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Rough quantization

What is Vector Quantization?

Has its origin in the fields of signal processing in the late 1940’s

Describes the discretization of a random signal and analyses its
recovery/reconstruction from the discretized one.

Examples: Pulse-Code-Modulation (PCM), JPEG-Compression

Extensive Survey about the IEEE-History: IEEE on Inf. Theory, 1982, [Gersho-Gray
eds]

Mathematical Foundation of Quantization Theory: S. Graf & H. Luschgy
in Foundation of quantization of probability measures, LNM 2000.

P. : Survey on Optimal Vector Quantization and its applications for numerics,
ESAIM Proc. & Surveys, CEMRACS’13 course, 2015.
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Rough quantization

At the beginning was rough quantization

B Let X : (Ω,S,P)→ (Rd ,Bor(Rd), | · |) be a random vector such that

E|X |p < +∞ for some p ∈ (0,+∞).

B Let q : Rd → Γ ⊂ Rd be a Borel function, Γ a finite subset of Rd .bX = q(X )

is called a quantization of X . It aims at being a discretization of X

B Example: if X is [0, 1]-valued, one may choose

q(x) =
bNxc

N
, x ∈ [0, 1]

or

q(x) =
2k − 1

2N
, if

k − 1

N
≤ x ≤ k

N
, x ∈ [0, 1]

B Lp-mean quantization error:

ep,N(X ; q) =
‚‚X − q(X )

‚‚
p
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Gilles PAGÈS (LPMA-UPMC) Improved error bounds for quantization based numerical schemes s 6-9th October, 2015 3 / 38



Rough quantization

At the beginning was rough quantization

B Let X : (Ω,S,P)→ (Rd ,Bor(Rd), | · |) be a random vector such that

E|X |p < +∞ for some p ∈ (0,+∞).

B Let q : Rd → Γ ⊂ Rd be a Borel function, Γ a finite subset of Rd .bX = q(X )

is called a quantization of X . It aims at being a discretization of X

B Example: if X is [0, 1]-valued, one may choose

q(x) =
bNxc

N
, x ∈ [0, 1]

or

q(x) =
2k − 1

2N
, if

k − 1

N
≤ x ≤ k

N
, x ∈ [0, 1]

B Lp-mean quantization error:

ep,N(X ; q) =
‚‚X − q(X )

‚‚
p
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Rough quantization

What is it for? Quantization for Cubature

Let Γ = {x1, . . . , xN }. Assume that we have access to the elementary quantizers xi and
the weights

wi (q) := P(bX = xi ), i = 1, . . . ,N.

=⇒ The computation of E F (bX ) for some a function F : Rd → R becomes
straightforward:

E F (bX ) =
NX

i=1

wi (Γ)F (xi ).

B If F is Lipschitz continuous, a first error estimate reads

|EF (X )− E F (bX )| ≤ [F ]Lip E‖X − bX‖.
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Rough quantization

Quantization for Conditional expectation

B Applications in Numerical Probability = conditional expectation approximation.

bX = qX (X ) bY = qY (Y )

Proposition (Pythagoras’ Theorem for conditional expectation)

Let P(y , du) = L(X |Y = y) be a regular version of the conditional distribution of X
given Y , so that

E
`
g(X ) |Y

´
= Pg(Y ) a.s.

Then ‚‚E`g(X ) |Y
´
− E

`
g(bX ) | bY ´‚‚2

2
≤ [g ]2

Lip

‚‚X − bX‚‚2

2
+
‚‚Pg(Y )− Pg(bY )

‚‚2

2

≤ [g ]2
Lip

‚‚X − bX‚‚2

2
+ [Pg ]2

Lip

‚‚Y − bY ‚‚2

2
.

If P propagates Lipschitz continuity:

[Pg ]Lip ≤ [P]Lip[g ]Lip.

then quantization produces a control of the error.
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Rough quantization

Quantization for Conditional expectation

B Sketch of proof As

Pg(Y )− E
`
Pg(Y ) | bY ´ L2(P)

⊥ σ(bY )

so that by Pythagoras’ theorem

‚‚E`g(X ) |Y
´
−E
`
g(bX )|bY ´‚‚2

2
=
‚‚Pg(Y )−E

`
Pg(Y )|bY ´‚‚2

2
+
‚‚E`Pg(X )|bY ´−E

`
g(bX )|bY ´‚‚2

2

≤
‚‚Pg(Y )− Pg(bY )

´‚‚2

2
+
‚‚g(X )− g(bX )

‚‚2

2
.

≤ [Pg ]2
Lip

‚‚Y − bY ´‚‚2

2
+ [g ]2

Lip

‚‚X − bX‚‚2

2
.

B If p 6= 2, a Minkowski like control is preserved

‚‚E`g(X ) |Y
´
− E

`
g(bX ) | bY ´‚‚

p
≤ [g ]Lip

‚‚X − bX‚‚
p

+
‚‚Pg(Y )− Pg(bY )

‚‚
p

≤ [g ]Lip

‚‚X − bX‚‚
p

+ [Pg ]Lip

‚‚Y − bY ‚‚
p
.
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Application to BSDE

A typical result (BSDE)

B We consider a “standard” BSDE:

Yt = h(XT ) +

Z T

t

f (s,Xs ,Ys ,Zs)ds −
Z T

t

ZsdWs , t∈ [0,T ],

where the exogenous process (Xt)t∈[0,T ] is a diffusion

Xt = x +

Z t

0

b(s,Xs)ds +

Z t

0

σ(s,Xs)dWs , x ∈ Rd .

with b, σ, h Lipschitz continuous in x , f Lipschitz in (x , y , z) uniformly in t∈ [0,T ]. . .

B which is the probabilistic representation of the partially non-linear PDE

∂tu(t, x) + Lu(t, x) + f (t, x , u(t, x), (∂∗x uσ)(t, x)) = 0 on [0,T )× Rd , u(T , .) = h

with Lg = (∇b|g) + 1
2
Tr
`
σ∗D2gσ

´
.

B . . . and its time discretization scheme with step ∆n = T
n

recursively defined by

Ȳtnn = h(X̄tnn ),

Ȳtn
k

= E(Ȳtn
k+1
|Ftn

k
) + ∆nf

`
tn
k , X̄tn

k
,E(Ȳtn

k+1
|Ftn

k
), ζ̄tn

k

´
,

ζ̄tn
k

=
1

∆n
E
`
Ȳtn

k+1
(Wtn

k+1
−Wtn

k
)|Ftk

´
=

1

∆n
E
`
(Ȳtn

k+1
− Ȳtn

k
)(Wtn

k+1
−Wtn

k
)|Ftk

´
where X̄ is the Euler scheme of X defined by

X̄tn
k+1

= X̄tn
k

+ b(n
k , X̄tn

k
)∆n + σ(n

k , X̄tn
k
)(Wtn

k+1
−Wtn

k
).
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Application to BSDE

B . . . spatially discretized by quantization:

bYn = h(bXn)bYk = bEk(bYk+1) + ∆nfk
`bXk , bEk(bYk+1), bζk´

with bζk =
1

∆n

bEk(bYk+1(Wtn
k+1
−Wtn

k
))

where bEk = E(·|bXk).

B A Quantization tree: N = N0 + · · ·+ Nn, Nk = size of layer tn
k .

Figure: A typical 1-dimensional quantization treeGilles PAGÈS (LPMA-UPMC) Improved error bounds for quantization based numerical schemes s 6-9th October, 2015 8 / 38



Application to BSDE

A quantization tree is not re-combining.

But its size can designed a priori (and subject to possible optimization).

Theorem (A priori error estimates (Sagna-P., 2014), (P.,Wilbertz, 2012))

Suppose that all the “Lipschitz” assumptions on b, σ, f , h are fulfilled.

(a) “Price”: Then, for every k = 0, . . . , n,

‚‚Ȳtn
k
− bYk

‚‚2

2
≤ [f ]2

Lip

nX
i=k

e(1+[f ]Lip)tni Ki (b, σ,T , f , h)
‚‚X̄tni

− bXtni

‚‚2

2
= O

„
n

N
2
d

«
,

(b) “Hedge”:

n−1X
k=0

∆n

‚‚ζ̄tn
k
− bζk‚‚2

2
≤

n−1X
k=0

e(1+[f ]Lip)tnk
‚‚Ytn

k+1
− bYtn

k+1

‚‚2

2
+ Kk(b, σ,T , f , h)

‚‚Xtn
k
− bXtn

k

‚‚2

2

(c) “RBSDE”: The same error bounds hold with Reflected BSDE (so far without Z in f )
by replacing h by hk = h(tn

k , .) where h(t,Xt) is the obstacle process in the resulting
quantized scheme.

What is new (compared to Bally-P. 2003 for reflected BSDE)?

+: Z in f for quantization error bounds.

+: The square everywhere
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Application to BSDE

How to reduce the (quadratic) quantization error ‖X − X̂‖2 ?

or to be more precise

Given a (finite) grid Γ = {x1, x2, . . . , xN } ⊂ Rd , how to solve

inf
q:Rd→Γ

‖X − q(X )‖2 ?
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Optimal quantization

Voronoi Quantization

B Let X : (Ω,S,P)→ (Rd ,Bor(Rd), |.|) be a random vector such that

E|X |p < +∞ for some p ∈ (0,∞).

B Given a (finite) “grid” Γ = {x1, x2, . . . , xN } ⊂ Rd and q : Rd → Γ

‖X − q(X )| {z }
∈Γ

‖p ≥ ‖dist(X , Γ)‖p.

This suggests to discretize of the random vector X using a Nearest Neighbor projection
as a quantization function q.

Let
`
Ci (Γ)

´
1≤i≤N

be a (Borel) Voronoi partition of Rd generated by Γ, i .e. such that

Ci (Γ) ⊂
n

z ∈ Rd : ‖z − xi‖ ≤ min
1≤j≤N

‖z − xj‖
o
.

Let q := ProjΓ : Rd → Γ be the induced Nearest Neighbor projection,

ξ 7→
NX

i=1

xi1Ci (Γ)(ξ).

so that ‖ξ − πΓ(ξ)‖ = dist(ξ, Γ).
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Optimal quantization

B We define the Voronoi Quantization of the random vector X as

bX Γ = ProjΓ(X ) =
NX

i=1

xi1Ci (Γ)(X ).

B This is a purely geometric optimization only depending on the norm.
B The Lp-mean quantization error induced by a grid Γ (p ∈ (0,+∞)) induced by a grid
Γ ⊂ Rd with size |Γ| ≤ N, N ∈ N

Definition (Lp-mean quantization error)

ep(X ; Γ) = ‖X − bX Γ‖p = ‖dist(X , Γ)‖p =
‚‚‚min

x∈Γ
|X − x |

‚‚‚
p
.
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Optimal quantization

Voronoi Quantization
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Gilles PAGÈS (LPMA-UPMC) Improved error bounds for quantization based numerical schemes s 6-9th October, 2015 13 / 38



Optimal quantization

Voronoi Quantization

X (ω)
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Optimal quantization Optimal Lp -mean quantization problem

Optimal Lp-mean quantization problem

B Second idea to minimize the quantization error

Optimally fit the grid Γ to (the distribution of P
X

) of X for a given “complexity”.

B It amounts to solve the optimal Lp-mean quantization problem at level N, N ≥ 1.

Definition (Optimal Lp-mean quantization error at level N)

We define the optimal Lp-mean quantization error at level N as

ep,N(X ) := inf
n‚‚‚min

x∈Γ
|X − x |

‚‚‚
p

: Γ ⊂ Rd , |Γ| ≤ N
o
.

B One shows the more general optimality result

ep,N(X ) = inf
˘
‖X − Ξ‖p : Ξ∈ Lp(Rd), |Ξ(Ω)| ≤ N

¯
.

i .e. no possible alternative than quantization
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Optimal quantization Optimal Lp -mean quantization problem

Theorem (Kieffer, Cuesta-Albertos, P., Graf-Luschgy, 1988→ 2000)

(a) Existence an optimal quantizer: For every level N ≥ 1, there exists (at least)
one Lp-optimal quantization grid ΓN,p at level N.

(b) If p = 2, stationarity property/self-consistency: E
“

X | bX ΓN,2
”

= bX ΓN,2

.

B One checks that

ep,N(X ) ↓ 0 as N → +∞.

Let (zN)N≥1 be an everywhere dense sequence in Rd

ep,N(X ) ≤ ep

`
X , {z1, . . . , zN }

´
↓ 0 N → +∞.

by the Lebesgue dominated convergence theorem.

B But. . . at which rate ?
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Optimal quantization Quantization Rates/Zador’s Theorem

Rates of Optimal Quantization

Theorem (Zador’s Theorem)

(a) Sharp asymptotic (Zador, Kieffer, Bucklew & Wise, Graf & Luschgy (2000)):

Let X ∈ Lp+(Rd) with distribution PX = ϕ.λd
⊥
+ ν.

Then

lim
N→∞

N
1
d · ep,N(X ) = Qp,‖·‖ ·

„Z
Rd

‖ϕ‖d/(d+p) dλd

«(d+p)/d

where Qp,‖·‖ = infN N
1
d · ep,N

`
U([0, 1]d)

´
.

(b) Non-asymptotic (Pierce, Luschgy-P. (2006)):

Let p′ > p. There exists Cp,p′,d ∈ (0,+∞) such that, for every Rd -valued X r.v.

∀N ≥ 1, ep,N(X ) ≤ Cp,p′,d σp′(X ).N−
1
d .

Remarks. • σp′(X ) := infa∈Rd ‖X − a‖p′ ≤ +∞ is the Lp′ -(pseudo-)standard deviation.

• N
1
d is known as the curse of dimensionality.
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Optimal quantization Numerical computation of quantizers

Numerical computation of quantizers

B (Nearly) optimal grids can be computed by optimization algorithms :

When d = 1 (or even d = 2): deterministic Newton-Raphson like methods

In higher dimension (d ≥ 2 or 3), stochastic optimization methods based on a
stochastic gradient approach:

Competitive Learning Vector Quantization algorithm (CLVQ),

(Fixed point) randomized Lloyd’s I procedure.

both based on Monte Carlo simulations.

In fact, Optmial quantization appears as

Compressed Monte Carlo method
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Optimal quantization Numerical computation of quantizers

On the numerical computation optimal quantizers (p = 2)

Computing optimal grids: the quadratic distorsion (p = 2)

DN(x) := E min
1≤i≤N

‖X − xi‖2.

min
x∈(Rd )N

DN(x)⇐⇒ min
|Γ|≤N

e2(X ; Γ)

B If ‖·‖ is the canonical Euclidean norm on Rd and x has distincts components

∇DN(x) =
1

2

“
E
h`

xi − X
´
1{X∈Ci (x)}

i”
1≤i≤N

B The grid Γ∗,N = {x∗1 , . . . x∗N } is L2-optimal iff x∗,N ∈ argminDN .

Hence
Γ∗,N is L2-optimal ⇐⇒ ∇DN

`
x∗,N

´
= 0.

B Connection critical point and stationarity:

∇DN(x) = 0 ⇐⇒ xi =
E
“

X1{X∈Ci (x)}

”
P
`
X ∈ Ci (x)

´ , i = 1, . . . ,N

⇐⇒ bX x = E
`
X | bX x´
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Optimal quantization Numerical computation of quantizers

d = 1 µ = PX , Ci (x1, . . . , xN ) = [xi− 1
2
, xi+ 1

2
], i = 1, . . . ,N,.

xi =

R x
i+ 1

2
x
i− 1

2

ξPX (dξ)

µ([xi− 1
2
, xi+ 1

2
]
, i = 1, . . . ,N

⇒ Evaluation of Voronoi cells, Gradient and Hessian is simple  
Newton-Raphson

d ≥ 2 1 Stochastic Gradient Method: CLVQ
Simulate ξ1, ξ2, . . . independent copies of X
Generate step sequence γ1, γ2, . . .
Usually: step γn = A

B+n
↘ 0 or γn = η ≈ 0

Grid updating n 7→ n + 1:

Competition: select winner index: i∗ ∈ argmini |xn
i − ξn|

Learning:

(
xn+1
i∗ := xn

i∗ + γn(xn
i∗ − ξn)

xn+1
j := xn

j , for j 6= i∗.

2 Lloyd’s algorithm as a randomized fixed-point procedure.
Initial grid Γ(0) = {x0

1 , . . . , x
0
N}

Grid updating n 7→ n + 1:

(i) x
(n+1)
k = E

`
X | bX Γ(n)

= x
(n)
k

´
(ii) Γ(n+1) = {x (n+1)

k , k = 1 : N} and bX Γ(n+1)
= Proj

Γ(n+1)

`
X
´

,

so that ‖X − bX Γ(n+1)‖2 ≤ ‖X − bX Γ(n)‖2

3 “Batch” approach [. . . ]
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Optimal quantization Numerical computation of quantizers

Figure: Two N-quantizers related to N (0; I2) of size N = 500. . .

(with J. Printems)

Before. . .
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Optimal quantization Optimal Quantizers

Figure: . . . After
Figure: A Quantizer for N (0, I2) of size N = 500 in (R2, ‖·‖2).
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Optimal quantization Optimal Quantizers

Figure: An N-quantization of X ∼ N (0; I2) with coloured weights: P
`
X ∈ Ca(Γ)

´
, a∈ Γ.

(with J.Printems)

B Weights: P
`
X ∈ Ca(Γ)

´
≈ C st f

d
d+2

X (a)

N
1
d

(when N is large).

B Local inertia: a 7−→ E|X − a|21{X∈Ca(Γ)} ≈
en(Γ,X )

N
(for fixed N).
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Optimal quantization Optimal Quantizers

As a result for Gaussian vectors. . .

B Instant search for the unique optimal quantizer using a Newton-Raphson descent on
RN . . . with an arbitrary accuracy.

B For N (0; 1) and N = 1, . . . , 500, tabulation within 10−14 accuracy of optimal
N-quantizers and textcolorbluecompanion parameters:

α(N) = (α
(N)
1 , . . . , α(N)

N
)

and
P(X ∈ Ci (α

(N))), i = 1, . . .N, and ‖X − bXα(N)

‖2 .

B For d = 1 up to 10? Also available for Gaussian N (0, Id) (1 ≤ N ≤ 4 000).

Download at our WEBSITE :

www.quantize.maths-fi.com
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Quantization and Cubature Error estimates

Further Error Estimates

Proposition (First order)

If ΓN,∗ is L1-optimal at level N ≥ 1

e1,N(X ) = E‖X − bX ΓN,∗
‖ = sup

[F ]Lip≤1

|EF (X )− E F (bX ΓN,∗
)|

inf
n

sup
[F ]Lip≤1

|EF (X )− E F (Y )|, card(Y (Ω)) ≤ N
o

= L1-Wasserstein distance between L(X ) and the set PN .

i .e. Quantization is optimal for the class of Lipschitz functions.

Proposition (Second order)

If F ∈ C 1
Lip and the grid Γ is stationary (e.g . because it is L2-optimal), i .e.

bX Γ = E(X |bX Γ),

then a Taylor expansion yields

|E F (X )− E F (bX Γ)| = |E F (X )− E F (bX Γ)− E DF (bX Γ).(X − bX Γ)|
≤ [DF ]Lip · E‖X − bX Γ‖2 = e2,N(X )2.
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Quantization and Cubature Error estimates

B Furthermore, if F is convex, then Jensen’s inequality implies for stationary Γ

E F (bX Γ) ≤ E F (X ).
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Applications

Further Applications

What are these applications using optimal quantization grids?

Obstacle Problems: Valuation of Bermuda and American options, Reflected BSDE’s
[Bally-P.-Printems ’01, ’03 and ’05, Illand ’11].

δ-Hedging for American options [ibid. ’05].

Optimal Stochastic Control problems (P.-Pham-Printems 06’), Pricing of Swing
options [Bouthemy-Bardou-P.’09]. . . on massively parallel architecture [GPU,
Bronstein-P.-Wilbertz, ’10], Control of PDMP [Dufour-de Sapporta 2013].

Non-linear filtering and stochastic, volatility models [P.-Pham-Printems ’05,
Pham-Sellami-Runggaldier’06, Sellami ’09 &’10, Callegaro-Sagna ’10].

Discretization of SPDE’s (stochastic Zakäı & McKean-Vlasov equations)
[Gobet-P.-Pham-Printems ’07].

Quantization based Universal Stratification (variance reduction) [Corlay-P. ’10].

CVaR-based dynamical risk hedging [Bardou-Frikha-P. ’10], etc.

Quadratic BSDE schemes by Markovian Quantization [Chassagneux-Richou’14].

New error bounds for BSDE schemes by quadratic optimal quantization [P.-Sagna
’15]
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Gilles PAGÈS (LPMA-UPMC) Improved error bounds for quantization based numerical schemes s 6-9th October, 2015 26 / 38



Applications

Further Applications

What are these applications using optimal quantization grids?

Obstacle Problems: Valuation of Bermuda and American options, Reflected BSDE’s
[Bally-P.-Printems ’01, ’03 and ’05, Illand ’11].

δ-Hedging for American options [ibid. ’05].

Optimal Stochastic Control problems (P.-Pham-Printems 06’), Pricing of Swing
options [Bouthemy-Bardou-P.’09]. . . on massively parallel architecture [GPU,
Bronstein-P.-Wilbertz, ’10], Control of PDMP [Dufour-de Sapporta 2013].

Non-linear filtering and stochastic, volatility models [P.-Pham-Printems ’05,
Pham-Sellami-Runggaldier’06, Sellami ’09 &’10, Callegaro-Sagna ’10].

Discretization of SPDE’s (stochastic Zakäı & McKean-Vlasov equations)
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Optimal Stochastic Control problems (P.-Pham-Printems 06’), Pricing of Swing
options [Bouthemy-Bardou-P.’09]. . . on massively parallel architecture [GPU,
Bronstein-P.-Wilbertz, ’10], Control of PDMP [Dufour-de Sapporta 2013].

Non-linear filtering and stochastic, volatility models [P.-Pham-Printems ’05,
Pham-Sellami-Runggaldier’06, Sellami ’09 &’10, Callegaro-Sagna ’10].

Discretization of SPDE’s (stochastic Zakäı & McKean-Vlasov equations)
[Gobet-P.-Pham-Printems ’07].

Quantization based Universal Stratification (variance reduction) [Corlay-P. ’10].

CVaR-based dynamical risk hedging [Bardou-Frikha-P. ’10], etc.

Quadratic BSDE schemes by Markovian Quantization [Chassagneux-Richou’14].

New error bounds for BSDE schemes by quadratic optimal quantization [P.-Sagna
’15]
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A new result : distortion mismatch/ Ls -rate optimality, s > p

B Let Γ
(p)
N , N ≥ 1, be a sequence Lp-optimal grids.

What about es(X , Γp
N) (Ls -mean quantization error) when X ∈ Ls

Rd (P) for s > p?

Theorem (Lp-Ls -distortion mismatch, Graf-Luschgy-P. 2005, Luschgy-P. 2015)

(a) Let X ∈ Lp

Rd (P) and let (Γ
(p)
N )N≥1 be an Lp-optimal sequence for grids. Let

s∈ (p, p + d). If

X ∈ L
sd

d+p−s
+δ(P), δ > 0,

(note that sd
d+p−s

> s and lims→p+d
sd

d+p−s
= +∞), then

lim
N

N
1
d es(Γ

(p)
N ,X ) < +∞.

(b) If PX = f (|x |).λd(dξ) (radial density) then δ = 0 is admissible.

(c) If E |X |
sd

d+p−s = +∞, then limN N
1
d es(Γ

(p)
N ,X ) = +∞.

B Possible perspectives: error bounds for quantization based numerical schemes for
BSDE with a quadratic Z term ?

B So far, an application to quantized non-linear filtering.
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Application to non-linear filtering

Signal process (Xk)k≥0 is an Rd -valued Markov chain.

The observation process (Yk)k≥0 is a sequence of Rq-valued random vectors such
that

(Xk ,Yk)k≥0 is a Markov chain.

The conditional distribution

L(Yk |Xk−1,Yk−1,Xk) = gk(Xk−1,Yk−1,Xk , y)λq(dy)

Aim : compute

Πy0:n,n(dx) = P(Xk ∈ dx |Y1 = y1, · · · ,Yn = yn)

Kallianpur-Streibel formula: set y = y0:n = (y0, . . . , yn) a vector of observations

Πy,n(dx) = Πy,nf =
πy,nf

πy,n1

with the normalized filter πy0,n,n defined by

πy0:n,nf = E(f (Xn)Ly0:n,n) with Ly0:n,n =
nY

k=1

gk(Xk−1, yk−1,Xk , yk),

solution to both a forward and a backward inductionsbased on the kernels

Hy,kh(x) = E(h(Xk)gk(x , yk−1,Xk , yk)|Xk−1 = x), Hy,0f (x) = E(f (X0)),
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Forward: Start from
πy,0 = Hy,0

and define by a forward induction

πy,k f = πy,k−1Hy,k f , k = 1, . . . , n.

Backward: We define by a backward induction

uy,n(f )(x) = f (x),

uy,k−1(f ) = Hy,kuy,k(f ), k = 0, . . . , n.

so that
πy,nf = uy,−1(f )

This formulation is useful in order to establish the quantization error bound.
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Quantized Kallianpur-Streibel formula (P.-Pham (2005))

Quantization of the kernel:

Hy0:n,k f (x) −→ bHy0:n,k f (x) = E(f (bXk)gk(x , yk−1, bXk , yk)|bXk−1 = x)

Forward quantized dynamics (I):

bπy,k f = bπy,k−1
bHy,k f , k = 1, . . . , n.

Forward quantized dynamics (II):

bΠy (dx) = bΠy,nf =
bπy,nf

πy0:n,n1

(finitely supported unnormalized filter satisfies formally the same recursions)

Weight computation: If bXn = bX Γn
n , Γn = {x1

1 , . . . , x
n
Nn
} then

bΠy,n(dx) =

NnX
i=1

bΠi
y,nδxn

i
with bΠi

y,n = bΠy,n

`
1Ci (Γn)

´
.
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From Lip to θ-Liploc assumptions

Standard HLipassumption for the conditional densities gk(., y , ., y ′): bounded by Kg

and Lipschitz continuity.

|gk(x , y , x ′, y ′)− gk(bx , y ,bx ′, y ′)| ≤ [gk ]Lip(y , y ′)
`
|x − bx |+ |x ′ − bx ′|´.

The kernels Pk(x , dξ) = P(Xk ∈ dξ |Xk−1 = x) propagate Lipschitz continuity with
coefficient [Pk ]Lips such that

max
k=1,...,n

[Pk ]Lip < +∞

Aim: Switch to a θ-local Lipschitz assumption (θ : Rd → R+, ↑ +∞ as |x | ↑ +∞).

|h(x , x ′)− h(x̂ , x̂ ′)| ≤ [h]loc

`
|x − bx |+ |x ′ − bx ′|´`1 + θ(x) + θ(x ′) + θ(x̂) + θ(x̂ ′)

´
New (HθLiploc) assumption: the functions gk are still bounded by Kg and θ-local
Lipschitz continuous

|gk(x , y , x ′, y ′)−gk(bx , y ,bx ′, y ′)| ≤ [gk ]loc(y , y ′)
`
|x−bx |+|x ′−bx ′|´`1+θ(x)+θ(x ′)+θ(x̂)+θ(x̂ ′)

´
.

The kernels Pk(x , dξ) = P(Xk ∈ dξ |Xk−1 = x) propagate θ-local Lipschitz
continuity with coefficient [Pk ]loc < +∞.

The kernels Pk(x , dξ) propagate θ-control: max0≤k≤n−1 Pk(θ)(x) ≤ C
`
1 + θ(x)

´
.

Typical example: Xk = X̄ n
tn
k

(Euler scheme with step ∆n = T
n

), θ(ξ) = |ξ|α, α > 0.
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Theorem

Let s∈ (1, 1 + d
2

) and θ(x) = |x |α, α∈ (0, 1
1

s−1
− 2

d

).

Assume (Xk) and (gk) satisfy (HθLiploc) (in particular (Xk) propagates θ-Lipschitz

continuity) and assume Xk ∈ L
2ds

d+2−2s , k = 0, . . . , n. Then

|Πy,nf − bΠy,nf |2 ≤
2(K n

g )2

φ2
n(y) ∨ bφ2

n(y)

nX
k=0

Bn
k (f , y)× ‖Xk − bXk‖2

2s| {z }
�‖Xk−bXk‖2

2≤ckN
− 2

d
k

(Mismatch!!)

(1)

with
φn(y) = πy,n1 and bφn(y) = bπy,n1,

Bn
k (f , y) := 2[P]

2(n−k)
loc [f ]2

loc + 2‖f ‖2
∞Rn,k + ‖f ‖∞R2

n,k ,

where

Rn,k =
8

s
s−1 Mn

s

K 2
g

h
[gk+1]2

loc + [gk ]2
loc +

“ n−kX
m=1

[P]m−1
loc (1 + [P]loc)[gk+m]loc

”2i
,

and
Mn

s := 2 max
k=0,...,n

(E
`
θ(Xk)

2s
s−1
´

+ E
`
θ(bXk)

2s
s−1
´
.

Gilles PAGÈS (LPMA-UPMC) Improved error bounds for quantization based numerical schemes s 6-9th October, 2015 32 / 38



Applications Distortion mismatch

Extensions

Greedy quantization (Luschgy-P., JAT, 2014): sequence (aN)N≥1 such that

{a1, . . . , aN}, N ≥ 1, is Lp-rate optimal

to spare RAM.
aN+1 = argminξ∈Rd ep({a1, . . . , aN} ∪ {ξ},X )

Numerical schemes can be successfully implemented with this quantization.

Fast recursive quantization (in progress) in medium dimension (Sagna-P. , 2014)
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Numerical illustrations

Risk-neutral price under historical probability (B&S model, Euler scheme)

dYt =
“

rYt +
µ− r

σ
Z
”

dt + ZtdWt

with
YT = h(XT ) = (XT − K)+.

B Model parameters: r = 0.1; T = 0.1; σ = 0.25; S0 = K = 100.

B Quantization tree calibration: 7.5 105 MC and NbLloyd = 1.

B Reference callBS(K ,T ) = 3.66, Z0 = 14.148. If µ∈ {0.05, 0.1, 0.15, 0.2},
n = 10 and Nk = N̄ = 20 : Q-price = 3.65, bZ0 = 14.06.

n = 10 and Nk = N̄ = 40, Q-price = 3.66, bZ0 = 14.08.

B Computation time :
– 5 seconds for one contract.

– Additional contracts for free (more than 105/s).

B Romberg extrapolation price = 2 ∗ Q-price(N2)-Q-price(N1) does improve the price
(and the “hedge”).
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Numerical illustrations

Bid-ask spreads on interest rates :

dYt =

„
rYt +

µ− r

σ
Zt + (R − r) min

“
Yt −

Zt

σ
, 0
”«

dt + ZtdWt

with

YT = h(XT ) = (XT − K1)+ − 2(XT − K2)+, K1 = 95, K2 = 105.

µ = 0.05, r = 0.01, σ = 0.2, T = 0.25, R = 0.06

B Reference price = 2.978, bZ0 = 0.553.

B Quantized prices:

n = 10 and Nk = N̄ = 20 : Q-price = 2.96, bZ0 = 0.515.

n = 10 and Nk = N̄ = 40, Q-price = 2.97, bZ0 = 0.531.

B Romberg extrapolation price = 2 ∗ Q-price(N2)-Q-price(N1)≈ 2.98

and Romberg bZ0 ≈ 0.547.
Comparable results though slightly less precise, due to the non linearity in Z
compensated by the difference of convex functions. . . .
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Multidimensional example

B Due to J.-F. Chassagneux: W d-dimensional B.M.

dXt = dWt , −dYt = f (t,Yt ,Zt)dt − Zt · dWt

with f (t, y , z) = (z1 + . . .+ zd)
`
y − 2+d

2d

´
. B Solution :

Yt =
et

1 + et
, Zt =

et

(1 + et)2
with et = exp(x1 + . . .+ xd + t).

We set t = 0.5, d = 2, 3, so that Y0 = 0.5 and Z i
0 = 0.24, for every i = 1, . . . , d .
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Figure: Convergence rate of the quantization error for the multidimensional example). Abscissa axis: the size

N = 5, . . . , 100 of the quantization. Ordinate axis: The error |Y0 − bY N
0 | and the graph N 7→ â/N + b̂, where

â and b̂ are the regression coefficients. d = 3.
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Bon, Vlad on s’y remet quand?

Faut profiter tant qu’on est jeunes !!
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