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1. Background



Controlled dynamics
• N interacting players (state in R)

◦ controlled players with mean-field interaction

◦ deterministic dynamics of player number i ∈ {1, . . . ,N}

dXi
t =

(
b
(
Xi

t , µ̄
N
t
)
+ αi

t

)
dt, t ∈ [0,T]

◦ i.i.d. initial conditions X1
0 , . . . , XN

0 , µ̄N
t =

1
N

N∑
j=1

δXj
t

◦ choose αi
t︸︷︷︸

at any t

•Willing to minimize cost/energy Ji(α1, . . . , αN)

Ji(. . . ) = E
[
g
(
Xi

T , µ̄
N
T
)
+

∫ T

0

(
f
(
Xi

t , µ̄
N
t
)
+ 1

2 |α
i
t|

2
)
dt

]
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• (α1,?, . . . , αN,?) Nash equilibrium if

Ji(. . . , αi−1,?, αi, αi+1,?, . . .
)
≥ Ji(. . . , αi−1,?, αi,?, αi+1,?, . . .

)



Principle of MFG
• Define the asymptotic equilibrium state of the population as the
solution of a fixed point problem

(1) fix a flow of probability measures (µt)0≤t≤T (in P2(R))

(2) solve the deterministic optimal control problem in the
environment (µt)0≤t≤T

dXt =
(
b(Xt, µt) + αt

)
dt

◦ with X0 random

◦ with cost J(α) = E
[
g(XT , µT ) +

∫ T
0

(
f (Xt, µt) + 1

2 |αt|
2
)
dt

]
(3) let (X?,µ

t )0≤t≤T be the unique optimizer (under nice assumptions)
{ find (µt)0≤t≤T such that

µt = L
(
X?,µ

t
)
, t ∈ [0,T]

• Proof of convergence is non-trivial{ recent works only



Program
• Existence of equilibria

◦ proved by compactness arguments using PDE or probabilistic
description of the optimal control problem

• Uniqueness of equilibria

◦ difficult question{ known when b ≡ 0 and f and g are
monotonous in the direction of the measure∫

R

(
f (x, µ) − f (x, µ′)

)
d
(
µ − µ′

)
(x) ≥ 0

◦ same condition on g{ monotonicity condition of the same type
as for solving Burgers equation

◦ known example{ local cost f (x, µ) increases when local mass
at x increases

• Goal of the talk: remove monotonicity

◦ strategy is to randomize equilibria{ inspired from restoration
of uniqueness for ODEs/SDEs



2. Forward-backward system



McKean-Vlasov forward backward
• Characterize MFG equilibrium through McKean-Vlasov
forward-backward system

◦ use the Pontryagin principle (when b(x, µ) ≡ b(µ))

•When (µt)0≤t≤T is frozen, solve

dXt =
(
b(µt) − Yt

)
dt

dYt = −∂xf (Xt, µt)dt, YT = ∂xg(XT , µT )

◦ when ∂xf and ∂xg non-decreasing and Lipschitz in x{ unique
solution

◦ forward path is optimal for control problem in (µt)0≤t≤T

• Implement the MFG condition

◦ solve forward-backward system with µt = L(Xt){
McKean-Vlasov system

◦ law is upon the randomness in the initial condition{
understand monotonicity in µ as a parallel with monotonicity in x



Randomizing the solution
• Aim is to get rid of monotonicity in µ

◦ strategy is to randomize the state variable{ L(Xt)!

◦ force the dynamics so that smoothing effect in the direction of
the measure

◦ instead of forcing the law{ force the random variable itself
seen as an element of L2 space

• Construct the initial condition on L2(S1) with S1 = circle

◦ random variables Xt,Yt : S1 → R and L(Xt) = LebS1 ◦ X−1
t

• Dynamics rewrite

dXt(x) =
(
b
(
LebS1 ◦ X−1

t
)
− Yt(x)

)
dt

+ ∂2
xXt(x)dt

+ dBt(x)

dYt(x) = −∂xf
(
Xt(x),LebS1 ◦ X−1

t
)
dt

+ ???

YT (x) = ∂xg
(
XT (x),LebS1 ◦ X−1

T
)
, x ∈ S1

◦ force the dynamics with infinite dimensional white noise!
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Infinite dimensional forward-backward
• Look at the system

dXt(x) =
(
b
(
LebS1 ◦ X−1

t
)
− Yt(x)

)
dt + ∂2

xXt(x)dt + dBt(x)

dYt(x) = −∂xf
(
Xt(x),LebS1 ◦ X−1

t
)
dt + ???

YT (x) = ∂xg
(
XT (x),LebS1 ◦ X−1

T
)
, x ∈ S1

◦ Bt L2(S1)-valued white noise

◦ Xt random element of L2(S1){ LebS1 ◦ X−1
t random measure

◦ ??? = dMt martingale w.r.t filtration generated by B

• Formal stochastic Pontryagin for the optimization of

E
[∫
S1

g
(
UT (x),LebS1 ◦ X−1

T
)
dx

+

∫ T

0

∫
S1

[
f
(
Ut(x),LebS1 ◦ X−1

t
)
+ 1

2 |αt(x)|2
]
dxdt

]
◦ over dUt(x) = b(LebS1 ◦ X−1

t )dt + αt(x)dt + ∂2Xt(x)dt + dBt(x)



Solvability results
• Assumptions

◦ ∂xf , ∂xg non-decreasing in x{ use of Pontryagin principle

◦ b, ∂xf , ∂xg bounded and Lipschitz{ use the 2-Wasserstein
distance to make it compatible with the L2 framework:

W2
2
(
µ, ν

)
= infE

[
|X − Y |2

]
, X ∼ µ, Y ∼ ν

• Theorem: Existence and uniqueness for any initial condition

◦ Yt = U(t,Xt) whereU mild solution of infinite dimensional
system of PDEs on L2(S1) (Zabczyk, Fuhrman et al...)

∂tU(t,X) + DU(t,X) · b
(
LebS1 ◦ X−1

)
− DU(t,X) · U(t,X)

+ ∂xf
(
X,LebS1 ◦ X−1

)
+ LU(t,X) = 0

U(T ,X) = ∂xg
(
X,LebS1 ◦ X−1

)
◦ where D is Fréchet derivative and L is Ornstein-Uhlenbeck

operator on L2(S1){ viscous mollification of MFG master equation

LU(t,X) = 1
2 Trace

(
D2U(t,X)

)
+

〈
DU(t,X), ∂2X

〉
L2(S1)



Sketch of proof
• Cauchy Lipschitz theory works in small time

◦ small time{ depends upon Lipschitz constant of terminal
conditionU(T , ·)

• Aim at propagating

◦ need a priori bound for Lipschitz constant ofU(t, ·)

◦ given by the smoothing property of Ornstein-Ulhenbeck
operator

sup
h∈L2(S1)

∣∣∣D(
etLϕ

)
(h)

∣∣∣ ≤ Ct−1/2 sup
h∈L2(S1)

∣∣∣ϕ(h)
∣∣∣

◦ control the Lipschitz constant away from the boundary using
mild formulation

• Next: Connection with games? Zero-noise limit?



3. Connection with games



Approximating particle system
• Consider N particles

◦ particle k located at exp(i2πk/N) on S1

◦ Xk
t { state of particle number k

•Mean-field plus local interactions to nearest neighbors

dXk
t =

(
b
(
µ̄N

t
)
− Yk

t + N2(Xk+1
t + Xk−1

t − 2Xk
t
)︸                        ︷︷                        ︸

discrete Laplace

)
dt +

√
NdBk

t

dYk
t = −∂xf

(
Xk

t , µ̄
N
t
)
dt + dmartingalet, Yk

T = ∂xg
(
Xk

T , µ̄
N
T
)

◦ B1, . . . , BN independent Brownian motions

√
NdBk

t = N
∫ (k+1)/N

k/N
dBt(x)

• Expect Xk
t︸︷︷︸

discrete state

≈ N
∫ (k+1)/N

k/N
Xt(x)︸︷︷︸

limiting state

dx

◦
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t 1[k/N,(k+1)/N) ≈ Xt

◦ Claim: µ̄N
t

u.c.p
−→ LebS1 ◦ X−1

t limit law of mollified model
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Xk
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t
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dt + dmartingalet, Yk
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(
Xk

T , µ̄
N
T
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◦ B1, . . . , BN independent Brownian motions
√

NdBk
t = N

∫ (k+1)/N

k/N
dBt(x)

• Expect
N−1∑
k=0

Xk
t 1[k/N,(k+1)/N) ≈ Xt

◦ Proof: Expand master PDE along discrete the dynamics{
nearly solution of forward-backward



Interpretation as a game
• Interpret the particle system as a game?

◦ cannot be Nash over

dXi
t =

(
b
(
µ̄N

t
)
+ αi

t + N2(Xi+1
t + Xi−1

t − 2Xi
t)
)
dt +

√
NdBi

t

◦ local interaction too sensitive to variation of αi

• Strategy{ combine local and mean-field

◦ consider N2 particles instead of N

◦ N particles per site

◦ Xk,j
t { state of particle nb. k at site j

• Consider Nash system for

dXk,j
t =

(
b
(
µ̄N

t
)
+ α

k,j
t + N

N∑
j=1

(
Xk+1,j

t + Xk−1,j
t − 2Xk,j

t
))

dt +
√

NdBk
t

◦ B1, . . . , BN ⊥⊥ Brownian motions and µ̄N
t = N−2

∑
k,j

X̄k,j
t

◦ Claim: Nash equilibrium −→
N→∞

mollified solution



4. Zero noise limit



Small noise system
• Consider small viscosity ε > 0

dXt(x) =
(
b
(
LebS1 ◦ X−1

t
)
− Yt(x)

)
dt + ε2∂2

xXt(x)dt + εdBt(x)

dYt(x) = −∂xf
(
Xt(x),LebS1 ◦ X−1

t
)
dt + dmartingalet

YT (x) = ∂xg
(
XT (x),LebS1 ◦ X−1

T
)
, x ∈ S1

◦ (Xt,Yt)0≤t≤T { (Xε
t ,Y

ε
t )0≤t≤T

• Limits as ε↘ 0? (initial law of X0 being fixed)

◦
(
(µεt = LebS1 ◦ (Xε

t )−1)0≤t≤T
)
ε∈(0,1) tight on C

(
[0,T],P2(R)

)
• Claim: Weak limits (µt)0≤t≤T are random equilibria of original MFG

◦ (µt)0≤t≤T random process ⊥⊥ X0 ∼ µ0, F{ canonical filtration

dXt =
(
b(Xt, µt) + αt

)
dt, X0 ∼ µ0

◦ with cost J(α) = E
[
g(XT , µT ) +

∫ T
0

(
f (Xt, µt) + 1

2 |αt|
2
)
dt

]
µt = L

(
X?,µ

t |(µs)0≤s≤t
)
, t ∈ [0,T]



Toy example in d = 1
• Choose the coefficients

◦ b(µ) = b(
∫
R

x′dµ(x′))

◦ f (x, µ) = xf
(∫
R

x′dµ(x′)
)

◦ g(x, µ) = xg
(∫
R

x′dµ(x′)
)

• Equilibria must be Gaussian! { characterized by mean only

◦ forward path of

ẋt = b(xt) − yt, ẏt = −f (xt), yT = g(xT )

• characteristics system of inviscid Burgers PDE

−∂tv(t, x) = ∂xv(t, x)
(
b(x) − v(t, x)

)
+ f (x), v(T , x) = g(x)

◦ well-posed if f , g↗⇒ ! of characteristics

◦ if not⇒ shocks may emerge in finite time...



Plots of the characteristics
• Consider the simple example b ≡ 0, f ≡ 0

• Plots of the characteristics
if g(x) = (−1 ∨ x ∧ 1)

0
0

T = 1

0

T = 1

•Which limit to select when no uniqueness?
◦When starting from 0, select
extremal characteristics with
probability 1/2 (generalization of
Bafico-Baldi...)

0

T = 1
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Bon anniversaire !
La multi ani !

′


