Improved error bounds for quantization based numerical schemes

Gilles Pagès
(joint work with Abass Sagna)

LPMA-Université Pierre et Marie Curie

-

Conference in honour of Vlad Bally
Le Mans

9 Octobre 2015

- Has its origin in the fields of signal processing in the late 1940's
- Describes the discretization of a random signal and analyses its recovery/reconstruction from the discretized one.

- Examples: Pulse-Code-Modulation (PCM), JPEG-Compression
- Extensive Survey about the IEEE-History: IEEE on Inf. Theory, 1982, [Gersho-Gray eds]
- Mathematical Foundation of Quantization Theory: S. Graf \& H. Luschgy in Foundation of quantization of probability measures, LNM 2000.
- P. : Survey on Optimal Vector Quantization and its applications for numerics, ESAIM Proc. \& Surveys, CEMRACS'13 course, 2015.

At the beginning was rough quantization

\triangleright Let $X:(\Omega, \mathcal{S}, \mathbb{P}) \rightarrow\left(\mathbb{R}^{d}, \mathcal{B}\right.$ or $\left.\left(\mathbb{R}^{d}\right),|\cdot|\right)$ be a random vector such that

$$
\mathbb{E}|X|^{p}<+\infty \quad \text { for some } p \in(0,+\infty) .
$$

At the beginning was rough quantization

\triangleright Let $X:(\Omega, \mathcal{S}, \mathbb{P}) \rightarrow\left(\mathbb{R}^{d}, \mathcal{B}\right.$ or $\left.\left(\mathbb{R}^{d}\right),|\cdot|\right)$ be a random vector such that

$$
\mathbb{E}|X|^{p}<+\infty \quad \text { for some } p \in(0,+\infty) .
$$

\triangleright Let $q: \mathbb{R}^{d} \rightarrow \Gamma \subset \mathbb{R}^{d}$ be a Borel function, Γ a finite subset of \mathbb{R}^{d}.

At the beginning was rough quantization

\triangleright Let $X:(\Omega, \mathcal{S}, \mathbb{P}) \rightarrow\left(\mathbb{R}^{d}, \mathcal{B}\right.$ or $\left.\left(\mathbb{R}^{d}\right),|\cdot|\right)$ be a random vector such that

$$
\mathbb{E}|X|^{p}<+\infty \quad \text { for some } p \in(0,+\infty) .
$$

\triangleright Let $q: \mathbb{R}^{d} \rightarrow \Gamma \subset \mathbb{R}^{d}$ be a Borel function, Γ a finite subset of \mathbb{R}^{d}.

$$
\widehat{x}=q(X)
$$

is called a quantization of X. It aims at being a discretization of X
\triangleright Example: if X is $[0,1]$-valued, one may choose

$$
q(x)=\frac{\lfloor N x\rfloor}{N}, x \in[0,1]
$$

or

$$
q(x)=\frac{2 k-1}{2 N}, \text { if } \frac{k-1}{N} \leq x \leq \frac{k}{N}, x \in[0,1]
$$

At the beginning was rough quantization

\triangleright Let $X:(\Omega, \mathcal{S}, \mathbb{P}) \rightarrow\left(\mathbb{R}^{d}, \mathcal{B}\right.$ or $\left.\left(\mathbb{R}^{d}\right),|\cdot|\right)$ be a random vector such that

$$
\mathbb{E}|X|^{p}<+\infty \quad \text { for some } p \in(0,+\infty) .
$$

\triangleright Let $q: \mathbb{R}^{d} \rightarrow \Gamma \subset \mathbb{R}^{d}$ be a Borel function, Γ a finite subset of \mathbb{R}^{d}.

$$
\widehat{x}=q(X)
$$

is called a quantization of X. It aims at being a discretization of X
\triangleright Example: if X is $[0,1]$-valued, one may choose

$$
q(x)=\frac{\lfloor N x\rfloor}{N}, x \in[0,1]
$$

or

$$
q(x)=\frac{2 k-1}{2 N}, \text { if } \frac{k-1}{N} \leq x \leq \frac{k}{N}, x \in[0,1]
$$

$\triangleright L^{p}$-mean quantization error:

$$
e_{p, N}(X ; q)=\|X-q(X)\|_{p}
$$

Let $\Gamma=\left\{x_{1}, \ldots, x_{N}\right\}$. Assume that we have access to the elementary quantizers x_{i} and the weights

$$
w_{i}(q):=\mathbb{P}\left(\widehat{X}=x_{i}\right), i=1, \ldots, N
$$

What is it for? Quantization for Cubature

Let $\Gamma=\left\{x_{1}, \ldots, x_{N}\right\}$. Assume that we have access to the elementary quantizers x_{i} and the weights

$$
w_{i}(q):=\mathbb{P}\left(\widehat{X}=x_{i}\right), i=1, \ldots, N .
$$

\Longrightarrow The computation of $\mathbb{E} F(\widehat{X})$ for some a function $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ becomes straightforward:

$$
\mathbb{E} F(\widehat{X})=\sum_{i=1}^{N} w_{i}(\Gamma) F\left(x_{i}\right)
$$

What is it for? Quantization for Cubature

Let $\Gamma=\left\{x_{1}, \ldots, x_{N}\right\}$. Assume that we have access to the elementary quantizers x_{i} and the weights

$$
w_{i}(q):=\mathbb{P}\left(\widehat{X}=x_{i}\right), i=1, \ldots, N
$$

\Longrightarrow The computation of $\mathbb{E} F(\widehat{X})$ for some a function $F: \mathbb{R}^{d} \rightarrow \mathbb{R}$ becomes straightforward:

$$
\mathbb{E} F(\widehat{X})=\sum_{i=1}^{N} w_{i}(\Gamma) F\left(x_{i}\right)
$$

\triangleright If F is Lipschitz continuous, a first error estimate reads

$$
|\mathbb{E} F(X)-\mathbb{E} F(\widehat{X})| \leq[F]_{\text {Lip }} \mathbb{E}\|X-\widehat{X}\| .
$$

Quantization for Conditional expectation

\triangleright Applications in Numerical Probability $=$ conditional expectation approximation.

$$
\widehat{X}=q_{X}(X) \quad \widehat{Y}=q_{Y}(Y)
$$

Quantization for Conditional expectation

\triangleright Applications in Numerical Probability $=$ conditional expectation approximation.

$$
\widehat{X}=q_{X}(X) \quad \widehat{Y}=q_{Y}(Y)
$$

Proposition (Pythagoras' Theorem for conditional expectation)

Let $P(y, d u)=\mathcal{L}(X \mid Y=y)$ be a regular version of the conditional distribution of X given Y, so that

$$
\mathbb{E}(g(X) \mid Y)=P g(Y) \text { a.s. }
$$

Then

$$
\begin{aligned}
\|\mathbb{E}(g(X) \mid Y)-\mathbb{E}(g(\widehat{X}) \mid \widehat{Y})\|_{2}^{2} & \leq[g]_{\text {Lip }}^{2}\|X-\widehat{X}\|_{2}^{2}+\|P g(Y)-P g(\widehat{Y})\|_{2}^{2} \\
& \leq[g]_{\text {Lip }}^{2}\|X-\widehat{X}\|_{2}^{2}+[P g]_{\text {Lip }}^{2}\|Y-\widehat{Y}\|_{2}^{2}
\end{aligned}
$$

If P propagates Lipschitz continuity:

$$
[P g]_{\mathrm{Lip}} \leq[P]_{\mathrm{Lip}}[g]_{\mathrm{Lip}}
$$

then quantization produces a control of the error.

Quantization for Conditional expectation

\triangleright Sketch of proof As

$$
P g(Y)-\mathbb{E}(P g(Y) \mid \widehat{Y}) \stackrel{L^{2}(\mathbb{P})}{\perp} \sigma(\widehat{Y})
$$

so that by Pythagoras' theorem

$$
\begin{aligned}
\|\mathbb{E}(g(X) \mid Y)-\mathbb{E}(g(\widehat{X}) \mid \widehat{Y})\|_{2}^{2} & =\|P g(Y)-\mathbb{E}(P g(Y) \mid \widehat{Y})\|_{2}^{2}+\|\mathbb{E}(P g(X) \mid \widehat{Y})-\mathbb{E}(g(\widehat{X}) \mid \widehat{Y})\|_{2}^{2} \\
& \leq \| P g(Y)-P g(\widehat{Y}))\left\|_{2}^{2}+\right\| g(X)-g(\widehat{X}) \|_{2}^{2} \\
& \left.\leq[P g]_{\text {Lip }}^{2} \| Y-\widehat{Y}\right)\left\|_{2}^{2}+[g]_{\text {Lip }}^{2}\right\| X-\widehat{X} \|_{2}^{2}
\end{aligned}
$$

\triangleright If $p \neq 2$, a Minkowski like control is preserved

$$
\begin{aligned}
\|\mathbb{E}(g(X) \mid Y)-\mathbb{E}(g(\widehat{X}) \mid \widehat{Y})\|_{p} & \leq[g]_{\operatorname{Lip}}\|X-\widehat{X}\|_{p}+\|P g(Y)-P g(\widehat{Y})\|_{p} \\
& \leq[g]_{\operatorname{Lip}}\|X-\widehat{X}\|_{p}+[P g]_{\mathrm{Lip}}\|Y-\widehat{Y}\|_{p}
\end{aligned}
$$

A typical result (BSDE)

\triangleright We consider a "standard" BSDE:

$$
Y_{t}=h\left(X_{T}\right)+\int_{t}^{T} f\left(s, X_{s}, Y_{s}, Z_{s}\right) d s-\int_{t}^{T} Z_{s} d W_{s}, \quad t \in[0, T]
$$

where the exogenous process $\left(X_{t}\right)_{t \in[0, T]}$ is a diffusion

$$
X_{t}=x+\int_{0}^{t} b\left(s, X_{s}\right) d s+\int_{0}^{t} \sigma\left(s, X_{s}\right) d W_{s}, \quad x \in \mathbb{R}^{d}
$$

with b, σ, h Lipschitz continuous in x, f Lipschitz in (x, y, z) uniformly in $t \in[0, T] \ldots$
\triangleright which is the probabilistic representation of the partially non-linear PDE

$$
\partial_{t} u(t, x)+L u(t, x)+f\left(t, x, u(t, x),\left(\partial_{x}^{*} u \sigma\right)(t, x)\right)=0 \text { on }[0, T) \times \mathbb{R}^{d}, \quad u(T, .)=h
$$

with $L g=(\nabla b \mid g)+\frac{1}{2} \operatorname{Tr}\left(\sigma^{*} D^{2} g \sigma\right)$.
$\triangleright \ldots$ and its time discretization scheme with step $\Delta_{n}=\frac{T}{n}$ recursively defined by

$$
\begin{aligned}
& \bar{Y}_{t_{n}^{n}}=h\left(\bar{X}_{t_{n}^{n}}\right), \\
& \bar{Y}_{t_{k}^{n}}=\mathbb{E}\left(\bar{Y}_{t_{k+1}^{n}} \mid \mathcal{F}_{t_{k}^{n}}\right)+\Delta_{n} f\left(t_{k}^{n}, \bar{X}_{t_{k}^{n}}, \mathbb{E}\left(\bar{Y}_{t_{k+1}^{n}} \mid \mathcal{F}_{t_{k}^{n}}\right), \bar{\zeta}_{t_{k}^{n}}\right), \\
& \bar{\zeta}_{t_{k}^{n}}=\frac{1}{\Delta_{n}} \mathbb{E}\left(\bar{Y}_{t_{k+1}^{n}}\left(W_{t_{k+1}^{n}}-W_{t_{k}^{n}}\right) \mid \mathcal{F}_{t_{k}}\right)=\frac{1}{\Delta_{n}} \mathbb{E}\left(\left(\bar{Y}_{t_{k+1}^{n}}-\bar{Y}_{t_{k}^{n}}\right)\left(W_{t_{k+1}^{n}}-W_{t_{k}^{n}}\right) \mid \mathcal{F}_{t_{k}}\right)
\end{aligned}
$$

where \bar{X} is the Euler scheme of X defined by

$$
\bar{X}_{t_{k+1}^{n}}=\bar{X}_{t_{k}^{n}}+b\left(\begin{array}{c}
n \\
k
\end{array}, \bar{X}_{t_{k}^{n}}\right) \Delta_{n}+\sigma\left(\begin{array}{c}
n \\
k
\end{array}, \bar{X}_{t_{k}^{n}}\right)\left(W_{t_{k+1}^{n}}-W_{t_{k}^{n}}\right) .
$$

$\triangleright \ldots$ spatially discretized by quantization:

$$
\begin{aligned}
\widehat{Y}_{n} & =h\left(\widehat{X}_{n}\right) \\
\widehat{Y}_{k} & =\widehat{\mathbb{E}}_{k}\left(\widehat{Y}_{k+1}\right)+\Delta_{n} f_{k}\left(\widehat{X}_{k}, \widehat{\mathbb{E}}_{k}\left(\widehat{Y}_{k+1}\right), \widehat{\zeta}_{k}\right) \\
\widehat{\zeta}_{k} & =\frac{1}{\Delta_{n}} \widehat{\mathbb{E}}_{k}\left(\widehat{Y}_{k+1}\left(W_{t_{k+1}^{n}}-W_{t_{k}^{n}}\right)\right)
\end{aligned}
$$

where $\widehat{\mathbb{E}}_{k}=\mathbb{E}\left(\cdot \mid \widehat{X}_{k}\right)$.
\triangleright A Quantization tree: $N=N_{0}+\cdots+N_{n}, N_{k}=$ size of layer t_{k}^{n}.

- A quantization tree is not re-combining.
- But its size can designed a priori (and subject to possible optimization).

Theorem (A priori error estimates (Sagna-P., 2014), (P.,Wilbertz, 2012))

Suppose that all the "Lipschitz" assumptions on b, σ, f, h are fulfilled.
(a) "Price": Then, for every $k=0, \ldots, n$,

$$
\left\|\bar{Y}_{t_{k}^{n}}-\widehat{Y}_{k}\right\|_{2}^{2} \leq[f]_{\text {Lip }}^{2} \sum_{i=k}^{n} e^{\left(1+\left[f f_{\text {Lip }}\right) t_{i}^{n}\right.} K_{i}(b, \sigma, T, f, h)\left\|\bar{X}_{t_{i}^{n}}-\widehat{X}_{t_{i}^{n}}\right\|_{2}^{2}=O\left(\frac{n}{N_{d}^{\frac{2}{d}}}\right),
$$

(b) "Hedge":

$$
\sum_{k=0}^{n-1} \Delta_{n}\left\|\bar{\zeta}_{k}^{n}-\widehat{\zeta}_{k}\right\|_{2}^{2} \leq \sum_{k=0}^{n-1} e^{\left(1+\left[f f_{\mathrm{Lip}}\right) t_{k}^{n}\right.}\left\|Y_{t_{k+1}^{n}}-\widehat{Y}_{t_{k+1}^{n}}\right\|_{2}^{2}+K_{k}(b, \sigma, T, f, h)\left\|X_{t_{k}^{n}}-\widehat{X}_{t_{k}^{n}}\right\|_{2}^{2}
$$

- A quantization tree is not re-combining.
- But its size can designed a priori (and subject to possible optimization).

Theorem (A priori error estimates (Sagna-P., 2014), (P.,Wilbertz, 2012))

Suppose that all the "Lipschitz" assumptions on b, σ, f, h are fulfilled.
(a) "Price": Then, for every $k=0, \ldots, n$,

$$
\left\|\bar{Y}_{t_{k}^{n}}-\widehat{Y}_{k}\right\|_{2}^{2} \leq[f]_{\mathrm{Lip}}^{2} \sum_{i=k}^{n} e^{\left(1+[f]_{\mathrm{Lip}}\right) t_{i}^{n}} K_{i}(b, \sigma, T, f, h)\left\|\bar{X}_{t_{i}^{n}}-\widehat{X}_{t_{i}^{n}}\right\|_{2}^{2}=O\left(\frac{n}{N^{\frac{2}{d}}}\right),
$$

(b) "Hedge":
$\sum_{k=0}^{n-1} \Delta_{n}\left\|\bar{\zeta}_{t_{k}^{n}}-\widehat{\zeta}_{k}\right\|_{2}^{2} \leq \sum_{k=0}^{n-1} e^{\left(1+[f]_{\operatorname{Lip}}\right) t_{k}^{n}}\left\|Y_{t_{k+1}^{n}}-\widehat{Y}_{t_{k+1}^{n}}\right\|_{2}^{2}+K_{k}(b, \sigma, T, f, h)\left\|X_{t_{k}^{n}}-\widehat{X}_{t_{k}^{n}}\right\|_{2}^{2}$
(c) "RBSDE": The same error bounds hold with Reflected BSDE (so far without Z in f) by replacing h by $h_{k}=h\left(t_{k}^{n},.\right)$ where $h\left(t, X_{t}\right)$ is the obstacle process in the resulting quantized scheme.

What is new (compared to Bally-P. 2003 for reflected BSDE)?

- + : Z in f for quantization error bounds.
- +: The square everywhere

How to reduce the (quadratic) quantization error $\|X-\widehat{X}\|_{2}$? or to be more precise

Given a (finite) grid $\Gamma=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \subset \mathbb{R}^{d}$, how to solve

$$
\inf _{q: \mathbb{R}^{d} \rightarrow \Gamma}\|X-q(X)\|_{2} ?
$$

Voronoi Quantization

\triangleright Let $X:(\Omega, \mathcal{S}, \mathbb{P}) \rightarrow\left(\mathbb{R}^{d}, \mathcal{B o r}\left(\mathbb{R}^{d}\right),| |\right)$ be a random vector such that $\mathbb{E}|X|^{p}<+\infty \quad$ for some $p \in(0, \infty)$.

Voronoi Quantization

\triangleright Let $X:(\Omega, \mathcal{S}, \mathbb{P}) \rightarrow\left(\mathbb{R}^{d}, \mathcal{B o r}\left(\mathbb{R}^{d}\right),||.\right)$ be a random vector such that

$$
\mathbb{E}|X|^{p}<+\infty \quad \text { for some } p \in(0, \infty)
$$

\triangleright Given a (finite) "grid" $\Gamma=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\} \subset \mathbb{R}^{d}$ and $q: \mathbb{R}^{d} \rightarrow \Gamma$

$$
\|X-\underbrace{q(X)}_{\in \Gamma}\|_{p} \geq\|\operatorname{dist}(X, \Gamma)\|_{p}
$$

This suggests to discretize of the random vector X using a Nearest Neighbor projection as a quantization function q.

- Let $\left(C_{i}(\Gamma)\right)_{1 \leq i \leq N}$ be a (Borel) Voronoi partition of \mathbb{R}^{d} generated by Γ, i.e. such that

$$
C_{i}(\Gamma) \subset\left\{z \in \mathbb{R}^{d}:\left\|z-x_{i}\right\| \leq \min _{1 \leq j \leq N}\left\|z-x_{j}\right\|\right\}
$$

- Let $q:=\operatorname{Proj}_{\Gamma}: \mathbb{R}^{d} \rightarrow \Gamma$ be the induced Nearest Neighbor projection,

$$
\xi \mapsto \sum_{i=1}^{N} x_{i} \mathbf{1}_{C_{i}(\ulcorner)}(\xi)
$$

so that

$$
\left\|\xi-\pi_{\Gamma}(\xi)\right\|=\operatorname{dist}(\xi, \Gamma)
$$

\triangleright We define the Voronoi Quantization of the random vector X as

$$
\widehat{X}^{\ulcorner }=\operatorname{Proj}_{\Gamma}(X)=\sum_{i=1}^{N} x_{i} \mathbf{1}_{C_{i}(\Gamma)}(X)
$$

\triangleright This is a purely geometric optimization only depending on the norm.
\triangleright The L^{p}-mean quantization error induced by a grid $\Gamma(p \in(0,+\infty))$ induced by a grid $\Gamma \subset \mathbb{R}^{d}$ with size $|\Gamma| \leq N, N \in \mathbb{N}$

Definition (L^{p}-mean quantization error)

$$
e_{p}(X ; \Gamma)=\left\|X-\hat{X}^{\ulcorner }\right\|_{p}=\|\operatorname{dist}(X, \Gamma)\|_{p}=\left\|\min _{x \in \Gamma}|X-x|\right\|_{p}
$$

Voronoi Quantization

\times

\times

\times

Voronoi Quantization

Voronoi Quantization

Voronoi Quantization

Optimal L^{p}-mean quantization problem

\triangleright Second idea to minimize the quantization error

Optimally fit the grid Γ to (the distribution of \mathbb{P}_{x}) of X for a given "complexity".
\triangleright It amounts to solve the optimal L^{p}-mean quantization problem at level $N, N \geq 1$.

Definition (Optimal L ${ }^{p}$-mean quantization error at level N)

We define the optimal L^{p}-mean quantization error at level N as

$$
e_{p, N}(X):=\inf \left\{\left\|\min _{x \in \Gamma}|X-x|\right\|_{p}: \Gamma \subset \mathbb{R}^{d},|\Gamma| \leq N\right\}
$$

\triangleright One shows the more general optimality result

$$
e_{p, N}(X)=\inf \left\{\|X-\equiv\|_{p}: \equiv \in L^{p}\left(\mathbb{R}^{d}\right),|\equiv(\Omega)| \leq N\right\} .
$$

i.e. no possible alternative than quantization

Theorem (Kieffer, Cuesta-Albertos, P., Graf-Luschgy, $1988 \rightarrow 2000$)

(a) Existence an optimal quantizer: For every level $N \geq 1$, there exists (at least) one L^{p}-optimal quantization grid $\Gamma^{N, p}$ at level N.
(b) If $p=2$, STATIONARITY PROPERTY/SELF-CONSISTENCY: $\mathbb{E}\left(X \mid \widehat{X}^{\Gamma N, 2}\right)=\widehat{X}^{\Gamma^{N, 2}}$.

Theorem (Kieffer, Cuesta-Albertos, P., Graf-Luschgy, $1988 \rightarrow 2000$)

(a) Existence an optimal quantizer: For every level $N \geq 1$, there exists (at least) one L^{p}-optimal quantization grid $\Gamma^{N, p}$ at level N.
(b) If $p=2$, STATIONARITY PROPERTY/SELF-CONSISTENCY: $\mathbb{E}\left(X \mid \widehat{X}^{\Gamma N, 2}\right)=\widehat{X}^{\Gamma^{N, 2}}$.
\triangleright One checks that

$$
e_{p, N}(X) \downarrow 0 \quad \text { as } \quad N \rightarrow+\infty
$$

Let $\left(z_{N}\right)_{N \geq 1}$ be an everywhere dense sequence in \mathbb{R}^{d}

$$
e_{p, N}(X) \leq e_{p}\left(X,\left\{z_{1}, \ldots, z_{N}\right\}\right) \downarrow 0 \quad N \rightarrow+\infty
$$

by the Lebesgue dominated convergence theorem.
\triangleright But. . . at which rate ?

Theorem (Zador's Theorem)

(a) Sharp asymptotic (Zador, Kieffer, Bucklew \& Wise, Graf \& Luschgy (2000)): Let $X \in L^{p+}\left(\mathbb{R}^{d}\right)$ with distribution $\mathbb{P}_{X}=\varphi \cdot \lambda^{d} \stackrel{\perp}{+} \nu$.
Then

$$
\lim _{N \rightarrow \infty} N^{\frac{1}{d}} \cdot e_{p, N}(X)=Q_{p,\|\cdot\|} \cdot\left(\int_{\mathbb{R}^{d}}\|\varphi\|^{d /(d+p)} d \lambda_{d}\right)^{(d+p) / d}
$$

where $Q_{p,\|\cdot\|}=\inf _{N} N^{\frac{1}{d}} \cdot e_{p, N}\left(U\left([0,1]^{d}\right)\right)$.
(b) Non-ASYMPTotic (Pierce, Luschgy-P. (2006)):

Let $p^{\prime}>p$. There exists $C_{p, p^{\prime}, d} \in(0,+\infty)$ such that, for every \mathbb{R}^{d}-valued X r.v.

$$
\forall N \geq 1, \quad e_{p, N}(X) \leq C_{p, p^{\prime}, d} \sigma_{p^{\prime}}(X) . N^{-\frac{1}{d}}
$$

Remarks. $-\sigma_{p^{\prime}}(X):=\inf _{a \in \mathbb{R}^{d}}\|X-a\|_{p^{\prime}} \leq+\infty$ is the $L^{p^{\prime}}$-(pseudo-)standard deviation.

- $N^{\frac{1}{d}}$ is known as the curse of dimensionality.
\triangleright (Nearly) optimal grids can be computed by optimization algorithms :
- When $d=1$ (or even $d=2$): deterministic Newton-Raphson like methods
- In higher dimension ($d \geq 2$ or 3), stochastic optimization methods based on a stochastic gradient approach:
- Competitive Learning Vector Quantization algorithm (CLVQ),
- (Fixed point) randomized Lloyd's I procedure.
both based on Monte Carlo simulations.

In fact, Optmial quantization appears as

Compressed Monte Carlo method

On the numerical computation optimal quantizers $(p=2)$
Computing optimal grids: the quadratic distorsion ($p=2$)

$$
D_{N}(x):=\mathbb{E} \min _{1 \leq i \leq N}\left\|X-x_{i}\right\|^{2} .
$$

On the numerical computation optimal quantizers ($p=2$)

Computing optimal grids: the quadratic distorsion ($p=2$)

$$
\begin{gathered}
D_{N}(x):=\mathbb{E} \min _{1 \leq i \leq N}\left\|X-x_{i}\right\|^{2} . \\
\min _{x \in\left(\mathbb{R}^{d}\right)^{N}} D_{N}(x) \Longleftrightarrow \min _{|\Gamma| \leq N} e_{2}(X ; \Gamma)
\end{gathered}
$$

On the numerical computation optimal quantizers $(p=2)$

Computing optimal grids: the quadratic distorsion ($p=2$)

$$
\begin{gathered}
D_{N}(x):=\mathbb{E} \min _{1 \leq i \leq N}\left\|X-x_{i}\right\|^{2} \\
\min _{x \in\left(\mathbb{R}^{d}\right)^{N}} D_{N}(x) \Longleftrightarrow \min _{|\Gamma| \leq N} e_{2}(X ; \Gamma)
\end{gathered}
$$

\triangleright If $\|\cdot\|$ is the canonical Euclidean norm on \mathbb{R}^{d} and x has distincts components

$$
\nabla D_{N}(x)=\frac{1}{2}\left(\mathbb{E}\left[\left(x_{i}-X\right) \mathbf{1}_{\left\{X \in C_{i}(x)\right\}}\right]\right)_{1 \leq i \leq N}
$$

On the numerical computation optimal quantizers $(p=2)$

Computing optimal grids: the quadratic distorsion ($p=2$)

$$
\begin{gathered}
D_{N}(x):=\mathbb{E} \min _{1 \leq i \leq N}\left\|X-x_{i}\right\|^{2} \\
\min _{x \in\left(\mathbb{R}^{d}\right)^{N}} D_{N}(x) \Longleftrightarrow \min _{|\Gamma| \leq N} e_{2}(X ; \Gamma)
\end{gathered}
$$

\triangleright If $\|\cdot\|$ is the canonical Euclidean norm on \mathbb{R}^{d} and x has distincts components

$$
\nabla D_{N}(x)=\frac{1}{2}\left(\mathbb{E}\left[\left(x_{i}-X\right) \mathbf{1}_{\left\{X \in C_{i}(x)\right\}}\right]\right)_{1 \leq i \leq N}
$$

\triangleright The grid $\Gamma^{*, N}=\left\{x_{1}^{*}, \ldots x_{N}^{*}\right\}$ is L^{2}-optimal iff $x^{*, N} \in \operatorname{argmin} D_{N}$.
Hence

$$
\Gamma^{*, N} \text { is } L^{2} \text {-optimal } \Longleftrightarrow \nabla D_{N}\left(x^{*, N}\right)=0 .
$$

Computing optimal grids: the quadratic distorsion ($p=2$)

$$
\begin{gathered}
D_{N}(x):=\mathbb{E} \min _{1 \leq i \leq N}\left\|X-x_{i}\right\|^{2} \\
\min _{x \in\left(\mathbb{R}^{d}\right)^{N}} D_{N}(x) \Longleftrightarrow \min _{|\Gamma| \leq N} e_{2}(X ; \Gamma)
\end{gathered}
$$

\triangleright If $\|\cdot\|$ is the canonical Euclidean norm on \mathbb{R}^{d} and x has distincts components

$$
\nabla D_{N}(x)=\frac{1}{2}\left(\mathbb{E}\left[\left(x_{i}-X\right) \mathbf{1}_{\left\{X \in C_{i}(x)\right\}}\right]\right)_{1 \leq i \leq N}
$$

\triangleright The grid $\Gamma^{*, N}=\left\{x_{1}^{*}, \ldots x_{N}^{*}\right\}$ is L^{2}-optimal iff $x^{*, N} \in \operatorname{argmin} D_{N}$.
Hence

$$
\Gamma^{*, N} \text { is } L^{2} \text {-optimal } \Longleftrightarrow \nabla D_{N}\left(x^{*, N}\right)=0
$$

\triangleright Connection critical point and stationarity:

$$
\begin{aligned}
\nabla D_{N}(x)=0 & \Longleftrightarrow x_{i}=\frac{\mathbb{E}\left(X 1_{\left\{X \in C_{i}(x)\right\}}\right)}{\mathbb{P}\left(X \in C_{i}(x)\right)}, i=1, \ldots, N \\
& \Longleftrightarrow \widehat{X}^{x}=\mathbb{E}\left(X \mid \widehat{X}^{x}\right)
\end{aligned}
$$

$d=1 \mu=\mathbb{P}_{x}, C_{i}\left(x_{1}, \ldots, x_{N}\right)=\left[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}\right], i=1, \ldots, N,$.

$$
x_{i}=\frac{\int_{x_{i-1}}^{x_{i+\frac{1}{2}}} \xi \mathbb{P}_{x}(d \xi)}{\mu\left(\left[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}\right]\right.}, i=1, \ldots, N
$$

\Rightarrow Evaluation of Voronoi cells, Gradient and Hessian is simple \rightsquigarrow Newton-Raphson
$d \geq 2$ (1) Stochastic Gradient Method: CLVQ

- Simulate ξ_{1}, ξ_{2}, \ldots independent copies of X
- Generate step sequence $\gamma_{1}, \gamma_{2}, \ldots$ Usually: step $\gamma_{n}=\frac{A}{B+n} \searrow 0$ or $\gamma_{n}=\eta \approx 0$
- Grid updating $n \mapsto n+1$:

Competition: select winner index: $i^{*} \in \operatorname{argmin}_{i}\left|x_{i}^{n}-\xi_{n}\right|$
Learning: $\left\{\begin{array}{l}x_{i+1}^{n+1}:=x_{i *}^{n}+\gamma_{n}\left(x_{i *}^{n}-\xi_{n}\right) \\ x_{j}^{n+1}:=x_{j}^{n}, \quad \text { for } j \neq i^{*} .\end{array}\right.$
$d=1 \mu=\mathbb{P}_{x}, C_{i}\left(x_{1}, \ldots, x_{N}\right)=\left[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}\right], i=1, \ldots, N,$.

$$
x_{i}=\frac{\int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \xi \mathbb{P}_{x}(d \xi)}{\mu\left(\left[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}\right]\right.}, i=1, \ldots, N
$$

\Rightarrow Evaluation of Voronoi cells, Gradient and Hessian is simple \rightsquigarrow Newton-Raphson
$d \geq 2$ (1) Stochastic Gradient Method: CLVQ

- Simulate ξ_{1}, ξ_{2}, \ldots independent copies of X
- Generate step sequence $\gamma_{1}, \gamma_{2}, \ldots$ Usually: step $\gamma_{n}=\frac{A}{B+n} \searrow 0$ or $\gamma_{n}=\eta \approx 0$
- Grid updating $n \mapsto n+1$:

Competition: select winner index: $i^{*} \in \operatorname{argmin}_{i}\left|x_{i}^{n}-\xi_{n}\right|$
Learning: $\left\{\begin{array}{l}x_{i *}^{n+1}:=x_{i *}^{n}+\gamma_{n}\left(x_{i^{*}}^{n}-\xi_{n}\right) \\ x_{j}^{n+1}:=x_{j}^{n}, \quad \text { for } j \neq i^{*} .\end{array}\right.$
(2) LLOYD's algorithm as a randomized fixed-point procedure.

- Initial grid $\Gamma^{(0)}=\left\{x_{1}^{0}, \ldots, x_{N}^{0}\right\}$
- Grid updating $n \mapsto n+1$:
(i) $x_{k}^{(n+1)}=\mathbb{E}\left(X \mid \widehat{X}^{\Gamma^{(n)}}=x_{k}^{(n)}\right)$
(ii) $\Gamma^{(n+1)}=\left\{x_{k}^{(n+1)}, k=1: N\right\}$ and $\widehat{X}^{\Gamma^{(n+1)}}=\operatorname{Proj}_{\Gamma_{(n+1)}}(X)$,
- so that $\left\|X-\widehat{X}^{\Gamma^{(n+1)}}\right\|_{2} \leq\left\|X-\widehat{X}^{\Gamma^{(n)}}\right\|_{2}$
$d=1 \mu=\mathbb{P}_{x}, C_{i}\left(x_{1}, \ldots, x_{N}\right)=\left[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}\right], i=1, \ldots, N,$.

$$
x_{i}=\frac{\int_{x_{i-1}}^{x_{i+\frac{1}{2}}} \xi \mathbb{P}_{x}(d \xi)}{\mu\left(\left[x_{i-\frac{1}{2}}, x_{i+\frac{1}{2}}\right]\right.}, i=1, \ldots, N
$$

\Rightarrow Evaluation of Voronoi cells, Gradient and Hessian is simple \rightsquigarrow Newton-Raphson
$d \geq 2$ (1) Stochastic Gradient Method: CLVQ

- Simulate ξ_{1}, ξ_{2}, \ldots independent copies of X
- Generate step sequence $\gamma_{1}, \gamma_{2}, \ldots$ Usually: step $\gamma_{n}=\frac{A}{B+n} \searrow 0$ or $\gamma_{n}=\eta \approx 0$
- Grid updating $n \mapsto n+1$:

Competition: select winner index: $i^{*} \in \operatorname{argmin}_{i}\left|x_{i}^{n}-\xi_{n}\right|$
Learning: $\left\{\begin{array}{l}x_{i+1}^{n+1}:=x_{i *}^{n}+\gamma_{n}\left(x_{i^{*}}^{n}-\xi_{n}\right) \\ x_{j}^{n+1}:=x_{j}^{n}, \quad \text { for } j \neq i^{*} .\end{array}\right.$
(2) LLOYD's algorithm as a randomized fixed-point procedure.

- Initial grid $\Gamma^{(0)}=\left\{x_{1}^{0}, \ldots, x_{N}^{0}\right\}$
- Grid updating $n \mapsto n+1$:
(i) $x_{k}^{(n+1)}=\mathbb{E}\left(X \mid \widehat{X}^{\Gamma^{(n)}}=x_{k}^{(n)}\right)$
(ii) $\Gamma^{(n+1)}=\left\{x_{k}^{(n+1)}, k=1: N\right\}$ and $\widehat{X}^{\Gamma^{(n+1)}}=\operatorname{Proj}_{\Gamma_{(n+1)}}(X)$,
- so that $\left\|X-\widehat{X}^{\Gamma^{(n+1)}}\right\|_{2} \leq\left\|X-\widehat{X}^{\Gamma^{(n)}}\right\|_{2}$

B "Batch" approach [. . .]

Figure: Two N-quantizers related to $\mathcal{N}\left(0 ; l_{2}\right)$ of size $N=500 \ldots$ (with J. Printems)
Before...

Figure: . . . After
Figure: A Quantizer for $\mathcal{N}\left(0, l_{2}\right)$ of size $N=500$ in $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$.

Figure: An N-quantization of $X \sim \mathcal{N}\left(0 ; l_{2}\right)$ with coloured weights: $\mathbb{P}\left(X \in C_{a}(\Gamma)\right)$, $a \in \Gamma$.
\triangleright Weights: $\mathbb{P}\left(X \in C_{a}(\Gamma)\right) \approx C^{s t} \frac{f_{X}^{\frac{d}{d+2}}(a)}{N^{\frac{1}{d}}}$ (whith J.Printems) N is large).
\triangleright Local inertia: $a \longmapsto \mathbb{E}|X-a|^{2} \mathbf{1}_{\left\{X \in C_{a}(\Gamma)\right\}} \approx \frac{e_{n}(\Gamma, X)}{N}($ for fixed $N)$.
\triangleright Instant search for the unique optimal quantizer using a Newton-Raphson descent on $\mathbb{R}^{N} \ldots$ with an arbitrary accuracy.
\triangleright For $\mathcal{N}(0 ; 1)$ and $N=1, \ldots, 500$, tabulation within 10^{-14} accuracy of optimal N -quantizers and textcolorbluecompanion parameters:

$$
\alpha^{(N)}=\left(\alpha_{1}^{(N)}, \ldots, \alpha_{N}^{(N)}\right)
$$

and

$$
\mathbb{P}\left(X \in C_{i}\left(\alpha^{(N)}\right)\right), i=1, \ldots N, \quad \text { and } \quad\left\|X-\widehat{X}^{\alpha^{(N)}}\right\|_{2}
$$

\triangleright For $d=1$ up to 10 ? Also available for Gaussian $\mathcal{N}\left(0, I_{d}\right)(1 \leq N \leq 4000)$.

Download at our WEBSITE :
www.quantize.maths-fi.com

Further Error Estimates

Proposition (First order)

If $\Gamma^{N, *}$ is L^{1}-optimal at level $N \geq 1$

$$
\begin{array}{r}
e_{1, N}(X)=\mathbb{E}\left\|X-\widehat{X}^{\Gamma^{N, *}}\right\|=\sup _{[F]_{L i p} \leq 1}\left|\mathbb{E} F(X)-\mathbb{E} F\left(\widehat{X}^{\Gamma^{N, *}}\right)\right| \\
\quad \inf \left\{\sup _{[F]_{L i p} \leq 1}|\mathbb{E} F(X)-\mathbb{E} F(Y)|, \operatorname{card}(Y(\Omega)) \leq N\right\}
\end{array}
$$

$=L^{1}$-Wasserstein distance between $\mathcal{L}(X)$ and the set \mathcal{P}_{N}.
i.e. Quantization is optimal for the class of Lipschitz functions.

Further Error Estimates

Proposition (First order)

If $\Gamma^{N, *}$ is L^{1}-optimal at level $N \geq 1$

$$
\begin{array}{r}
e_{1, N}(X)=\mathbb{E}\left\|X-\widehat{X}^{\Gamma^{N, *}}\right\|=\sup _{[F]_{L i p} \leq 1}\left|\mathbb{E} F(X)-\mathbb{E} F\left(\widehat{X}^{\Gamma^{N, *}}\right)\right| \\
\quad \inf \left\{\sup _{[F]_{\text {Lip }} \leq 1}|\mathbb{E} F(X)-\mathbb{E} F(Y)|, \operatorname{card}(Y(\Omega)) \leq N\right\}
\end{array}
$$

$=L^{1}$-Wasserstein distance between $\mathcal{L}(X)$ and the set \mathcal{P}_{N}.
i.e. Quantization is optimal for the class of Lipschitz functions.

Proposition (Second order)

If $F \in C_{L i p}^{1}$ and the grid Γ is stationary (e.g. because it is L^{2}-optimal), i.e.

$$
\widehat{X}^{\ulcorner }=\mathbb{E}\left(X \mid \widehat{X}^{\ulcorner }\right)
$$

then a Taylor expansion yields

$$
\begin{aligned}
\left|\mathbb{E} F(X)-\mathbb{E} F\left(\widehat{X}^{\ulcorner }\right)\right| & =\left|\mathbb{E} F(X)-\mathbb{E} F\left(\widehat{X}^{\ulcorner }\right)-\mathbb{E} D F\left(\widehat{X}^{\ulcorner }\right) \cdot\left(X-\widehat{X}^{\ulcorner }\right)\right| \\
& \leq[D F]_{L i p} \cdot \mathbb{E}\left\|X-\widehat{X}^{\ulcorner }\right\|^{2}=e_{2, N}(X)^{2} .
\end{aligned}
$$

\triangleright Furthermore, if F is convex, then Jensen's inequality implies for stationary Γ

$$
\mathbb{E} F\left(\widehat{X}^{\ulcorner }\right) \leq \mathbb{E} F(X)
$$

Further Applications

What are these applications using optimal quantization grids?

Further Applications

What are these applications using optimal quantization grids?

Further Applications

What are these applications using optimal quantization grids?

- Obstacle Problems: Valuation of Bermuda and American options, Reflected BSDE's [Bally-P.-Printems '01, '03 and '05, Illand '11].

Further Applications

What are these applications using optimal quantization grids?

- Obstacle Problems: Valuation of Bermuda and American options, Reflected BSDE's [Bally-P.-Printems '01, '03 and '05, Illand '11].
- δ-Hedging for American options [ibid. '05].

Further Applications

What are these applications using optimal quantization grids?

- Obstacle Problems: Valuation of Bermuda and American options, Reflected BSDE's [Bally-P.-Printems '01, '03 and '05, Illand '11].
- δ-Hedging for American options [ibid. '05].
- Optimal Stochastic Control problems (P.-Pham-Printems 06'), Pricing of Swing options [Bouthemy-Bardou-P.'09]. . . on massively parallel architecture [GPU, Bronstein-P.-Wilbertz, '10], Control of PDMP [Dufour-de Sapporta 2013].

Further Applications

What are these applications using optimal quantization grids?

- Obstacle Problems: Valuation of Bermuda and American options, Reflected BSDE's [Bally-P.-Printems '01, '03 and '05, Illand '11].
- δ-Hedging for American options [ibid. '05].
- Optimal Stochastic Control problems (P.-Pham-Printems 06'), Pricing of Swing options [Bouthemy-Bardou-P.'09]. . . on massively parallel architecture [GPU, Bronstein-P.-Wilbertz, '10], Control of PDMP [Dufour-de Sapporta 2013].
- Non-linear filtering and stochastic, volatility models [P.-Pham-Printems '05, Pham-Sellami-Runggaldier'06, Sellami '09 \&'10, Callegaro-Sagna '10].

Further Applications

What are these applications using optimal quantization grids?

- Obstacle Problems: Valuation of Bermuda and American options, Reflected BSDE's [Bally-P.-Printems '01, '03 and '05, Illand '11].
- δ-Hedging for American options [ibid. '05].
- Optimal Stochastic Control problems (P.-Pham-Printems 06'), Pricing of Swing options [Bouthemy-Bardou-P.'09]. . . on massively parallel architecture [GPU, Bronstein-P.-Wilbertz, '10], Control of PDMP [Dufour-de Sapporta 2013].
- Non-linear filtering and stochastic, volatility models [P.-Pham-Printems '05, Pham-Sellami-Runggaldier'06, Sellami '09 \&'10, Callegaro-Sagna '10].
- Discretization of SPDE's (stochastic Zakaï \& McKean-Vlasov equations) [Gobet-P.-Pham-Printems '07].

What are these applications using optimal quantization grids?

- Obstacle Problems: Valuation of Bermuda and American options, Reflected BSDE's [Bally-P.-Printems '01, '03 and '05, Illand '11].
- δ-Hedging for American options [ibid. '05].
- Optimal Stochastic Control problems (P.-Pham-Printems 06'), Pricing of Swing options [Bouthemy-Bardou-P.'09]... on massively parallel architecture [GPU, Bronstein-P.-Wilbertz, '10], Control of PDMP [Dufour-de Sapporta 2013].
- Non-linear filtering and stochastic, volatility models [P.-Pham-Printems '05, Pham-Sellami-Runggaldier'06, Sellami '09 \& '10, Callegaro-Sagna '10].
- Discretization of SPDE's (stochastic Zakaï \& McKean-Vlasov equations) [Gobet-P.-Pham-Printems '07].
- Quantization based Universal Stratification (variance reduction) [Corlay-P. '10].

What are these applications using optimal quantization grids?

- Obstacle Problems: Valuation of Bermuda and American options, Reflected BSDE's [Bally-P.-Printems '01, '03 and '05, Illand '11].
- δ-Hedging for American options [ibid. '05].
- Optimal Stochastic Control problems (P.-Pham-Printems 06'), Pricing of Swing options [Bouthemy-Bardou-P.'09]... on massively parallel architecture [GPU, Bronstein-P.-Wilbertz, '10], Control of PDMP [Dufour-de Sapporta 2013].
- Non-linear filtering and stochastic, volatility models [P.-Pham-Printems '05, Pham-Sellami-Runggaldier'06, Sellami '09 \& '10, Callegaro-Sagna '10].
- Discretization of SPDE's (stochastic Zakaï \& McKean-Vlasov equations) [Gobet-P.-Pham-Printems '07].
- Quantization based Universal Stratification (variance reduction) [Corlay-P. '10].
- CVaR-based dynamical risk hedging [Bardou-Frikha-P. '10], etc.

What are these applications using optimal quantization grids?

- Obstacle Problems: Valuation of Bermuda and American options, Reflected BSDE's [Bally-P.-Printems '01, '03 and '05, Illand '11].
- δ-Hedging for American options [ibid. '05].
- Optimal Stochastic Control problems (P.-Pham-Printems 06'), Pricing of Swing options [Bouthemy-Bardou-P.'09]. . . on massively parallel architecture [GPU, Bronstein-P.-Wilbertz, '10], Control of PDMP [Dufour-de Sapporta 2013].
- Non-linear filtering and stochastic, volatility models [P.-Pham-Printems '05, Pham-Sellami-Runggaldier'06, Sellami '09 \& '10, Callegaro-Sagna '10].
- Discretization of SPDE's (stochastic Zakaï \& McKean-Vlasov equations) [Gobet-P.-Pham-Printems '07].
- Quantization based Universal Stratification (variance reduction) [Corlay-P. '10].
- CVaR-based dynamical risk hedging [Bardou-Frikha-P. '10], etc.
- Quadratic BSDE schemes by Markovian Quantization [Chassagneux-Richou'14].

What are these applications using optimal quantization grids?

- Obstacle Problems: Valuation of Bermuda and American options, Reflected BSDE's [Bally-P.-Printems '01, '03 and '05, Illand '11].
- δ-Hedging for American options [ibid. '05].
- Optimal Stochastic Control problems (P.-Pham-Printems 06'), Pricing of Swing options [Bouthemy-Bardou-P.'09]. . . on massively parallel architecture [GPU, Bronstein-P.-Wilbertz, '10], Control of PDMP [Dufour-de Sapporta 2013].
- Non-linear filtering and stochastic, volatility models [P.-Pham-Printems '05, Pham-Sellami-Runggaldier'06, Sellami '09 \& '10, Callegaro-Sagna '10].
- Discretization of SPDE's (stochastic Zakaï \& McKean-Vlasov equations) [Gobet-P.-Pham-Printems '07].
- Quantization based Universal Stratification (variance reduction) [Corlay-P. '10].
- CVaR-based dynamical risk hedging [Bardou-Frikha-P. '10], etc.
- Quadratic BSDE schemes by Markovian Quantization [Chassagneux-Richou'14].
- New error bounds for BSDE schemes by quadratic optimal quantization [P.-Sagna '15]

A new result : distortion mismatch/ L^{s}-rate optimality, $s>p$

\triangleright Let $\Gamma_{N}^{(p)}, N \geq 1$, be a sequence L^{p}-optimal grids.
What about $e_{s}\left(X, \Gamma_{N}^{p}\right)\left(L^{s}\right.$-mean quantization error) when $X \in L_{\mathbb{R}^{d}}^{s}(\mathbb{P})$ for $s>p$?

Theorem (L^{p} - L^{s}-distortion mismatch, Graf-Luschgy-P. 2005, Luschgy-P. 2015)

(a) Let $X \in L_{\mathbb{R}^{d}}^{p}(\mathbb{P})$ and let $\left(\Gamma_{N}^{(p)}\right)_{N \geq 1}$ be an L^{p}-optimal sequence for grids. Let $s \in(p, p+d)$. If

$$
X \in L^{\frac{s d}{d+p-s}+\delta}(\mathbb{P}), \delta>0
$$

(note that $\frac{s d}{d+p-s}>s$ and $\lim _{s \rightarrow p+d} \frac{s d}{d+p-s}=+\infty$), then

$$
\varlimsup_{N} N^{\frac{1}{d}} e_{s}\left(\Gamma_{N}^{(p)}, X\right)<+\infty
$$

(b) If $\mathbb{P}_{X}=f(|x|) \cdot \lambda_{d}(d \xi)$ (radial density) then $\delta=0$ is admissible.
(c) If $\mathbb{E}|X|^{\frac{s d}{d+p-s}}=+\infty$, then $\underline{\lim }_{N} N^{\frac{1}{d}} e_{s}\left(\Gamma_{N}^{(p)}, X\right)=+\infty$.
\triangleright Possible perspectives: error bounds for quantization based numerical schemes for $B S D E$ with a quadratic Z term ?
\triangleright So far, an application to quantized non-linear filtering.

Application to non-linear filtering

- Signal process $\left(X_{k}\right)_{k \geq 0}$ is an \mathbb{R}^{d}-valued Markov chain.
- The observation process $\left(Y_{k}\right)_{k \geq 0}$ is a sequence of \mathbb{R}^{q}-valued random vectors such that

$$
\left(X_{k}, Y_{k}\right)_{k \geq 0} \text { is a Markov chain. }
$$

- The conditional distribution

$$
\mathcal{L}\left(Y_{k} \mid X_{k-1}, Y_{k-1}, X_{k}\right)=g_{k}\left(X_{k-1}, Y_{k-1}, X_{k}, y\right) \lambda_{q}(d y)
$$

- Aim : compute

$$
\Pi_{y_{0: n}, n}(d x)=\mathbb{P}\left(X_{k} \in d x \mid Y_{1}=y_{1}, \cdots, Y_{n}=y_{n}\right)
$$

- Kallianpur-Streibel formula: set $y=y_{0: n}=\left(y_{0}, \ldots, y_{n}\right)$ a vector of observations

$$
\Pi_{y, n}(d x)=\Pi_{y, n} f=\frac{\pi_{y, n} f}{\pi_{y, n} \mathbf{1}}
$$

with the normalized filter $\pi_{y_{0, n}, n}$ defined by

$$
\pi_{y_{0: n}, n} f=\mathbb{E}\left(f\left(X_{n}\right) L_{y_{0: n}, n}\right) \quad \text { with } \quad L_{y_{0: n}, n}=\prod_{k=1}^{n} g_{k}\left(X_{k-1}, y_{k-1}, X_{k}, y_{k}\right)
$$

solution to both a forward and a backward inductionsbased on the kernels

$$
H_{y, k} h(x)=\mathbb{E}\left(h\left(X_{k}\right) g_{k}\left(x, y_{k-1}, X_{k}, y_{k}\right) \mid X_{k-1}=x\right), \quad H_{y, 0} f(x)=\mathbb{E}\left(f\left(X_{0}\right)\right)
$$

- Forward: Start from

$$
\pi_{y, 0}=H_{y, 0}
$$

and define by a forward induction

$$
\pi_{y, k} f=\pi_{y, k-1} H_{y, k} f, \quad k=1, \ldots, n .
$$

- Backward: We define by a backward induction

$$
\begin{aligned}
u_{y, n}(f)(x) & =f(x) \\
u_{y, k-1}(f) & =H_{y, k} u_{y, k}(f), \quad k=0, \ldots, n
\end{aligned}
$$

so that

$$
\pi_{y, n} f=u_{y,-1}(f)
$$

This formulation is useful in order to establish the quantization error bound.

Quantized Kallianpur-Streibel formula (P.-Pham (2005))

- Quantization of the kernel:

$$
H_{y 0: n}, k f(x) \longrightarrow \widehat{H}_{y 0: n}, k f(x)=\mathbb{E}\left(f\left(\widehat{X}_{k}\right) g_{k}\left(x, y_{k-1}, \widehat{X}_{k}, y_{k}\right) \mid \widehat{X}_{k-1}=x\right)
$$

- Forward quantized dynamics (I):

$$
\widehat{\pi}_{y, k} f=\widehat{\pi}_{y, k-1} \widehat{H}_{y, k} f, \quad k=1, \ldots, n .
$$

- Forward quantized dynamics (II):

$$
\widehat{\Pi}_{y}(d x)=\widehat{\Pi}_{y, n} f=\frac{\widehat{\pi}_{y, n} f}{\pi_{y_{0: n}, n} \mathbf{1}}
$$

(finitely supported unnormalized filter satisfies formally the same recursions)

- Weight computation: If $\widehat{X}_{n}=\widehat{X}_{n}^{\Gamma_{n}}, \Gamma_{n}=\left\{x_{1}^{1}, \ldots, x_{N_{n}}^{n}\right\}$ then

$$
\widehat{\Pi}_{y, n}(d x)=\sum_{i=1}^{N_{n}} \widehat{\Pi}_{y, n}^{i} \delta_{x_{i}^{n}} \quad \text { with } \widehat{\Pi}_{y, n}^{i}=\widehat{\Pi}_{y, n}\left(\mathbf{1}_{C_{i}\left(\Gamma_{n}\right)}\right) .
$$

From Lip to θ-Liploc assumptions

- Standard $\mathcal{H}_{\text {Lip }}$ assumption for the conditional densities $g_{k}\left(., y, ., y^{\prime}\right)$: bounded by K_{g} and Lipschitz continuity.

$$
\left|g_{k}\left(x, y, x^{\prime}, y^{\prime}\right)-g_{k}\left(\widehat{x}, y, \widehat{x}^{\prime}, y^{\prime}\right)\right| \leq\left[g_{k}\right]_{\operatorname{Lip}}\left(y, y^{\prime}\right)\left(|x-\widehat{x}|+\left|x^{\prime}-\widehat{x}^{\prime}\right|\right)
$$

- The kernels $P_{k}(x, d \xi)=\mathbb{P}\left(X_{k} \in d \xi \mid X_{k-1}=x\right)$ propagate Lipschitz continuity with coefficient $\left[P_{k}\right]_{\text {Lip }} s$ such that

$$
\max _{k=1, \ldots, n}\left[P_{k}\right]_{\operatorname{Lip}}<+\infty
$$

Aim: Switch to a θ-local Lipschitz assumption $\left(\theta: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}, \uparrow+\infty\right.$ as $\left.|x| \uparrow+\infty\right)$.

$$
\left|h\left(x, x^{\prime}\right)-h\left(\hat{x}, \hat{x}^{\prime}\right)\right| \leq[h]_{\operatorname{loc}}\left(|x-\widehat{x}|+\left|x^{\prime}-\widehat{x}^{\prime}\right|\right)\left(1+\theta(x)+\theta\left(x^{\prime}\right)+\theta(\hat{x})+\theta\left(\hat{x}^{\prime}\right)\right)
$$

- New $\left(\mathcal{H}_{\text {Liploc }}^{\theta}\right)$ assumption: the functions g_{k} are still bounded by K_{g} and θ-local Lipschitz continuous
$\left|g_{k}\left(x, y, x^{\prime}, y^{\prime}\right)-g_{k}\left(\widehat{x}, y, \widehat{x}^{\prime}, y^{\prime}\right)\right| \leq\left[g_{k}\right]_{\operatorname{loc}}\left(y, y^{\prime}\right)\left(|x-\widehat{x}|+\left|x^{\prime}-\widehat{x}^{\prime}\right|\right)\left(1+\theta(x)+\theta\left(x^{\prime}\right)+\theta(\hat{x})+\theta\left(\hat{x}^{\prime}\right)\right)$
- The kernels $P_{k}(x, d \xi)=\mathbb{P}\left(X_{k} \in d \xi \mid X_{k-1}=x\right)$ propagate θ-local Lipschitz continuity with coefficient $\left[P_{k}\right]_{\text {loc }}<+\infty$.
- The kernels $P_{k}(x, d \xi)$ propagate θ-control: $\max _{0 \leq k \leq n-1} P_{k}(\theta)(x) \leq C(1+\theta(x))$. Typical example: $X_{k}=\bar{X}_{t_{k}^{n}}^{n}$ (Euler scheme with step $\Delta_{n}=\frac{T}{n}$), $\theta(\xi)=|\xi|^{\alpha}, \alpha>0$.

Theorem

Let $s \in\left(1,1+\frac{d}{2}\right)$ and $\theta(x)=|x|^{\alpha}, \alpha \in\left(0, \frac{1}{\frac{1}{s-1}-\frac{2}{d}}\right)$.
Assume $\left(X_{k}\right)$ and $\left(g_{k}\right)$ satisfy $\left(\mathcal{H}_{\text {Liploc }}^{\theta}\right)$ (in particular $\left(X_{k}\right)$ propagates θ-Lipschitz continuity) and assume $X_{k} \in L^{\frac{2 d s}{d+2-2 s}}, k=0, \ldots, n$. Then

$$
\begin{align*}
\left|\Pi_{y, n} f-\widehat{\Pi}_{y, n} f\right|^{2} \leq \frac{2\left(K_{g}^{n}\right)^{2}}{\phi_{n}^{2}(y) \vee \widehat{\phi}_{n}^{2}(y)} \sum_{k=0}^{n} B_{k}^{n}(f, y) \times & \underbrace{\left\|\left\|x_{k}-\widehat{X}_{k}\right\|_{2}^{2} \leq c_{k} N_{k}^{-\frac{2}{d}}\right. \text { (Mismatch!!) }}\left\|\widehat{X}_{k}\right\|_{2 s}^{2} \tag{1}
\end{align*}
$$

with

$$
\begin{gathered}
\phi_{n}(y)=\pi_{y, n} \mathbf{1} \quad \text { and } \widehat{\phi}_{n}(y)=\widehat{\pi}_{y, n} \mathbf{1} \\
B_{k}^{n}(f, y):=2[P]_{\text {loc }}^{2(n-k)}[f]_{\text {loc }}^{2}+2\|f\|_{\infty}^{2} R_{n, k}+\|f\|_{\infty} R_{n, k}^{2},
\end{gathered}
$$

where

$$
R_{n, k}=\frac{8^{\frac{s}{s-1}} M_{s}^{n}}{K_{g}^{2}}\left[\left[g_{k+1}\right]_{\mathrm{loc}}^{2}+\left[g_{k}\right]_{\mathrm{loc}}^{2}+\left(\sum_{m=1}^{n-k}[P]_{\mathrm{loc}}^{m-1}\left(1+[P]_{\mathrm{loc}}\right)\left[g_{k+m}\right]_{\mathrm{loc}}\right)^{2}\right]
$$

and

$$
M_{s}^{n}:=2 \max _{k=0, \ldots, n}\left(\mathbb{E}\left(\theta\left(X_{k}\right)^{\frac{2 s}{s-1}}\right)+\mathbb{E}\left(\theta\left(\widehat{X}_{k}\right)^{\frac{2 s}{s-1}}\right)\right.
$$

Extensions

- Greedy quantization (Luschgy-P., JAT, 2014): sequence $\left(a_{N}\right)_{N \geq 1}$ such that

$$
\left\{a_{1}, \ldots, a_{N}\right\}, N \geq 1, \text { is } L^{p} \text {-rate optimal }
$$

to spare RAM.

$$
a_{N+1}=\operatorname{argmin}_{\xi \in \mathbb{R}^{d}} e_{p}\left(\left\{a_{1}, \ldots, a_{N}\right\} \cup\{\xi\}, X\right)
$$

Numerical schemes can be successfully implemented with this quantization.

- Fast recursive quantization (in progress) in medium dimension (Sagna-P. , 2014)

Numerical illustrations

- Risk-neutral price under historical probability (B\&S model, Euler scheme)

$$
d Y_{t}=\left(r Y_{t}+\frac{\mu-r}{\sigma} Z\right) d t+Z_{t} d W_{t}
$$

with

$$
Y_{T}=h\left(X_{T}\right)=\left(X_{T}-K\right)_{+}
$$

\triangleright Model parameters: $r=0.1 ; T=0.1 ; \sigma=0.25 ; S_{0}=K=100$.
\triangleright Quantization tree calibration: $7.510^{5} \mathrm{MC}$ and $\mathrm{NbLloyd}=1$.
\triangleright Reference call ${ }_{B S}(K, T)=3.66, Z_{0}=14.148$. If $\mu \in\{0.05,0.1,0.15,0.2\}$,

- $n=10$ and $N_{k}=\bar{N}=20: Q$-price $=3.65, \widehat{Z}_{0}=14.06$.
- $n=10$ and $N_{k}=\bar{N}=40, Q$-price $=3.66, \widehat{Z}_{0}=14.08$.
\triangleright Computation time :
- 5 seconds for one contract.
- Additional contracts for free (more than $10^{5} / \mathrm{s}$).
\triangleright Romberg extrapolation price $=2 * Q$-price $\left(N_{2}\right)$ - Q-price $\left(N_{1}\right)$ does improve the price (and the "hedge").

Numerical illustrations

- Bid-ask spreads on interest rates:

$$
d Y_{t}=\left(r Y_{t}+\frac{\mu-r}{\sigma} Z_{t}+(R-r) \min \left(Y_{t}-\frac{Z_{t}}{\sigma}, 0\right)\right) d t+Z_{t} d W_{t}
$$

with

$$
\begin{gathered}
Y_{T}=h\left(X_{T}\right)=\left(X_{T}-K_{1}\right)_{+}-2\left(X_{T}-K_{2}\right)_{+}, \quad K_{1}=95, K_{2}=105 \\
\mu=0.05, r=0.01, \sigma=0.2, \quad T=0.25, R=0.06
\end{gathered}
$$

\triangleright Reference price $=2.978, \widehat{Z}_{0}=0.553$.
\triangleright Quantized prices:

- $n=10$ and $N_{k}=\bar{N}=20: Q$-price $=2.96, \widehat{Z}_{0}=0.515$.
- $n=10$ and $N_{k}=\bar{N}=40, Q$-price $=2.97, \widehat{Z}_{0}=0.531$.
\triangleright Romberg extrapolation price $=2 * Q$-price $\left(N_{2}\right)$ - Q-price $\left(N_{1}\right) \approx 2.98$ and Romberg $\widehat{Z}_{0} \approx 0.547$.
Comparable results though slightly less precise, due to the non linearity in Z compensated by the difference of convex functions. . .

Multidimensional example

\triangleright Due to J.-F. Chassagneux: $W d$-dimensional B.M.

$$
d X_{t}=d W_{t}, \quad-d Y_{t}=f\left(t, Y_{t}, Z_{t}\right) d t-Z_{t} \cdot d W_{t}
$$

with $f(t, y, z)=\left(z_{1}+\ldots+z_{d}\right)\left(y-\frac{2+d}{2 d}\right) . \triangleright$ Solution :

$$
Y_{t}=\frac{e_{t}}{1+e_{t}}, \quad Z_{t}=\frac{e_{t}}{\left(1+e_{t}\right)^{2}} \text { with } e_{t}=\exp \left(x_{1}+\ldots+x_{d}+t\right)
$$

We set $t=0.5, d=2,3$, so that $Y_{0}=0.5$ and $Z_{0}^{i}=0.24$, for every $i=1, \ldots, d$.

Figure: Convergence rate of the quantization error for the multidimensional example). Abscissa axis: the size $N=5, \ldots, 100$ of the quantization. Ordinate axis: The error $\left|Y_{0}-\widehat{Y}_{0}^{N}\right|$ and the graph $N \mapsto \hat{a} / N+\hat{b}$, where \hat{a} and \hat{b} are the regression coefficients. $d=3$.

Bon, Vlad on s'y remet quand?

Faut profiter tant qu'on est jeunes !!

