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Output process

• Effort=Control process ν = (α, β) with values in A× B

• Output=the controlled state process in Rd : any weak solution P
of the SDE

dX = σt(X , βt)
[
λt(X , αt)dt + dWt)

where W is a Brownian motion with values in Rn

• Observation of X does not give access to the drift σλ

• Observation of X gives access to σσ> but not to σ
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The Agent problem

Agent solves the following control problem :

V A
0 (ξ) := sup

P
EP
[
e−

∫ T
0 ks(X ,νPs )dsξ(X )−

∫ T

0
e−

∫ t
0 ks(X ,νPs )ct(X , ν

P
t )dt

]
where the contract ξ(X ) is FT−measurable, and represents the
compensation for the management of X

−→ No interest on X , except for the compensation ξ indexed on X

Path-dependency of ξ is crucial =⇒ Non-Markov stochastic control
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The Principal problem

Moral hazard : Principal chooses the optimal compensation scheme
ξ(X ) based on the observation of X only, i.e. Principle does not
observe the Agent effort

Principal solves the optimization problem

V P
0 := sup

ξ∈ΞR

EP?(ξ)
[
U(`(XT )− ξ)

]
• P∗(ξ) : solution of Agent problem given the contract ξ

• ΞR : collection of all ξ, such that V A
0 (ξ) ≥ R (reservation utility)
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Existing literature

• Non-zero sum Stackelberg game, highly nonlinear problem

• Holstrom & Milgrom ’87 (Econometrica), ..., Sannikov ’08,
un-controlled diffusion

• Cvitanić & Zhang ’13 : calculus of variations =⇒ Pontryagin
Maximum Principle leading to a system of Forward-Backward
SDEs...

Our objective : Simple solution by standard dynamic programming
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Stochastic control of Markov diffusions

Probability space (Ω,F ,P), filtration F = {Ft , t ≥ 0}
W : Brownian motion with values in Rn

• Control process : ν = {νt , t ≥ 0} F−progressively measurable
process with values in U ⊂ Rk

• Controlled state process X ν , valued in Rd , defined by the SDE

dX ν
t = b(t,X ν

t , νt)dt + σ(t,X ν
t , νt)dWt

U : admissible controls, i.e. X ν well-defined, appropriate regularity
• Control problem :

V (t, x) := sup
ν∈U

E
[
g(X t,x ,ν

T )
]
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Hamiltonian and the HJB equation

Hamiltonian :

H(t, x , z , γ) := sup
u∈U

{
b(t, x , u) · z +

1
2
σσ>(t, x , u) : γ

}
for all (t, x) ∈ [0,T ]× Rd and (z , γ) ∈ Rd × SR(d). Then,

The value function V solves the Dynamic Programming
(Hamilton-Jacobi-Bellman) Equation :

∂tV + H(t, x ,DV ,D2V ) = 0, t < T , x ∈ Rd

V (T , .) = g on Rd
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In which sense HJB equation holds ?

• Classical sense : V ∈ C 1,2([0,T ),Rd
)
... Not expected, many

counter-examples

• Sobolev solutions : V ∈W 1,2([0,T ),Rd
)
:, see Krylov 1980, very

developed in the semilinear case...

• Vicosity solutions : not in this talk
V locally bounded, Crandall & Lions ’81, Lions ’83...
No access to optimal control, in general
Uniqueness implied by comparison result, difficult ! finite-dim
underlying space
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Itô’s formula

All previous notions of solutions rely on differential calcul :

dϕ(t,X ν
t ) = ∂tϕ(t,X ν

t )dt + Dϕ(t,X ν
t ) · dX ν

t +
1
2
D2ϕ(t,X ν

t )d〈X ν〉t

where 〈X ν〉 is the quadratic variation process :

d〈X ν〉t = σσ>(t,X ν
t , νt)dt

This is all we need from regularity...
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Running cost, discounting

• More general control problem :

V (t, x) := sup
ν∈U

E
[
e−

∫ T
t k(s,Xνs ,νs)dsg(X ν

T )+

∫ T

t
e−

∫ r
t k(s,Xνs ,νs)ds f (r ,X ν

r , νr )dr
]

=⇒ Hamiltonian :

H(t, x , y , z , γ) := sup
u∈U

{
b(t, x , u) · z +

1
2
σσ>(t, x , u) : γ

+f (t, x , u)y − k(t, x , u)
}

The value function V solves the Dynamic Programming
(Hamilton-Jacobi-Bellman) Equation :

∂tV + H(t, x ,V ,DV ,D2V ) = 0, t < T , x ∈ Rd

V (T , .) = g on Rd
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Paths space and non-anticipative process

• Ω =
{
ω ∈ C 0([0,T ],Rd), ω0 = 0

}
, Λ := [0,T ]× Ω

• X canonical process, i.e. Xt(ω) = ω(t)

• F = {Ft} the corresponding filtration, i.e. Ft = σ(Xs , s ≤ t)

• d
[
(t, ω), (t ′, ω′)

]
= |t − t ′|+ ‖ω.∧t − ω′.∧t′‖∞

• u : [0,T ]× Ω −→ R non-anticipative if u(t, ω) = u
(
t, (ωs)s≤t

)
In particular, u ∈ C 0(Λ) =⇒ u non-anticipative
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Probability measures on the paths space

• P0 : Wiener measure on Ω, so that X is a P0−Brownian motion

• P = Pα,β such that

Xt =

∫ s

0
αP
s ds +

∫ s

0
βPs dW

P
t , P− a.s.

for some adapted processes αP, βP
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Smooth processes

φ : [0,T ]× Ω −→ R ∈ C 1,2(Λ) if
in C 0(Λ) (in particular, non-anticipative)
∃ processes θ,Z , Γ ∈ C 0(Λ) valued in R, Rd , Sd(R), s.t.

dφt = θtdt + Zt · dXt +
1
2

Γt : d〈X 〉t , P− a.s. for all P = Pα,β

Then, denote :

∂tφt := θt , ∂ωφt := Zt , ∂2
ωωφt := Γt

Or drop C 0(Λ) requirements, replace by integrability on Y and Z

=⇒ Sobolev regularity...
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Back to stochastic control... Path-dependent case

• Control process ν = {νt , t ≥ 0} F−prog meas valued in U ⊂ Rk

• Controlled state process X ν , valued in Rd , defined by the SDE

dX ν
t = b(t,X ν

· , νt)dt + σ(t,X ν
· , νt)dWt

U : admissible controls, i.e. X ν well-defined, appropriate regularity

• Control problem :

V (t, ω) := sup
ν∈U

E
[
ξ(X t,ω,ν
· )

]
where ξ(x) = ξ

(
x∧T

)
, FT−measurable
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Path-dependent Hamiltonian

Hamiltonian :

H(t, ω, z , γ) := sup
u∈U

{
bt(ω, u) · z +

1
2
σtσ

>
t (ω, u) : γ

}
for all (t, ω) ∈ [0,T ]× Ω and (z , γ) ∈ Rd × SR(d)
Consider the Path-dependent HJB equation

∂tv + Ht

(
ω, ∂ωv , ∂

2
ωωv

)
= 0, t < T , ω ∈ Ω

vT = ξ on Ω
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Verification argument

Let v smooth and solves the path-dependent HJB, then ∀ ν ∈ U :

v0 = E
[
vT (X ν)

]
+ E

[
v0 − vT (X ν)

]
= E

[
ξ(X ν)

]
− E

[ ∫ T

0
dvt
(
X ν
)]

= E
[
ξ(X ν)

]
− E

[ ∫ T

0
∂tvtdt + ∂ωvt · dX ν

t +
1
2
∂2
ωωvt : σνt σ

ν>
t dt

]
=E

[
ξ(X ν)

]
− E

[ ∫ T

0

(
−Ht(∂ωvt , ∂

2
ωωvt) + ∂ωvt ·bνt +

1
2
∂2
ωωvt : σνt σ

ν>
t︸ ︷︷ ︸

≤ 0

)
dt
]

Hence v0 ≥ V , and equality satisfied by ν̂ maximier of H
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Semilinear path-dependent HJB equation

Suppose σt(ω, u) ≡ σt(ω), or even σt(ω, u) ≡ Id , (d = n), for
simplicity. Then the Hamiltonian reduces to

Ht(ω, z , γ) = Ft(ω, z) +
1
2
Tr[γ], where Ft(ω, z) := sup

u
bt(ω, u) · z

We want to find a solution vt(ω) of HJB, then

dvt =
(
∂tvt +

1
2
Tr
[
∂2
ωωvt

])
dt + ∂ωvt · dX ν

t

= −Ft(∂ωvt)dt + ∂ωvt · dX ν
t
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Semilinear HJB equation and backward SDE

• Denote Pν := P0 ◦ (X ν)−1, Z := ∂ωv =⇒ solve for (v ,Z ) :

dvt = −Ft(Zt)dt + Zt · dX , Pν − a.s. for all ν

• Notice that Pν ∼ P0 in the present context

dvt = −Ft(Zt)dt + Zt · dX , and vT = ξ, P0 − a.s.

=⇒ Backward SDE (Pardoux & Peng ’91), for Lipschitz F :

For ξ∈L2, ∃F−adapted solution (v ,Z ) with ‖v‖L2+‖Z‖L2<∞

=⇒ Sobolev solution of the path-dependent semilinear PDE
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The case of controlled diffusion : difficulties

• Similar to the Markov case, very difficult to access to the Hessian
component... Need a relaxation of the C 2−regularity

• The Pν ’s (measures induces by the controlled state) are defined
on different supports for different values of ν, so can not reduce the
analysis to one single measure

=⇒ Quasi-sure stochastic analysis : stochastic analysis under a
non-dominated family of singular measure
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From fully nonlinear HJB equation to semilinear

• Ht(ω, z , γ) non-decreasing and convex in γ, Then

Ht(ω, z , γ) = sup
a≥0

{1
2
a : γ − H∗t (ω, z , a)

}
Path-dependent HJB equation is

∂tv + sup
a≥0

{1
2
a : ∂2

ωωv − H∗t (∂ωv , a)
}

= 0, vT = ξ

=⇒ stochastic representation

vt(ω) = sup
a

Y a
t (ω)

where, denoting Pa := P0 ◦
( ∫ .

0 a
1/2
s dXs

)
,

Y a
t = ξ −

∫ T

t
H∗s (Z a

s , as)ds +

∫ T

t
Z a
s dXs , Pa − a.s.
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Wellposedness of second order BSDEs

There exists a unique triple (Y ,Z ,K ) F−adapted with appropriate
integrability, such that

• Yt = ξ −
∫ T

t
H∗s (Zs , as)ds −

∫ T

t
ZsdXs +

∫ T

t
dKs , Pa−a.s.

for all control process a

• K nondecreasing, K0 = 0, and infa E Pa[
KT

]
= 0

Soner, NT & Zhang ’10
Chao, Possamaï & Tan ’15
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Regularity reduces to the non-decreasing process K

Suppose Kt =
∫ t
0 K̇sds, t ∈ [0,T ], and define the process Γ by

K̇t = Ht(Zt , Γt)−
1
2
at : Γt + H∗t (Zt , at)

Substituting in the 2BSDE, we get for all a :

Yt = ξ +

∫ T

t

[
Hs(Zs , Γs)− 1

2
as : Γs

]
ds −

∫ T

t
ZsdXs , Pa − a.s.

=⇒ Yt(ω) solves the path-dependent HJB equation :

∂tY + Ht(∂ωY , ∂
2
ωωY ) = 0, YT = ξ
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The Principal-Agent problem

• Agent solves the control problem :

V A
0 (ξ) := sup

P
EP
[
e−

∫ T
0 ks(X ,νPs )dsξ(X )−

∫ T

0
e−

∫ t
0 ks(X ,νPs )ct(X , ν

P
t )dt

]
where the Output process is a weak solution P of the SDE

dX = σt(X , βt)
[
λt(X , αt)dt + dWt)

• Principal solves the optimization problem

V P
0 := sup

ξ∈ΞR

EP?(ξ)
[
U(`(XT )− ξ)

]
where ΞR : collection of all ξ, such that V A

0 (ξ) ≥ R
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A class of revealing contracts

• Path-dependent Hamiltonian for the Agent problem :

Ht(ω, y , z , γ) := supa,b
{
σt(ω, a)λt(ω, b) · z + 1

2σtσ
>
t (ω, a) : γ

−kt(ω, a, b)y − ct(ω, a, b)
}

• For Y0 ∈ R and Z , Γ FX−prog meas, define

Y Z ,Γ
t = Y0 +

∫ t
0 Zs · dXs + 1

2

∫ t
0 Γs : d〈X 〉s −

∫ t
0 Hs(X ,Y Z ,Γ

s ,Zs , Γs)ds

Proposition V A
0 (Y Z ,Γ

T ) = Y0 and any maximizer of the Hamilto-
nian (a?, b?)(Y ,Z , Γ) induces a solution P? of the Agent problem
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Sub-optimal stochastic control problem

Under P̂Z ,Γ, we have

dXt = σ?t (X ,Yt ,Zt , Γt)
[
λ?t (X ,Yt ,Zt , Γt)dt + dWt

]
dY Z ,Γ

t = Zt · dXt +
1
2

Γt : d〈X 〉t − Ht(X ,Y
Z ,Γ
t ,Zt , Γt)dt

where σ?t (ω, y , z , γ) := σt
(
ω, b?(ω, y , z , γ)

)
, λ?t (ω, y , z , γ) := · · ·

V P
0 ≥ sup

Y0≥R
V 0(X0,Y0); V 0(X0,Y0) := sup

Z ,Γ
EP̂Z ,Γ

[
U(`(XT )−Y Z ,Γ

T )
]

V characterized by standard HJB equation
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Case of un-controlled diffusion

• B = {β0}, then Y Z ,Γ = Y Z ,0

• To prove that V P
0 = V 0, it suffices to show that an arbitrary

ξ ∈ FX
T has the representation ξ = Y Z ,0

T , i.e.

ξ = Y0 +

∫ T

0
Zt · dXt −

∫ T

0
Ht(Yt ,Zt , 0)dt, Pβ

0 − a.s.

Backward SDE wellposedness guarantees this is true ! Hence

V P
0 = sup

Y0≥R
V 0(X0,Y0); V 0(X0,Y0) := sup

Z
EP̂Z ,0

[
U(`(XT )−Y Z ,0

T )
]
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The general case

• In the fully nonlinear case, the representation ξ = Y Z ,Γ
T not true

for general ξ... We only have the 2BSDE representation :

Yt = ξ −
∫ T
t H∗s (Ys ,Zs , as)ds −

∫ T
t ZsdXs +

∫ T
t dKs , P− a.s. for all P

with K nondecreasing, K0 = 0, and infP E P[KT

]
= 0

• It is sufficient to find an approximation ξε of ξ such that
ξε = Y Zε,Γε

T ... and pass to the limit in the Principal problem...

• K ε
t := 1

ε

∫ t
0∨(t−ε) dKs and ξε := Y ε

T (replacing K by K ε) =⇒
ξε = Y Z ,Γε and P? optimal for K is also optimal for K ε

=⇒ V P
0 = sup

Y0≥R
V 0(X0;Y0)
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