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Rough auantization
What is Vector Quantization?

@ Has its origin in the fields of signal processing in the late 1940's

@ Describes the discretization of a random signal and analyses its
recovery/reconstruction from the discretized one.

\/ \/ \J
Examples: Pulse-Code-Modulation (PCM), JPEG-Compression

o Extensive Survey about the IEEE-History: IEEE on Inf. Theory, 1982, [Gersho-Gray
eds]

Mathematical Foundation of Quantization Theory: S. Graf & H. Luschgy
in Foundation of quantization of probability measures, LNM 2000.

@ P.: Survey on Optimal Vector Quantization and its applications for numerics,
ESAIM Proc. & Surveys, CEMRACS’13 course, 2015.
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At the beginning was rough quantization

> Let X : (Q,S,P) — (R?, Bor(R%),| - |) be a random vector such that

E|X]? < 400 for some p € (0, +00).
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Rough auantization
At the beginning was rough quantization

> Let X : (Q,S,P) — (R?, Bor(R%),| - |) be a random vector such that
E|X]? < 400 for some p € (0, +00).

> Let g : R — I C RY be a Borel function, I a finite subset of RY.
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Rough auantization
At the beginning was rough quantization

> Let X : (Q,S,P) — (R?, Bor(R%),| - |) be a random vector such that
E|X]? < 400 for some p € (0, +00).
> Let g : R — I C RY be a Borel function, I a finite subset of RY.
X = q(X)
is called a quantization of X. It aims at being a discretization of X

> Example: if X is [0, 1]-valued, one may choose

a0y = I e o)
o 2k —1 k—1 k
_2k—-1 k-1 _ _k

a0 = Tt i o <x < xe[0,1]
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Rough auantization
At the beginning was rough quantization

> Let X : (Q,S,P) — (R?, Bor(R%),| - |) be a random vector such that
E|X]? < 400 for some p € (0, +00).
> Let g : R — I C RY be a Borel function, I a finite subset of RY.
X = q(X)
is called a quantization of X. It aims at being a discretization of X

> Example: if X is [0, 1]-valued, one may choose

a0y = I e o)
o 2k —1 k—1 k
_2k—-1 k-1 _ _k

a0 = Tt i o <x < xe[0,1]

> LP-mean quantization error:

en(Xiq) = [|X —a(X)|,
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Rough auantization
What is it for? Quantization for Cubature

Let I = {x1,..., Xy }. Assume that we have access to the elementary quantizers x; and
the weights R
wi(q) =P(X=x), i=1,...,N.
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Rough auantization
What is it for? Quantization for Cubature

Let I = {x1,..., Xy }. Assume that we have access to the elementary quantizers x; and
the weights R

wi(q) =P(X=x), i=1,...,N.
= The computation of E F()A<) for some a function F : R — R becomes

straightforward:
N

EF(X) =Y wi(l)F(x).

i=1
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Rough auantization
What is it for? Quantization for Cubature

Let I = {x1,..., Xy }. Assume that we have access to the elementary quantizers x; and
the weights

wi(q) =P(X=x), i=1,...,N.

= The computation of E F()A<) for some a function F : R — R becomes

straightforward:
N

EF(X) =Y wi(l)F(x).

i=1

> If F is Lipschitz continuous, a first error estimate reads

IEF(X) — EF(X)| < [Flup EIIX — X].
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Rough auantization

Quantization for Conditional expectation

> Applications in Numerical Probability = conditional expectation approximation.
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Rough auantization

Quantization for Conditional expectation

> Applications in Numerical Probability = conditional expectation approximation.

Proposition ( )

Let P(y,du) = L(X|Y = y) be a regular version of the conditional distribution of X
given Y, so that

E(g(X)| Y) = Pg(Y) a.s.
Then

[E(g(X)|Y) —E(g(X)|Y)]];

IA

gl X = X||; + [|Pe(Y) — Pe(V)|;

IA

gl X — X2 + [Peliin||Y — VI3

If P propagates Lipschitz continuity:

[PglLip < [PlLiplg]Lip-

then quantization produces a control of the error.
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Rough auantization

Quantization for Conditional expectation

> Sketch of proof As

Pg(Y)—E(Pg(Y)|Y) L oY)
so that by Pythagoras’ theorem

[E(g(X)| Y)~E(g(X)|Y) | = [|[Pe(Y)~E(Pe(Y)IY)|;+|E(Pg(X)|Y) ~E(g(X)|Y)|];
< ||Pe(Y) — Pe(V)) |3+ [le(X) — g(X)]|[5-
< [Peliin||Y = V)13 + [eliin]|X — X]I2-

> If p # 2, a Minkowski like control is preserved

IN

[E(g(X)|Y) —E(g(X)| V)|, [gluin||X = X]|, + || P&(Y) — Pe(Y)]|,

A

leluin[[X = XI|, + [Peluin|| Y = Y| -
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Application to BSDE

A typical result (BSDE)

> We consider a “standard” BSDE:

T T
Y: = h(X;) —|—/ f(s,Xs, Ys, Zs)ds —/ ZidWs, te [0, T],
t t
where the exogenous process (X:):cpo, 7] is a diffusion
t t
X :X+/ b(s,Xs)ds—i—/ o(s, Xs)dWs, xeR%
0 0

with b, o, h Lipschitz continuous in x, f Lipschitz in (x,y, z) uniformly in t€ [0, T]...
> which is the probabilistic representation of the partially non-linear PDE

deu(t, x) + Lu(t,x) + f(t,x, u(t, x), (Oruo)(t,x)) =0 on [0, T) xRY, u(T,.)=h
with Lg = (Vblg) + 3 Tr(c* D?go).

> ...and its time discretization scheme with step A, = % recursively defined by

Yt,? = h()_(t;,’)7

Yt;: = E(Ytzﬂlftg) + Anf(tI’(17Xt£7E(th+l‘-7:tQ)z<t£)7

- 1 _ 1 _ _

Gp = A B(Yy, Wy, = WollFe) = -E((Yy, = Yg)(We,, - Wy)lF)

where X is the Euler scheme of X defined by
)_<t = )_Qz'(' + b(z,th)An + U(Za)_(t"(')(Wt"

k41

n
k41
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> ...spatially discretized by quantization:

Yo = h(X,)
Yo = Ek(?k-H) + Anﬁ(()?k,]ﬁk(?kﬂ),zk)
. ~ 15 o
with Ck = EEk(Yk+1(WtZ+1 — Wt;(r))

where By = E(-|X).

> A Quantization tree: N = Np + - - - + N,, N, = size of layer t.
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Application to BSDE

@ A quantization tree is not re-combining.
@ But its size can designed a priori (and subject to possible optimization).

Theorem (A priori error estimates (Sagna-P., 2014), (P.,Wilbertz, 2012))

Suppose that all the “Lipschitz” assumptions on b, o, f, h are fulfilled.
(a) "Price”: Then, for every k =0,...,n,

H\_/t; - VkHE < [f]iip Ze(l+[f]LiP)t;1Ki(b, o, T,f, h)H)_(t;" B S\Q"" 2 =0 (FZ) 7
i=k '

(b) “Hedge”:
n—1 _ N n—1 R . %
STA|Cp — Gl < 3 MR Vi — Vi |12+ Ki(b, o, T, f, B)|| X — Xz
k=0 k=0
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Application to BSDE

@ A quantization tree is not re-combining.
@ But its size can designed a priori (and subject to possible optimization).

Theorem (A priori error estimates (Sagna-P., 2014), (P.,Wilbertz, 2012))

Suppose that all the “Lipschitz” assumptions on b, o, f, h are fulfilled.
(a) "Price”: Then, for every k =0,...,n,

Vg = Va2 < [ 3 O 0 K (b, 0, T, £, 1) | Ker — Xep

2 n
=0(— ),
P 2 (N%)

(b) “Hedge":
n—1 _ N n—1 R . %
STA|Cp — Gl < 3 MR Vi — Vi |12+ Ki(b, o, T, f, B)|| X — Xz
k=0 k=0

(c) “RBSDE": The same error bounds hold with Reflected BSDE (so far without Z in f)
by replacing h by hi = h(ty,.) where h(t,X:) is the obstacle process in the resulting
quantized scheme.

What is new (compared to Bally-P. 2003 for reflected BSDE)?
@ +: Z in f for quantization error bounds.
@ +: The square everywhere
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Application to BSDE

How to reduce the (quadratic) quantization error || X — X||2 ?
or to be more precise

Given a (finite) grid I = {x1,%,...,x,} C R?, how to solve

inf [|X —q(X)ll27?
q:RI—T
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Optimal quantization

Voronoi Quantization

> Let X : (Q,S,P) — (R?, Bor(R?),|.|) be a random vector such that
E|X|? < 400 for some p € (0, 00).
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Optimal quantization

Voronoi Quantization

> Let X : (Q,S,P) — (R?, Bor(R?),|.|) be a random vector such that
E|X|? < 400 for some p € (0, 00).

> Given a (finite) “grid’ T = {x1,x,...,x,} CR? and ¢ : RY — T

X = a(X) llp = lldist(X, T)]lp.
~—~—

er
This suggests to discretize of the random vector X using a Nearest Neighbor projection
as a quantization function q.

o Let (G(IN)), be a (Borel) Voronoi partition of R? generated by T, i.e. such that

<i<N

d .
i : — X < — Xj .
G(r c {z ER:|lz—x] < l;njgNHz XJH}

o Let g := Proj; : RY — T be the induced Nearest Neighbor projection,

N
£ xilgm(©)
i=1
so that € — 7 (&)|| = dist(&, T).

Gilles PAGES (LPMA-UPMC) Improved error bounds for quantization based numeric: 6-9'"" October, 2015 11 /38



Optimal quantization

> We define the Voronoi Quantization of the random vector X as

N
X' = Projr(X) =Y xilgm(X).
i=1

> This is a purely geometric optimization only depending on the norm.
> The LP-mean quantization error induced by a grid T (p € (0, +00)) induced by a grid
I c R? with size [[| < N, N € N

Definition (LP-mean quantization error)

& (XiT) = X = X"l|, = |dist(X, D)l = | min |x - x\Hp.
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Optimal quantization

Voronoi Quantization
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Optimal quantization = Optimal LP-mean auantization problem

Optimal LP-mean quantization problem

> Second idea to minimize the quantization error
Optimally fit the grid I' to (the distribution of P, ) of X for a given “complexity”.

> It amounts to solve the optimal LP-mean quantization problem at level N, N > 1.

Definition (Optimal LP-mean quantization error at level N)

We define the optimal LP-mean quantization error at level N as

ep,n(X) = inf{

min|X—x|H :FCRY, <N}
xer P

> One shows the more general optimality result
epn(X) = inf{| X = =||, : =€ LP(RY), |Z(Q)| < N}.

i.e. no possible alternative than quantization
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Optimal quantization Optimal LP-mean quantization problem

Theorem (Kieffer, Cuesta-Albertos, P., Graf-Luschgy, 1988 — 2000)

(a) EXISTENCE AN OPTIMAL QUANTIZER: For every level N > 1, there exists (at least)
one LP-optimal quantization grid TNP at level N.

~rN,2 ~rN,2
(b) If p =2, STATIONARITY PROPERTY /SELF-CONSISTENCY: ]E(X | X" ) =X"".
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Optimal quantization Optimal LP-mean quantization problem

Theorem (Kieffer, Cuesta-Albertos, P., Graf-Luschgy, 1988 — 2000)

(a) EXISTENCE AN OPTIMAL QUANTIZER: For every level N > 1, there exists (at least)
one LP-optimal quantization grid TNP at level N.

~rN,2 ~rN,2
(b) If p =2, STATIONARITY PROPERTY /SELF-CONSISTENCY: ]E(X | X" ) =X"

> One checks that

epn(X)1l0 a N — +oco.

Let (zv)w>1 be an everywhere dense sequence in R?
e n(X) < ep(X,{z1,...,2,}) L0 N — +oc.
by the Lebesgue dominated convergence theorem.

> But...at which rate ?
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Optimal quantization ~ Quantization Rates/Zador's Theorem

Rates of Optimal Quantization

Theorem (Zador's Theorem)

(a) SHARP ASYMPTOTIC (Zador, Kieffer, Bucklew & Wise, Graf & Luschgy (2000)):

1
Let X € LPT(RY) with distribution Px = p.\? + v.

Then ) o/ (d+p)/d
Jim 0 e () = Qo+ ([ el dng)

where Q. = infy N - epn (U([0,1]%)).
(b) NON-ASYMPTOTIC (Pierce, Luschgy-P. (2006)):

Let p' > p. There exists C, .4 € (0,+00) such that, for every R?-valued X r.v.

1

YN>1, en(X)< Copaop(X). N7

Remarks. o o,/ (X) := inf,cpa [|X — a||y < +00 is the L' -(pseudo-)standard deviation.

1 . . .
e N4 is known as the curse of dimensionality.
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Optimal quantization ~ Numerical computation of auantizers

Numerical computation of quantizers

> (Nearly) optimal grids can be computed by optimization algorithms :

@ When d =1 (or even d = 2): deterministic Newton-Raphson like methods

@ In higher dimension (d > 2 or 3), stochastic optimization methods based on a
stochastic gradient approach:
o Competitive Learning Vector Quantization algorithm (CLVQ),

o (Fixed point) randomized Lloyd's | procedure.

both based on Monte Carlo simulations.

In fact, Optmial quantization appears as

Compressed Monte Carlo method

Gilles PAGES (LPMA-UPMC) Improved error bounds for quantization based numeric: 6-9'"" October, 2015 17 / 38



Optimal quantization ~ Numerical computation of auantizers

On the numerical computation optimal quantizers (p = 2)

Computing optimal grids: the quadratic distorsion (p = 2)

Dn(x) :=E 121ii<nN||X — x|~
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Optimal quantization ~ Numerical computation of auantizers

On the numerical computation optimal quantizers (p = 2)

Computing optimal grids: the quadratic distorsion (p = 2)

Dn(x) :=E 121ii<nN||X — x|~

min Dy(x) <= min e(X;T)
x€(RI)N [FI<N
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Optimal quantization ~ Numerical computation of auantizers

On the numerical computation optimal quantizers (p = 2)

Computing optimal grids: the quadratic distorsion (p = 2)

Dn(x) :=E 121'i<nN||X — x|~

min Dy(x) <= min e(X;T)
x€(RI)N [FI<N

> If ||-|| is the canonical Euclidean norm on R? and x has distincts components
1
VDn(x) = > (E[(X,— — X)l{xec,-(x)}})

1<i<N
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Optimal quantization ~ Numerical computation of auantizers

On the numerical computation optimal quantizers (p = 2)

Computing optimal grids: the quadratic distorsion (p = 2)

Dn(x) :==E min [|X — x|
1<I<N
min Dy(x) <= min e(X;T)
xE(RIN IFI<N
> If ||-|| is the canonical Euclidean norm on R? and x has distincts components
1
VDn(x) = > (E[(X,— — X)]-{XeC,-(x)}])

> The grid Y = {x{, .. Xy} is L2-optimal iff x**V € argminDy.

1<i<N

Hence
" is [*-optimal <= VDy(x"") = 0.
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Optimal quantization ~ Numerical computation of auantizers

On the numerical computation optimal quantizers (p = 2)

Computing optimal grids: the quadratic distorsion (p = 2)

Dn(x) :==E min [|X — x|
1<I<N
min Dy(x) <= min e(X;T)
xE(RIN IFI<N
> If ||-|| is the canonical Euclidean norm on R? and x has distincts components
1
VDn(x) = > (E[(X,— — X)]-{XeC,-(x)}])

> The grid Y = {x{, .. Xy} is L2-optimal iff x**V € argminDy.

1<i<N

Hence

" is [*-optimal <= VDy(x"") = 0.
> Connection critical point and stationarity:
E(XI{XEC;(x)})
—= X =E(X|XY

VDu(x) =0 <= xi= ,i=1...,N
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,u:PX, Ci(x, . .. XN)—[X_; H_l] i=1,...,N,.
f'”f]P’ (df)
RN

= Evaluation of Voronoi cells, Gradient and Hessian is simple ~~
Newton-Raphson

—1,...,N

Xi =

© Stochastic Gradient Method: CLVQ

o Simulate &1,&2, ... independent copies of X

o Generate step sequence 1,72, . . .
Usually: step vy, = Bi-m N0 o y=n=0

o Grid updating n+— n+ 1:
Competition: select winner index: i* € argmin;|x” — &p|

. xI = X+ yn (X — €n)

Learning: XJI."H — XJ,-", folrj £
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,u:PX, Ci(x, . .. XN)—[X_; H_l] i=1,...,N,.
f'”f]P’ (d€)
MERERL

= Evaluation of Voronoi cells, Gradient and Hessian is simple ~~
Newton-Raphson

i=1,...,N

Xi =

© Stochastic Gradient Method: CLVQ

o Simulate &1,&2, ... independent copies of X
o Generate step sequence 1,72, . . .
Usually: step vy, = Bi-m N0 o y=n=0
o Grid updating n+— n+ 1:
Competition: select winner index: i* € argmin;|x” — &p|
X = x4+ (Xt —&n)

Learning: i
£ XJ."Jrl =X, for j # i*.

Q@ LLoYD's algorithm as a randomized fixed-point procedure.
o Initial grid M@ = {xl,...,x,(\),}
o Grid updatmg n— n+1:
@) X,((n+1) —E(X| < _ X,((n))
(i) T = (™D k=12 N} and X7 = Proj (ni1) (X),
o so that [ X — X™"™|, < IX — X
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,u:PX, Ci(x, . .. XN)—[X_; H_l] i=1,...,N,.
f'”f]P’ (d€)
MERERL

= Evaluation of Voronoi cells, Gradient and Hessian is simple ~~
Newton-Raphson

i=1,...,N

Xi =

© Stochastic Gradient Method: CLVQ

o Simulate &1,&2, ... independent copies of X
o Generate step sequence 1,72, . . .
Usually: step vy, = Bi-m N0 o y=n=0
o Grid updating n+— n+ 1:
Competition: select winner index: i* € argmin;|x” — &p|
X = x4+ (Xt —&n)

Learning: i
£ XJ."Jrl =X, for j # i*.

Q@ LLoYD's algorithm as a randomized fixed-point procedure.
o Initial grid M@ = {xl,...,x,(\),}
o Grid updatmg n— n+1:
@) X,((n+1) —E(X| < _ X,((n))
(i) T = (™D k=12 N} and X7 = Proj (ni1) (X),
o so that [ X — X™"™|, < IX — X

2 apDrog -
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Numerical computation of quantizers

Optimal quantization

Figure: Two N-quantizers related to N(0; /) of size N = 500. ..

(with J. Printems)

Before. . .

Gilles PAGES (LPMA-UPMC)
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Figure: ... After
Figure: A Quantizer for N'(0, k) of size N = 500 in (R?, ||-||2)-
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Optimal quantization =~ Optimal Quantizers

Figure: An N-quantization of X ~ A/(0; ) with coloured weights: P(X € C5(I")), a€ T
(with J.Printems)
d

fd 2(

> Weights: P(X € G,(IN) = C* X1 2) (when N is large).

> Local inertia: a — E|X — af? l{XeCa(r)} ~ % (for fixed N).
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Optimal quantization ~ Optimal Quantizers

As a result for Gaussian vectors. . .

> Instant search for the unique optimal quantizer using a Newton-Raphson descent on
R" ... with an arbitrary accuracy.

> For N(0;1) and N = 1,...,500, tabulation within 10~** accuracy of optimal
N-quantizers and textcolorbluecompanion parameters:

a™ = (agN), e, (MSVN))

and
P(Xe G(a™), i=1,...N, and |X - X",

> For d =1 up to 10? Also available for Gaussian N(0, /) (1 < N < 4000).

Download at our WEBSITE :

www.quantize.maths-fi.com
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Quantization and Cubature = Error estimates

Further Error Estimates

Proposition (First order)

IfTN* js [1-optimal at level N > 1

en(X) =E[X = X" = sup [EF(X)—EFX"")]
[FlLip<1

inf{ sup |[EF(X)—EF(Y)|, card(Y(Q)) < N}
[Flpp<1

= [*-Wasserstein distance between £(X) and the set Py.

i.e. Quantization is optimal for the class of Lipschitz functions.
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Quantization and Cubature = Error estimates

Further Error Estimates

Proposition (First order)

IFTN* s [1-optimal at level N > 1

en(X)=E[X - X" = sup [EF(X)—EF(X" )|
[FlLip<1

inf{ sup [EF(X) —EF(Y)|, card(Y(Q)) < /v}

[FlLip<t

= [*-Wasserstein distance between £(X) and the set Py.

i.e. Quantization is optimal for the class of Lipschitz functions.

Proposition (Second order)

If Fe CLl,-p and the grid T is stationary (e.g. because it is L*-optimal), i.e.
X" = E(X|X"),

then a Taylor expansion yields

EF(X)—EFX")| = |EF(X)—EFX")—EDF(X").(X —

IA

[DF]io - EIX = XTI = exn(X)".
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Quantization and Cubature  Error estimates

> Furthermore, if F is convex, then Jensen's inequality implies for stationary '

EF(X") <EF(X).
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Applications
Further Applications

What are these applications using optimal quantization grids?
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Applications  Distortion mismatch

A new result : distortion mismatch/ L°-rate optimality, s > p

> Let I'%’), N > 1, be a sequence LP-optimal grids.

What about e;(X, I'y) (L°-mean quantization error) when X € L;4(P) for s > p?

Theorem (LP-L°-distortion mismatch, Graf-Luschgy-P. 2005, Luschgy-P. 2015)

(a) Let X € Lp,(P) and let (r%’))Nzl be an LP-optimal sequence for grids. Let
s€ (p,p+d). If
Xe La=t(p), § > 0,

sd
d+p—s

(note that > s and lims_piq ﬁis = +00), then
WNé es(rs\’,’),X) < +o00.

(b) IfPx = f(|x]).Aa(d&) (radial density) then 6 = 0 is admissible.

(c) IFE|X|75— = +oo, then limy N¢es(T'?), X) = +o0.

> Possible perspectives: error bounds for quantization based numerical schemes for
BSDE with a quadratic Z term ?

> So far, an application to quantized non-linear filtering.
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Application to non-linear filtering

Signal process (Xk)k>o is an R%-valued Markov chain.

The observation process ( Yk)«>o0 is a sequence of R%valued random vectors such
that

(Xks Y)k>o0 is a Markov chain.

The conditional distribution
L(Yi| Xe=1, Yi—1, Xk) = gx(Xk=1, Ye—1, Xk, ¥) Aq(dy)

@ Aim : compute

Mypn(dh) = B(Xic € | Yo =y, -, Yo = y2)

o Kallianpur-Streibel formula: set y = yo.n = (yo, ..., ¥n) a vector of observations
Ty.nf
My.a(dx) = M, ,f = 2"
Y, ( ) Y 7Ty,n1

with the normalized filter 7y, , » defined by

Typmnf = E(F(Xo)Lyonn)  with Ly, 0= [ ] (X1, ye—1, Xe, y),

k=1

solution to both a forward and a backward inductionsbased on the kernels

Hy ikh(x) = E(h(Xk)gk(x; yk—1, Xi; yi)|[ X1 = x),  Hy,of (x) = E(f(X0)),
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o Forward: Start from
Ty,0 = H, ,0

and define by a forward induction

7Ty’kf:7'l'y7k71H7kf, k:l,‘..,n.

@ Backward: We define by a backward induction

uy,n(F)(x) f(x),
Uy’k_l(f) = Hy,kuy,k(f), k:O,...,n.

so that
mynf = uy,—1(f)

This formulation is useful in order to establish the quantization error bound.
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Quantized Kallianpur-Streibel formula (P.-Pham (2005))

@ Quantization of the kernel:
Hyg () — Hyg, i f (x) = E(F(Xi) i (%, Yiem1, X, ¥i) [ Xie-1 = x)

@ Forward quantized dynamics (1):

%\yka:;r\y,kfli:l,kf, k=1,...,n.
o Forward quantized dynamics (I1):

~ — 7, . f
A, (dx) = M, .f = "0

ﬂ-.VO:m”l
(finitely supported unnormalized filter satisfies formally the same recursions)

o Weight computation: If Xo =X, Ty = {xi,....x5,} then

A,.q(dx) = ZI‘I WO with T, =Tl 0(Lry)-
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From Lip to 6-Liploc assumptions

@ Standard Hyipassumption for the conditional densities gk(.,y,.,y’): bounded by K,
and Lipschitz continuity.

|g‘<(X7an/7y/)_gk(?7y7?,7y,)| < [gk]LiP(yay/)(‘X_?|+|X/_S<\/|)‘

@ The kernels Pi(x,d&) = P(Xx € d€ | Xk—1 = x) propagate Lipschitz continuity with
coefficient [Px]rips such that

max [Pk]Lip < +00
k=1,...,n

Aim: Switch to a 6-local Lipschitz assumption (6 : R — Ry, T 400 as |x| T +00).
Ih(x, ') = h(%, &) < [Hloc (1x — %] + X' = %) (1 +60x) + 0() + () + 0(3"))

o New (Hiiploc) assumption: the functions gi are still bounded by K, and 6-local
Lipschitz continuous

lgk(x,y, X", ¥y )—eu(X, v, X', y')| < [gklioc(y, ¥) (Ix=%|+|x"=X'|) (14+0(x)+0(x")+0(X)+0(X"))

o The kernels Py(x, d&) = P(Xk € d€| Xk—1 = x) propagate 0-local Lipschitz
continuity with coefficient [Pklioc < 400.
® The kernels Pi(x, d§) propagate 6-control: maxo<k<n—1 Pk(0)(x) < C(1+ 6(x)).

Typical example: X = _f,}l (Euler scheme with step A, = L), 6(¢) = |£]*, a > 0.
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Theorem

Let s€ (1,1+ 2) and 6(x) = |x

*, a€ (0, ).
s—1 d
Assume (X«) and (gk) satisfy (Hfipm) (in particular (Xi) propagates 0-Lipschitz

2ds
continuity) and assume X, € L3+2-25, k =0,...,n. Then

Ny o f — My f]? < Bi(f,y) 1 Xk — Xl (1)
¢2( Z —_—
= Xk—Xl3<ekN, ¢ (Mismatch!!)
with _
Ga(y) = my,nl  and ¢n(y) = 7y.nl,
BE(f,y) = 2[PI P + 20IF |2 Rok + | Flloo R,
where
g1 M” 2
Rk =~ [geThoc + lelhc + (Z[Phoc (L+ [Phoc)lgirmhoc ) |
g

and

n A X A
M! =2 kjrgax n(]E(H(Xk) s—1 ) + E(Q(Xk) E=1) ) .

=0,...,
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Extensions

o Greedy quantization (Luschgy-P., JAT, 2014): sequence (any)n>1 such that
{a1,...,an}, N > 1, is LP-rate optimal

to spare RAM.
any1 = argmingcgaep({ar, ..., an} U {¢} X)
Numerical schemes can be successfully implemented with this quantization.

@ Fast recursive quantization (in progress) in medium dimension (Sagna-P. , 2014)
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Numerical illustrations

@ Risk-neutral price under historical probability (B&S model, Euler scheme)
dy; = (rYt + uZ) dt + ZydW,
o
with
Y: = h(X;) = (Xt — K)+.
> Model parameters: r =0.1; T =0.1; 0 = 0.25; S = K = 100.
> Quantization tree calibration: 7.510° MC and NbLloyd = 1.

> Reference callgs(K, T) = 3.66, Zo = 14.148. If p€ {0.05,0.1,0.15,0.2},
o n=10and Ny = N =20 : Q-price = 3.65,20 = 14.06.

o n=10 and Ny = N = 40, Q-price = 3.66, Zy = 14.08.
> Computation time :
— 5 seconds for one contract.
— Additional contracts for free (more than 10°/s).
> Romberg extrapolation price = 2 x Q-price(N:)-Q-price(N1) does improve the price
(and the "hedge”).
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Numerical illustrations

o Bid-ask spreads on interest rates :

dy, = (rYt + 227 4 (R — r)min (Yt - é,o)) dt + ZedW,
o2 ag

with

Y, = h(X;) = (Xr — K1)y —2(X; — Ka)y, Ki =95 Kp=105.

-
p=0.05r=0010=02 T =025 R=0.06
> Reference price = 2.978, Z) = 0.553.

> Quantized prices:
o n=10and Ny = N =20 : Q-price = 2.96, Zp = 0.515.
e n=10 and Ny = N = 40, Q-price = 2.97, Zy = 0.531.
> Romberg extrapolation price = 2 x Q-price(/N>)-Q-price(/N1)~ 2.98
and Romberg Zo ~ 0.547.
Comparable results though slightly less precise, due to the non linearity in Z
compensated by the difference of convex functions. ...
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Multidimensional example

> Due to J.-F. Chassagneux: W d-dimensional B.M.
dXt - th, 7dyt = f‘(t7 Yt, Zt)dt - Zt N th
with f(t,y,z) = (z1+... 4+ z4) (y — ). > Solution :

€t €

Y= z= &
¢ 1+et7 ¢ (1+et)2

with e: = exp(x1 + ...+ x4 + t).

We set t = 0.5, d = 2,3, so that Yo = 0.5 and Z, = 0.24, for every i =1,...,d.
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Figure: Convergence rate of the quantization error for the multidimensional example). Abscissa axis: the size
N =5,...,100 of the quantization. Ordinate axis: The error | Yy — Y0N| and the graph N — a/N + b, where
3 and b are the regression coefficients. d = 3.
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Bon, Vlad on s’y remet quand?

Faut profiter tant qu'on est jeunes !!
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