending only on T, K, κ and k such that for every $h>0$ and $m>k+1+\frac{d}{2}$

$$
\begin{aligned}
& E\left(\sup _{t \in[0, T]} h^{d} \sum_{x \in \mathbb{G}_{h}}\left|u(t, x)-\bar{u}^{h}(t, x)\right|^{2}\right) \\
& \leq N h^{2(k+1)}\left(E|\phi|_{H^{m}}^{2}+E \mathcal{K}_{m}^{2}(T)\right)
\end{aligned}
$$

Richardson extrapolation

Once the above expansion
$u^{h}(t, x)=u(t, x)+\sum_{j=1}^{k} u^{(j)}(t, x) \frac{h^{j}}{j!}+r_{k, h}(t, x)$
is proved for a "regular grid" \mathbb{G}_{h} let V be a Vandermonde matrix defined by $V(i, j)=2^{-(i-1)(j-1)}$ for $i, j=1,2, \ldots, k+1$ and set

$$
\bar{u}^{h}=\sum_{j=0}^{k} \lambda_{j} u^{h 2^{-j}}, \text { where }\left(\lambda_{0}, . ., \lambda_{k}\right)=(1,0 \ldots, 0) V^{-1}
$$

Then we have the following Richardson extrapolation: There exists a constant N depending only on T, K, κ and k such that for every $h>0$ and $m>k+1+\frac{d}{2}$

$$
\begin{aligned}
& E\left(\sup _{t \in[0, T]} h^{d} \sum_{x \in \mathbb{G}_{h}}\left|u(t, x)-\bar{u}^{h}(t, x)\right|^{2}\right) \\
& \leq N h^{2(k+1)}\left(E|\phi|_{H^{m}}^{2}+E \mathcal{K}_{m}^{2}(T)\right)
\end{aligned}
$$

Example: For $k=1$ then $\bar{u}^{h}=2 u^{h / 2}-u^{h}$ and $\bar{u}^{h}-u=2\left(u^{h / 2}-u\right)-\left(u^{h}-u\right)$

Some known related results

- many results on diffusion about these power expansions and the corresponding Richardson-Romberg acceleration method of the weak speed of convergence of the Euler scheme with various time meshes (coarsest $h=T / n>0$). (Talay\&Tubaro, Bally\&Talay, Malliavin \&Thalmaier, Lemaire \& Pagès, ...)

Some known related results

- many results on diffusion about these power expansions and the corresponding Richardson-Romberg acceleration method of the weak speed of convergence of the Euler scheme with various time meshes (coarsest $h=T / n>0$). (Talay\&Tubaro,
Bally\&Talay, Malliavin \&Thalmaier, Lemaire \& Pagès, ...)
- (Gyöngy \& Krylov) Richardson's method for strong speed of semi-linear parabolic SPDEs and (space) finite difference schemes $\tilde{u}^{h}(t,$.$) based on \mathbb{G}_{h}=\left\{h \lambda_{1}+\cdots+h \lambda_{n}: n \geq 1, \lambda_{i} \in \Lambda \cup(-\Lambda)\right\}$ where \wedge finite subset of $\mathbb{R}^{d}, h>0$
There exist processes $\tilde{u}^{(j)}(t,),. j=0,1, \cdots, k$ with $u^{(0)}=u$, $C>0$ such that for $m>k+1+\frac{d}{2}$,

$$
\tilde{u}^{h}(t, x)=\sum_{j=0}^{k} \frac{h^{j}}{j!} \tilde{u}^{(j)}(t, x)+\tilde{R}_{h, k}(t, x),
$$

$$
E\left(\sup _{t \in[0, T]} \sup _{x \in \mathbb{G}_{h}}\left|\tilde{R}_{h, k}(t, x)\right|^{2}\right) \leq C h^{2(k+1)}
$$

Some known related results

- many results on diffusion about these power expansions and the corresponding Richardson-Romberg acceleration method of the weak speed of convergence of the Euler scheme with various time meshes (coarsest $h=T / n>0$). (Talay\&Tubaro,
Bally\&Talay, Malliavin \&Thalmaier, Lemaire \& Pagès, ...)
- (Gyöngy \& Krylov) Richardson's method for strong speed of semi-linear parabolic SPDEs and (space) finite difference schemes $\tilde{u}^{h}(t,$.$) based on \mathbb{G}_{h}=\left\{h \lambda_{1}+\cdots+h \lambda_{n}: n \geq 1, \lambda_{i} \in \Lambda \cup(-\Lambda)\right\}$ where \wedge finite subset of $\mathbb{R}^{d}, h>0$
There exist processes $\tilde{u}^{(j)}(t,),. j=0,1, \cdots, k$ with $u^{(0)}=u$, $C>0$ such that for $m>k+1+\frac{d}{2}$,

$$
\tilde{u}^{h}(t, x)=\sum_{j=0}^{k} \frac{h^{j}}{j!} \tilde{u}^{(j)}(t, x)+\tilde{R}_{h, k}(t, x),
$$

$$
E\left(\sup _{t \in[0, T]} \sup _{x \in \mathbb{G}_{h}}\left|\tilde{R}_{h, k}(t, x)\right|^{2}\right) \leq C h^{2(k+1)}
$$

- Finite elements approximations for parabolic SPDEs (Brzezniak, Carelli, Debussche, Hausenblas, Larson, Printems, Prohl, Walsh, Yan, ...)

$d=1$; piecewise linear finite elements

Let $\psi(x)=1-\mid x]$ for $-1 \leq x \leq 1$ and $\psi(x)=0$ otherwise
Fix $h>0$, set $\mathbb{G}_{h}=\left\{x_{i}:=i h: i \in \mathbb{Z}\right\}, \quad \psi_{i}^{h}(x)=\left(1-\left|x-x_{i}\right| / h\right)^{+}$ and $V_{h}=\left\{\sum_{i \in \mathbb{Z}} U_{i} \psi_{i}^{h}:\left(U_{i}\right)_{i \in \mathbb{Z}} \in I_{2}(\mathbb{Z})\right\}$
The finite approximation $u^{h}:=\left(u^{h}(t), t \in[0, T]\right)$ of u is a V_{h}-valued process such that a.s.

$$
\begin{aligned}
\left(u^{h}(t), \psi_{j}^{h}\right)= & \left(u_{0}, \psi_{j}^{h}\right)+\int_{0}^{t}\left[(-1)^{|\alpha|}\left(a^{\alpha \beta}(s) D_{\beta} u^{h}(s), D_{\alpha} \psi_{j}^{h}\right)+\left(f(s), \psi_{j}^{h}\right)\right] d s \\
& +\sum_{\rho} \int_{0}^{t}\left[\left(b^{\alpha \rho}(s) D_{\alpha} u^{h}(s)+g^{\rho}(s), \psi_{j}^{h}\right)\right] d W^{\rho}(s), \quad j \in \mathbb{Z}
\end{aligned}
$$

Set $u^{h}(t, x)=\sum_{i \in \mathbb{Z}} U_{i}^{h}(t) \psi_{i}^{h}(x)$
equivalent with a system of SDEs for a $I_{2}(\mathbb{Z})$-valued process
$U^{h}=\left(U_{i}^{h}(t), t \in[0, T]\right)$

$d=1$; piecewise linear finite elements - continued

The definition of $u^{h}(t)$ can be rewritten as a system of SDEs on $\left(U_{i}^{h}(t)\right)_{i \in \mathbb{Z}} \in I_{2}(\mathbb{Z})$:

$$
\begin{aligned}
& M_{i j}^{h} U_{i}^{h}(t)=U_{j}^{h}(0)+\int_{0}^{t}\left(\sum_{\alpha, \beta=0,1} A_{i j}^{\alpha, \beta}(h, s) U_{i}^{h}(s)+F_{j}(h, s)\right) d s \\
& \quad+\sum_{\rho} \int_{0}^{t}\left(\sum_{\alpha=0,1} B_{i j}^{\alpha, \rho}(h, s) U_{i}^{h}(s)+G_{j}^{\rho}(h, s)\right) d W^{\rho}(s), \quad j \in \mathbb{Z}
\end{aligned}
$$

where for $i, j \in \mathbb{Z}$ one sets $\mathcal{R}_{i j}^{h}=\left(\psi_{i}^{h}, \psi_{j}^{h}\right), U_{j}^{h}(0)=\left(u_{0}, \psi_{j}^{h}\right)$,

$$
\begin{gathered}
F_{j}(h, s)=\left(f(s), \psi_{j}^{h}\right), \quad G_{j}^{\rho}(h, s)=\left(g^{\rho}(s), \psi_{j}^{h}\right) \\
A_{i j}^{\alpha, \beta}(h, s)=(-1)^{\alpha}\left(a^{\alpha, \beta}(s) D_{\beta} \psi_{i}^{h}, D_{\alpha} \psi_{j}^{h}\right) \\
B_{i j}^{\alpha, \rho}(h, s)=\left(b^{\alpha, \rho}(s) D_{\alpha} \psi_{i}^{h}, \psi_{j}^{h}\right)
\end{gathered}
$$

For $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ and $a \in \mathbb{R}$ let $T_{a} \varphi(x)=\varphi(x+a)$
for $a \neq 0$, set $\delta^{a}=\frac{1}{a}\left(T_{a}-l d\right)$
For $a \in\{-h, h\} T_{a}$ and δ^{a} are operators on $v: \mathbb{G}_{h} \rightarrow \mathbb{R}$ Identify $U_{i}^{h}(s)$ and $U^{h}\left(s, x_{i}\right)$ for $s \in[0, T]$ and $i \in \mathbb{Z}$. matrix $\mathcal{R}^{h}=h R$ where R is associated with the operator \mathbf{R} on $I^{2}(\mathbb{Z}) \equiv I^{2}\left(\mathbb{G}_{h}\right)$

$$
\mathbf{R}=I d+\frac{1}{6}\left(T_{1}-2 I d+T_{-1}\right)=I d+\frac{h^{2}}{6} \delta^{h} \delta^{-h}
$$

For $U \in I^{2}(\mathbb{Z})$, set $\|U\|^{2}=\sum_{i}\left|U_{i}\right|^{2}$; then $\left\|\frac{h^{2}}{6} \delta^{h} \delta^{-h} U\right\| \leq \frac{2}{3}\|U\|$ The operators on $I^{2}\left(\mathbb{G}_{h}\right) \mathbf{R}$ (or $\mathbb{Z} \times \mathbb{Z}$-matrices \mathcal{R}^{h}) are invertible. Multiply by $\left(\mathcal{R}^{h}\right)^{-1}$; rewrite the system as a linear SPDE on the Hilbert space $I^{2}(\mathbb{Z})$

$$
\begin{aligned}
U^{h}(t)= & \left(\mathcal{R}^{h}\right)^{-1} U^{h}(0)+\int_{0}^{t}\left[\left(\mathcal{R}^{h}\right)^{-1} A(h, s)^{*} U^{h}(s)+\left(\mathcal{R}^{h}\right)^{-1} F(h, s)\right] d s \\
& +\int_{0}^{t}\left[\left(\mathcal{R}^{h}\right)^{-1} B^{\rho}(h, s)^{*} U^{h}(s)+\left(\mathcal{R}^{h}\right)^{-1} G^{\rho}(h, s)\right] d W^{\rho}(s) .
\end{aligned}
$$

"discrete $L^{2 "}\left(\right.$ resp. $\left.H^{1}\right)$ space $\mathcal{U}_{0, h}\left(\right.$ resp. $\left.\mathcal{U}_{1, h}\right)$ with the norm

$$
|U|_{0, h}^{2}:=h \sum_{i \in \mathbb{Z}} U^{2}\left(x_{i}\right), \quad|U|_{1, h}^{2}:=h \sum_{i \in \mathbb{Z}}\left[U^{2}\left(x_{i}\right)+\left|\delta^{h} U\left(x_{i}\right)\right|^{2}\right]
$$

Set $\Psi_{h}: U \rightarrow V_{h}$ defined by $\Psi_{h}(U)=\sum_{i} U\left(x_{i}\right) \psi_{i}^{h}$; then

$$
\frac{1}{3}|U|_{k, h}^{2} \leq\left|\Psi_{h}(U)\right|_{H^{k}}^{2} \leq|U|_{k, h}^{2}, k=0,1
$$

"discrete $L^{2 "}\left(\right.$ resp. $\left.H^{1}\right)$ space $\mathcal{U}_{0, h}\left(\right.$ resp. $\left.\mathcal{U}_{1, h}\right)$ with the norm

$$
|U|_{0, h}^{2}:=h \sum_{i \in \mathbb{Z}} U^{2}\left(x_{i}\right), \quad|U|_{1, h}^{2}:=h \sum_{i \in \mathbb{Z}}\left[U^{2}\left(x_{i}\right)+\left|\delta^{h} U\left(x_{i}\right)\right|^{2}\right]
$$

Set $\Psi_{h}: U \rightarrow V_{h}$ defined by $\Psi_{h}(U)=\sum_{i} U\left(x_{i}\right) \psi_{i}^{h}$; then

$$
\frac{1}{3}|U|_{k, h}^{2} \leq\left|\Psi_{h}(U)\right|_{H^{k}}^{2} \leq|U|_{k, h}^{2}, \quad k=0,1
$$

Theorem

Let the Assumptions (A1)-(A3) be satisfied with $m=0$. Then for every $h>0$ there exists a unique FE approximation $\left(U^{h}(t)\right)_{i} \in I^{2}(\mathbb{Z}) \equiv U^{h}\left(t, x_{i}\right) \in L^{2}\left(\mathbb{G}_{h}\right)$ on $[0, T]$. Furthermore,
$E\left(\sup _{t \in[0, T]}\left|U^{h}(t)\right|_{0, h}^{2}+\int_{0}^{T}\left|U^{h}(t)\right|_{1, h}^{2} d t\right) \leq C\left(E\left|u_{0}\right|_{L^{2}}^{2}+E \mathcal{K}_{0}^{2}(T)\right)$
for a constant C depending on κ, K and T, that is
$E\left(\sup _{t \in[0, T]}\left|\Psi_{h}(U)(t)\right|_{L^{2}}^{2}+\int_{0}^{T}\left|\Psi_{h}(U)(t)\right|_{H^{1}}^{2} d t\right) \leq C\left(E\left|u_{0}\right|_{L^{2}}^{2}+E \mathcal{K}_{0}^{2}(T)\right)$

Expansion of the finite elements approximation u^{h}

- Aim: Find processes $u^{(1)}, u^{(2)}, \cdots, u^{(k)}$ and $r_{k h}$ for $m>k+2$ (that is for integer-valued m for $m \geq k+3$) s.t.
- $u^{h}(t, x)=u(t, x)+\sum_{j=1}^{k} u^{(j)}(t, x) \frac{h_{j}^{j}}{j!}+r_{k, h}(t, x)$ a.s. for $t \in[0, T]$ and $x \in \mathbb{G}_{h}$
- there exists a constant $C:=C(T, K, m, k, \kappa)$ such that for every $h>0$

$$
E\left(\sup _{t \leq T} h \sum_{x \in \mathbb{G}_{h}}\left|r_{k, h}(t, x)\right|^{2}\right) \leq C h^{2(k+1)}\left(E\left|u_{0}\right|_{H^{m}}^{2}+E \mathcal{K}_{m}^{2}(T)\right)
$$

Expansion of the finite elements approximation u^{h}

- Aim: Find processes $u^{(1)}, u^{(2)}, \cdots, u^{(k)}$ and $r_{k h}$ for $m>k+2$ (that is for integer-valued m for $m \geq k+3$) s.t.
- $u^{h}(t, x)=u(t, x)+\sum_{j=1}^{k} u^{(j)}(t, x) \frac{h_{j}^{j}}{j!}+r_{k, h}(t, x)$ a.s. for $t \in[0, T]$ and $x \in \mathbb{G}_{h}$
- there exists a constant $C:=C(T, K, m, k, \kappa)$ such that for every $h>0$

$$
E\left(\sup _{t \leq T} h \sum_{x \in \mathbb{G}_{h}}\left|r_{k, h}(t, x)\right|^{2}\right) \leq C h^{2(k+1)}\left(E\left|u_{0}\right|_{H^{m}}^{2}+E \mathcal{K}_{m}^{2}(T)\right)
$$

- Sketch of proof
- rewrite the equation of u^{h} with operators $\mathcal{L}^{h}(t)$ and $\mathcal{M}^{\rho, h}(t)$ on functions defined on \mathbb{R} and get power expansions of these operators, of the free terms and initial conditon

Expansion of the finite elements approximation u^{h}

- Aim: Find processes $u^{(1)}, u^{(2)}, \cdots, u^{(k)}$ and $r_{k h}$ for $m>k+2$ (that is for integer-valued m for $m \geq k+3$) s.t.
- $u^{h}(t, x)=u(t, x)+\sum_{j=1}^{k} u^{(j)}(t, x) \frac{h_{j}^{j}}{j!}+r_{k, h}(t, x)$ a.s. for $t \in[0, T]$ and $x \in \mathbb{G}_{h}$
- there exists a constant $C:=C(T, K, m, k, \kappa)$ such that for every $h>0$

$$
E\left(\sup _{t \leq T} h \sum_{x \in \mathbb{G}_{h}}\left|r_{k, h}(t, x)\right|^{2}\right) \leq C h^{2(k+1)}\left(E\left|u_{0}\right|_{H^{m}}^{2}+E \mathcal{K}_{m}^{2}(T)\right)
$$

- Sketch of proof

- rewrite the equation of u^{h} with operators $\mathcal{L}^{h}(t)$ and $\mathcal{M}^{\rho, h}(t)$ on functions defined on \mathbb{R} and get power expansions of these operators, of the free terms and initial conditon
- Define inductively the processes $v^{(j)}$ on \mathbb{R} in terms of the coefficients of these expansions

Expansion of the finite elements approximation u^{h}

- Aim: Find processes $u^{(1)}, u^{(2)}, \cdots, u^{(k)}$ and $r_{k h}$ for $m>k+2$ (that is for integer-valued m for $m \geq k+3$) s.t.
- $u^{h}(t, x)=u(t, x)+\sum_{j=1}^{k} u^{(j)}(t, x) \frac{h^{j}}{j!}+r_{k, h}(t, x)$ a.s. for $t \in[0, T]$ and $x \in \mathbb{G}_{h}$
- there exists a constant $C:=C(T, K, m, k, \kappa)$ such that for every $h>0$

$$
E\left(\sup _{t \leq T} h \sum_{x \in \mathbb{G}_{h}}\left|r_{k, h}(t, x)\right|^{2}\right) \leq C h^{2(k+1)}\left(E\left|u_{0}\right|_{H^{m}}^{2}+E \mathcal{K}_{m}^{2}(T)\right)
$$

- Sketch of proof

- rewrite the equation of u^{h} with operators $\mathcal{L}^{h}(t)$ and $\mathcal{M}^{\rho, h}(t)$ on functions defined on \mathbb{R} and get power expansions of these operators, of the free terms and initial conditon
- Define inductively the processes $v^{(j)}$ on \mathbb{R} in terms of the coefficients of these expansions
- Prove the upper estimate of the discrete norm of error term using the previous "general" result

Rewrite the system of SDEs
$\mathbf{R}=I d+\frac{h^{2}}{6} \delta^{h} \delta^{-h}$ invertible operator on $I^{2}\left(\mathbb{G}_{h}\right)$; set

$$
\begin{aligned}
& \mathcal{L}^{h}(s) U \\
& \quad=\frac{1}{2} \mathbf{R}^{-1}\left\{\delta^{-h}\left(a_{(h)}^{11}(s) \delta^{h} U\right)+\delta^{h}\left(a_{(-h)}^{11}(s) \delta^{-h} U\right)\right\} \\
& \quad+ \frac{1}{2} \mathbf{R}^{-1}\left\{\delta^{-h}\left(\bar{a}_{+h}^{10}(s) U\right)+\delta^{h}\left(\bar{a}_{-h}^{10}(s) U\right)+\bar{a}_{-h}^{01}(s) \delta^{-h} U\right. \\
& \quad+\left.\bar{a}_{+h}^{01}(s) \delta^{h} U\right\}+\frac{1}{6} \mathbf{R}^{-1}\left\{\tilde{a}_{-h}^{00}(s) T_{-h} U+4 \hat{a}_{h}^{00}(s) U+\tilde{a}_{+h}^{00}(s) T_{h} U\right\} \\
& \mathcal{M}^{h \rho}(s) U=\frac{1}{2} \mathbf{R}^{-1}\left\{\bar{b}_{-h}^{1 \rho}(s) \delta^{-h} U+\bar{b}_{+h}^{1 \rho}(s) \delta^{h} U\right\} \\
& \quad+\frac{1}{6} \mathbf{R}^{-1}\left\{\tilde{b}_{-h}^{0 \rho}(s) T_{-h} U+4 \hat{b}_{h}^{0 \rho}(s) U+\tilde{b}_{+h}^{0 \rho}(s) T_{h} U\right\}
\end{aligned}
$$

for various space averages of the coefficients "of the form" $\Phi_{\epsilon h}(x):=C \int_{0}^{1} \phi(t, x+\epsilon h y) \xi(y) d y$ for some function ξ. Set $\breve{\varphi}_{h}(x)=\eta_{h} * \varphi$ where $\eta_{h}(x)=\frac{1}{h} \eta(x / h)$ and $\eta(x)=(1-|x|) 1_{[-1,+1]}(x)$.

The related scheme

The system of equations defining $U^{h}\left(t, x_{j}\right)$ can be rewritten

$$
\begin{gathered}
U^{h}\left(t, x_{j}\right)=\mathbf{R}^{-1} \check{u}_{0}\left(x_{j}\right)+\int_{0}^{t}\left(\mathcal{L}^{h}(s) U^{h}(s, .)\left(x_{j}\right)+\mathbf{R}^{-1} \check{f}_{h}(s, .)\left(x_{j}\right)\right) d s \\
\quad+\int_{0}^{t}\left(\mathcal{M}^{h \rho}(s) U^{h}(s, .)\left(x_{j}\right)+\mathbf{R}^{-1} \check{g}_{h}^{\rho}(s, .)\left(x_{j}\right)\right) d W^{\rho}(s), j \in \mathbb{Z}
\end{gathered}
$$

The operators $\mathcal{L}^{h}(s)$ and $\mathcal{M}^{h \rho}(s)$ can be extended to functions defined on \mathbb{R}. Related evolution equation (of functions on \mathbb{R})

$$
\begin{aligned}
v^{h}(t)=\mathbf{R}^{-1}\left(\check{u}_{0}\right)_{h} & +\int_{0}^{t}\left(\mathcal{L}^{h}(s) v^{h}(s)+\mathbf{R}^{-1} \check{f}_{h}(s)\right) d s \\
& +\int_{0}^{t}\left(\mathcal{M}^{h \rho}(s) v^{h}(s)+\mathbf{R}^{-1} \check{g}_{h}^{\rho}(s)\right) d W^{\rho}(s)
\end{aligned}
$$

Expansions of the initial condition and free term

- Free terms For $n \leq m$ and $j=0, \cdots, n$, there exist H^{0}-valued \mathcal{F}_{0} r.v. $u_{0}^{(j)}$ and $H^{0}\left(\right.$ resp. $\left.H^{0}\left(I^{2}\right)\right)$-valued adapted processes $f^{(j)}(t)$ (resp. $\left.g^{(j) \rho}(t)\right)$ with $u_{0}^{(0)}=u_{0}$, and $\Phi^{(0)}(t)=\Phi(t)$ for $\Phi=f$ or $\Phi=g$, and if we set,

$$
\Phi_{h, n}(t)=\mathbf{R}^{-1} \check{\Phi}_{h}(t)-\Phi(t)-\sum_{1 \leq j \leq n} h^{j} \Phi^{(j)}(t) / j!
$$ then $\left|\Phi_{h, n}(t)\right|_{H^{r}} \leq C h^{n+1}|\Phi(t)|_{H^{r+n+1}}$ for $r+n+1 \leq m$.

- Operators Suppose (A1) and (A3); then for $v \in H^{m+1}$, $\frac{d^{i}}{d h^{i}} \mathcal{L}_{h}(t) v, \quad \frac{d^{i}}{d h^{i}} \mathcal{M}_{h}^{\rho}(t) v$ continuous from $(0, \infty)$ to H^{m-1-i} Their limits as $h \rightarrow 0: \mathcal{L}^{(i)}(t) \vee$ and $\mathcal{M}^{(i) \rho}(t) \vee$ exist in H^{m-1-i} for all $i=0, \ldots, m-1$ $\mathcal{L}^{(0)}(t)=\mathcal{L}(t)$ and $\mathcal{M}^{(0) \rho}(t)=\mathcal{M}^{\rho}(t)$ for every $t \in[0, T]$. Furthermore, for $i+I \leq m-1, t \in[0, T]$ and $v \in H^{m+1}$.

$$
\left|\mathcal{L}^{(i)}(t) v\right|_{H^{\prime}} \leq C|v|_{H^{\prime+2+i}}, \quad\left|\mathcal{M}^{(i)}(t) v\right|_{H^{\prime}} \leq C|v|_{H^{\prime+1+i}}
$$

Consider the system of SPDEs (solved inductively) for $j=1, \cdots, k$

$$
\begin{aligned}
& d u_{t}^{(j)}=\left(\mathcal{L}(t) u_{t}^{(j)}+\sum_{l=1}^{j}\binom{j}{I} \mathcal{L}^{(I)}(t) u_{t}^{(j-I)}+f^{(j)}(t)\right) d t \\
& \quad+\left(\mathcal{M}^{\rho}(t) u_{t}^{(j)}+\sum_{l=1}^{j}\binom{j}{I} \mathcal{M}^{(I) \rho}(t) u_{t}^{(j-I)}+g^{(j) \rho}(t)\right) d W^{\rho}(t)
\end{aligned}
$$

with initial condition $u_{0}^{(j)}=u_{0}^{(j)}$

Theorem

Let Assumptions (A1), (A2) and (A3) hold; let $k \in[1, m]$ be an integer. The system of SPDEs for $u^{(1)}, \cdots, u^{(k)}$ has a unique solution $\left(u^{(1)}, \cdots, u^{(k)}\right)$ where each $u^{(j)}$ is a continuous H^{m-j} valued processes and for some constant C depending on κ, K, T and m we have for $j=1, \cdots, k$
$E \sup _{t \leq T}\left|u_{t}^{(j)}\right|_{H^{m-j}}^{2}+E \int_{0}^{T}\left|u_{t}^{(j)}\right|_{H^{m+1-j}}^{2} d t \leq C\left(E|\phi|_{H^{m}}^{2}+E \mathcal{K}_{m}^{2}(T)\right)$.

For $n \leq m-1, t \in[0, T]$ and $h>0$, let

$$
\mathbb{L}_{h, n}(t)=\mathcal{L}^{h}(t)-\sum_{i=0}^{n} \frac{h^{i}}{i!} \mathcal{L}^{(i)}(t), \mathbb{M}_{h, n}^{\rho}(t)=\mathcal{M}^{h, \rho}(t)-\sum_{i=0}^{n} \frac{h^{i}}{i!} \mathcal{M}^{(i) \rho}(t)
$$

Then for $\varphi \in H^{I+n+3}$ and $\psi \in H^{I+n+2}$,

$$
\left|\mathbb{L}_{h, n}(t) \varphi\right|_{H^{\prime}} \leq C h^{n+1}|\varphi|_{H^{n+1+3}},\left|\mathbb{M}_{h, n}(t) \psi\right|_{H^{\prime}\left(l^{2}\right)} \leq C h^{n+1}|\psi|_{H^{\prime+n+2}}
$$

For $n \leq m-1, t \in[0, T]$ and $h>0$, let

$$
\mathbb{L}_{h, n}(t)=\mathcal{L}^{h}(t)-\sum_{i=0}^{n} \frac{h^{i}}{i!} \mathcal{L}^{(i)}(t), \mathbb{M}_{h, n}^{\rho}(t)=\mathcal{M}^{h, \rho}(t)-\sum_{i=0}^{n} \frac{h^{i}}{i!} \mathcal{M}^{(i) \rho}(t)
$$

Then for $\varphi \in H^{I+n+3}$ and $\psi \in H^{I+n+2}$,
$\left|\mathbb{L}_{h, n}(t) \varphi\right|_{H^{\prime}} \leq C h^{n+1}|\varphi|_{H^{n+1+3}},\left|\mathbb{M}_{h, n}(t) \psi\right|_{H^{\prime}\left(l^{2}\right)} \leq C h^{n+1}|\psi|_{H^{\prime+n+2}}$
Let $r_{h, k}(t)=u_{t}^{h}-u_{t}-\sum_{1 \leq j \leq k} \frac{h^{j}!}{j!} u_{t}^{(j)} ;$ then $\left(\operatorname{set} u^{(0)}=u\right)$
$d r_{h, k}(t)=\left(\mathcal{L}_{t}^{h} r_{h, k}(t)+F_{h, k}(t)+f_{h k}(t)\right) d t$ $+\left(\mathcal{M}_{t}^{h, \rho} r_{h, k}(t)+G_{h, k}^{\rho}(t)+g_{h k}^{\rho}(t)\right) d W_{t}^{\rho}, \quad r_{h, k}(0)=\phi_{h, k}$,
$F_{h, k}(t)=\sum_{j=0}^{k} \frac{h^{j}}{j!} \mathbb{L}_{h, k-j}(t) u_{t}^{(j)}, G_{h, k}^{\rho}(t)=\sum_{j=0}^{k} \frac{h^{j}}{j!} \mathbb{M}_{h, k-j}^{\rho}(t) u_{t}^{(j)}$.

Expansion of the solution

Recall that $r_{h, k}(t)=u_{t}^{h}-u_{t}-\sum_{1 \leq j \leq k} \frac{h^{j} j}{j!} u_{t}^{(j)}$ where u^{h} is the finite elements approximation and u is the solution to the semi-linear SPDE. By the Sobolev embedding theorem ($m>d / 2$) we have the existence of a modification of $r_{h, k}$ continuous on $[0, T] \times \mathbb{R}$ whose restriction to $[0, T] \times \mathbb{G}_{h}$ is an adapted \mathcal{U}_{h}-valued process. Then the restriction of $r_{h, k}(t, x)$ to $[0, T] \times \mathbb{G}_{h}$ is the solution an abstract equation similar to that of U^{h}. For $k \leq m-3$

$$
\begin{aligned}
& E \sup _{t \leq T}\left|r_{h, k}(t)\right|_{h, 0}^{2}+E \int_{0}^{T}\left|r_{h, k}(t)\right|_{h, 1}^{2} d t \\
& \quad \leq C E \int_{0}^{T}\left[\left|F_{k, h}(t)\right|_{0, h}^{2}+\left|f_{h k}\right|_{h, 0}^{2}+\sum_{\rho}\left(\left|G_{k, h}^{\rho}(t)\right|_{0, h}^{2}+\left|g_{h, k}^{\rho}\right|_{h, 0}^{2}\right)\right] d t \\
& \quad \leq C E \int_{0}^{T}\left|F_{k, h}(t)\right|_{H^{1}}^{2}+\left|G_{k, h}(t)\right|_{H^{1}}^{2}+\left|f_{h k}\right|_{H^{1}}^{2}+\left|g_{h, k}\right|_{H^{1}}^{2} d t \\
& \quad \leq C h^{2(k+1)} E\left(|\phi|_{H^{m}}^{2}+\mathcal{K}_{m}(T)\right)
\end{aligned}
$$

Another convergence estimate

If we want to get estimates uniformly on $[0, T] \times \mathbb{G}_{h}$, one needs stronger "stochastic parabolicity assumptions"
(A3Bis) There exists a positive constant $\kappa>0$ such that $a^{11}(t, x)-\frac{3}{2} \sum_{\rho}\left|b^{1 \rho}(t, x)\right|^{2} \geq \kappa$ a.s. for every $t \in[0, T], x \in \mathbb{R}$ Then for any function $f \in L^{2}(\mathbb{R})$,

$$
\left(\mathcal{L}^{h} f, f\right)+\frac{1}{2} \sum_{\rho}\left|\mathcal{M}^{h \rho} f\right|_{L^{2}}^{2} \leq-\frac{\kappa}{2}\left|\delta^{h} f\right|_{L^{2}}^{2}+C|f|_{L^{2}}^{2}
$$

This yields the existence of a unique solution v^{h} such that

$$
E\left(\sup _{t \in[0, T]}\left|v^{h}(t)\right|_{H^{m}}^{2}+\int_{0}^{T}\left|\delta^{h} v^{h}(t)\right|_{H^{m}}^{2} d t\right) \leq C E\left(|\phi|_{H^{m}}^{2}+\mathcal{K}_{m}^{2}(T)\right)
$$

One proves H^{\prime} estimates of $r_{h, k}(t)$; since $d=1$ and $H^{1} \subset \mathcal{C}$, we deduce that for $k+3 \leq m$ and a constant $C:=C(K, k, \kappa, T)$

$$
E\left(\sup _{t \in[0, T]} \sup _{x \in \mathbb{G}_{h}}\left|r_{h, k}(t, x)\right|^{2}\right) \leq C h^{2(k+1)} E\left(|\phi|_{H^{k+3}}^{2}+\mathcal{K}_{k+3}^{2}(T)\right)
$$

This yields a Richardson extrapolation for the sup norm.

An example for $d=2$; linear finite elements

Fix $h>0$ and let ψ be defined on \mathbb{R}^{2} as follows:

- on $\mathbf{1}=\left\{x: 0 \leq x_{2} \leq x_{1} \leq 1\right\}, \psi(x)=1-x_{1}$,
- on $\mathbf{2}=\left\{x: 0 \leq x_{1} \leq x_{2} \leq 1\right\}, \psi(x)=1-x_{2}$,
- on $\mathbf{3}=\left\{x:-1 \leq x_{1} \leq 0,0 \leq x_{2} \leq x_{1}+1\right\}, \psi(x)=1+x_{1}-x_{2}$,
- on $\mathbf{4}=\left\{x:-1 \leq x_{1} \leq x_{2} \leq 0\right\}, \psi(x)=1+x_{1}$,
- on $\mathbf{5}=\left\{x:-1 \leq x_{2} \leq x_{1} \leq 0\right\}, \psi(x)=1+x_{2}$,
- on $\mathbf{6}=\left\{x: 0 \leq x_{1} \leq 1, x_{1}-1 \leq x_{2} \leq 0\right\}, \psi(x)=1+x_{2}-x_{1}$

An example for $d=2$; linear finite elements

Fix $h>0$ and let ψ be defined on \mathbb{R}^{2} as follows:

- on $\mathbf{1}=\left\{x: 0 \leq x_{2} \leq x_{1} \leq 1\right\}, \psi(x)=1-x_{1}$,
- on $\mathbf{2}=\left\{x: 0 \leq x_{1} \leq x_{2} \leq 1\right\}, \psi(x)=1-x_{2}$,
- on $\mathbf{3}=\left\{x:-1 \leq x_{1} \leq 0,0 \leq x_{2} \leq x_{1}+1\right\}, \psi(x)=1+x_{1}-x_{2}$,
- on $\mathbf{4}=\left\{x:-1 \leq x_{1} \leq x_{2} \leq 0\right\}, \psi(x)=1+x_{1}$,
- on $\mathbf{5}=\left\{x:-1 \leq x_{2} \leq x_{1} \leq 0\right\}, \psi(x)=1+x_{2}$,
- on $\mathbf{6}=\left\{x: 0 \leq x_{1} \leq 1, x_{1}-1 \leq x_{2} \leq 0\right\}, \psi(x)=1+x_{2}-x_{1}$

For $\mathbf{i} \in \mathbb{Z}^{2}$ let $\psi_{\mathbf{i}}^{h}(x)=\psi\left(\frac{1}{h}(x-h \mathbf{i})\right)$ (centered at $\left(i_{1} h, i_{2} h\right)$ and rescaled by h)

- Set on \mathbb{R}^{d}

$$
\psi(x)=\Pi_{k=1}^{d}\left(1-\left|x_{k}\right|\right) \text { for } x \in[-1,1]^{d} \text { and } 0 \text { otherwise }
$$

For $\mathbf{i}=\left(i_{1}, i_{2}, \cdots, i_{d}\right) \in \mathbb{Z}^{d}$ and $h>0$ set
$\psi_{i}^{h}(x)=\psi\left(\frac{x_{1}-i_{1} h}{h}, \frac{x_{2}-i_{2} h}{h}, \cdots, \frac{x_{d}-i_{d} h}{h}\right)$.

- In both examples, if $\Psi_{h}: U_{h} \rightarrow V_{h}$ is the extension operator $\Psi_{h}(U)=\sum_{i \in \mathbb{Z}^{d}} U_{\mathbf{i}} \psi_{\mathbf{i}}^{h}$
$\left|\Psi_{h}(U)\right|_{L^{2}} \sim|U|_{0, h}$ and $\left|\nabla \Psi_{h}(U)\right|_{L^{2}} \sim|U|_{1, h}$ recall the discrete L^{2} (resp. H^{1}) norms

$$
|U|_{0, h}^{2}:=h^{d} \sum_{i \in \mathbb{Z}^{d}} U_{\mathbf{i}}^{2}, \quad|U|_{1, h}^{2}:=h^{d} \sum_{i \in \mathbb{Z}^{d}}\left[U_{\mathbf{i}}^{2}+\left|\delta^{h} U_{i}\right|^{2}\right]
$$

- the infinite matrix $\mathcal{R}_{\mathrm{i}, \mathrm{j}}^{h}=\left(\psi_{\mathbf{i}}^{h}, \psi_{\mathbf{j}}^{h}\right)=h^{2}(I d-R)$, where R is associated with a linear invertible operator \mathbf{R} on $I^{2}\left(\mathbb{G}_{h}\right) \equiv I^{2}\left(\mathbb{Z}^{2}\right)$ such that (for $\left.d=2\right)$

$$
\begin{aligned}
& \|\mathbf{R} U\|^{2} \leq \frac{5}{6}\|U\|^{2} \text { in example } 1 \text { (linear FE) } \\
& \|\mathbf{R} U\|^{2} \leq \frac{17}{18}\|U\|^{2} \text { in example } 2 \text { (quadratic FE for } d=2 \text {) }
\end{aligned}
$$

- Then the finite elements approximation $u^{h}(t, x)=\sum_{\mathbf{i} \in \mathbb{Z}^{d}} U_{\mathbf{i}}^{h}(t) \psi_{\mathbf{i}}^{h}(x)$ satisfies with for $\mathbf{i} \in \mathbb{Z}^{d}$

$$
\begin{aligned}
& \left(u^{h}(t), \psi_{\mathrm{i}}^{h}\right)=\left(u_{0}, \psi_{\mathrm{i}}^{h}\right)+\int_{0}^{t}\left[(-1)^{|\alpha|}\left(a^{\alpha \beta}(s) D_{\beta} u^{h}(s), D_{\alpha} \psi_{\mathrm{i}}^{h}\right)\right. \\
& \left.\quad+\left(f(s), \psi_{\mathrm{i}}^{h}\right)\right] d s+\int_{0}^{t}\left[\left(b^{\alpha \rho}(s) D_{\alpha} u^{h}(s)+g^{\rho}(s), \psi_{\mathrm{i}}^{h}\right)\right] d W^{\rho}(s)
\end{aligned}
$$

- It can be rephrased using the inverse of the operator \mathbf{R} (which can be expressed as combinations of compositions of translations $T_{\epsilon \in,}$ for $\left.\epsilon \in\{-1,+1\}, I=1, \cdots, d\right)$ "discrete" differential operators (using various averages of the coefficients which depend on the finite elements and the free terms), and the operators $\delta_{\epsilon e_{k}}$ and $T_{\epsilon e_{I}}$
A similar expansion of the corresponding functions extended on the grid \mathbb{G}_{h} and the processes defined on \mathbb{R}^{d} is proved Hence the Richardson extrapolation is true

Going further

- One can formulate an abstract convergence result based on the expansion of the free terms and the operators; the convergence on the grid holds for the approximation (discrete norms); that of the functions is unclear in an abstract setting.
- Dealing with an infinite system is not realistic.

Choose a radius R and introduce a "smooth" cut-off function for the coefficients outside this ball gives a solution $u_{R}(t, x)$ defined on the whole space (there is well-posedness)
exponentially good control of the difference $u-u_{R}$
The finite elements approximation u_{R}^{h} of u_{R} is a finite sum of the ψ_{i}^{h}
There is well-posedness and good estimates for u_{R}^{h} but the uniform stochastic parabolicity fails (work in progress) the expansion of $u_{R}^{h}-u_{R}$ holds.

Last but not least

LA MULȚI ANI VLAD!

