Restoring Uniqueness in Mean-Field Games by Randomizing the Equilibria

Vlad Bally 60th Birthday

François Delarue (Nice - J.-A. Dieudonné)

October 72015

Le Mans

1. Background

Controlled dynamics

- N interacting players (state in \mathbb{R})
- controlled players with mean-field interaction
- deterministic dynamics of player number $i \in\{1, \ldots, N\}$

$$
d X_{t}^{i}=\left(b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right)+\alpha_{t}^{i}\right) d t, t \in[0, T]
$$

○ i.i.d. initial conditions $X_{0}^{1}, \ldots, X_{0}^{N}, \quad \bar{\mu}_{t}^{N}=\frac{1}{N} \sum_{j=1}^{N} \delta_{X_{t}^{j}}$

- choose $\underbrace{\alpha_{t}^{i}}_{\text {at any } t}$

Controlled dynamics

- N interacting players (state in \mathbb{R})
- controlled players with mean-field interaction
- deterministic dynamics of player number $i \in\{1, \ldots, N\}$

$$
d X_{t}^{i}=\left(b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right)+\alpha_{t}^{i}\right) d t, t \in[0, T]
$$

○ i.i.d. initial conditions $X_{0}^{1}, \ldots, X_{0}^{N}, \quad \bar{\mu}_{t}^{N}=\frac{1}{N} \sum_{j=1}^{N} \delta_{X_{t}^{j}}$

- choose $\underbrace{\alpha_{t}^{i}}_{\text {at any } t}$
- Willing to minimize cost/energy $J^{i}\left(\alpha^{1}, \ldots, \alpha^{N}\right)$

$$
J^{i}(\ldots)=\mathbb{E}\left[g\left(X_{T}^{i}, \bar{\mu}_{T}^{N}\right)+\int_{0}^{T}\left(f\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right)+\frac{1}{2}\left|\alpha_{t}^{i}\right|^{2}\right) d t\right]
$$

- N interacting players (state in \mathbb{R})
- controlled players with mean-field interaction
- deterministic dynamics of player number $i \in\{1, \ldots, N\}$

$$
d X_{t}^{i}=\left(b\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right)+\alpha_{t}^{i}\right) d t, t \in[0, T]
$$

- choose $\underbrace{\alpha_{t}^{i}}_{\text {at any } t}$
- Willing to minimize cost/energy $J^{i}\left(\alpha^{1}, \ldots, \alpha^{N}\right)$

$$
J^{i}(\ldots)=\mathbb{E}\left[g\left(X_{T}^{i}, \bar{\mu}_{T}^{N}\right)+\int_{0}^{T}\left(f\left(X_{t}^{i}, \bar{\mu}_{t}^{N}\right)+\frac{1}{2}\left|\alpha_{t}^{i}\right|^{2}\right) d t\right]
$$

- $\left(\alpha^{1, \star}, \ldots, \alpha^{N, \star}\right)$ Nash equilibrium if

$$
J^{i}\left(\ldots, \alpha^{i-1, \star}, \alpha^{i}, \alpha^{i+1, \star}, \ldots\right) \geq J^{i}\left(\ldots, \alpha^{i-1, \star}, \alpha^{i, \star}, \alpha^{i+1, \star}, \ldots\right)
$$

Principle of MFG

- Define the asymptotic equilibrium state of the population as the solution of a fixed point problem
(1) fix a flow of probability measures $\left(\mu_{t}\right)_{0 \leq t \leq T}\left(\right.$ in $\left.\mathcal{P}_{2}(\mathbb{R})\right)$
(2) solve the deterministic optimal control problem in the environment $\left(\mu_{t}\right)_{0 \leq t \leq T}$

$$
d X_{t}=\left(b\left(X_{t}, \mu_{t}\right)+\alpha_{t}\right) d t
$$

- with X_{0} random
- with cost $J(\boldsymbol{\alpha})=\mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{0}^{T}\left(f\left(X_{t}, \mu_{t}\right)+\frac{1}{2}\left|\alpha_{t}\right|^{2}\right) d t\right]$
(3) let $\left(X_{t}^{\star, \mu}\right)_{0 \leq t \leq T}$ be the unique optimizer (under nice assumptions) \leadsto find $\left(\mu_{t}\right)_{0 \leq t \leq T}$ such that

$$
\mu_{t}=\mathcal{L}\left(X_{t}^{\star, \mu}\right), \quad t \in[0, T]
$$

- Proof of convergence is non-trivial \leadsto recent works only

Program

- Existence of equilibria
- proved by compactness arguments using PDE or probabilistic description of the optimal control problem
- Uniqueness of equilibria
- difficult question \leadsto known when $b \equiv 0$ and f and g are monotonous in the direction of the measure

$$
\int_{\mathbb{R}}\left(f(x, \mu)-f\left(x, \mu^{\prime}\right)\right) d\left(\mu-\mu^{\prime}\right)(x) \geq 0
$$

- same condition on $g \leadsto$ monotonicity condition of the same type as for solving Burgers equation
- known example \leadsto local $\operatorname{cost} f(x, \mu)$ increases when local mass at x increases
- Goal of the talk: remove monotonicity
\circ strategy is to randomize equilibria \leadsto inspired from restoration of uniqueness for ODEs/SDEs

2. Forward-backward system

McKean-Vlasov forward backward

- Characterize MFG equilibrium through McKean-Vlasov forward-backward system
- use the Pontryagin principle (when $b(x, \mu) \equiv b(\mu)$)
- When $\left(\mu_{t}\right)_{0 \leq t \leq T}$ is frozen, solve

$$
\begin{aligned}
& d X_{t}=\left(b\left(\mu_{t}\right)-Y_{t}\right) d t \\
& d Y_{t}=-\partial_{x} f\left(X_{t}, \mu_{t}\right) d t, \quad Y_{T}=\partial_{x} g\left(X_{T}, \mu_{T}\right)
\end{aligned}
$$

\circ when $\partial_{x} f$ and $\partial_{x} g$ non-decreasing and Lipschitz in $x \leadsto$ unique solution

- forward path is optimal for control problem in $\left(\mu_{t}\right)_{0 \leq t \leq T}$
- Implement the MFG condition
- solve forward-backward system with $\mu_{t}=\mathcal{L}\left(X_{t}\right) \leadsto$ McKean-Vlasov system
- law is upon the randomness in the initial condition \leadsto understand monotonicity in μ as a parallel with monotonicity in x

Randomizing the solution

- Aim is to get rid of monotonicity in μ
- strategy is to randomize the state variable $\leadsto \mathcal{L}\left(X_{t}\right)$!
- force the dynamics so that smoothing effect in the direction of the measure
- instead of forcing the law \leadsto force the random variable itself seen as an element of L^{2} space
- Construct the initial condition on $L^{2}\left(\mathbb{S}^{1}\right)$ with $\mathbb{S}^{1}=$ circle
\circ random variables $X_{t}, Y_{t}: \mathbb{S}^{1} \rightarrow \mathbb{R}$ and $\mathcal{L}\left(X_{t}\right)=\operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}$
- Dynamics rewrite

$$
\begin{aligned}
& d X_{t}(x)=\left(b\left(\operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right)-Y_{t}(x)\right) d t \\
& d Y_{t}(x)=-\partial_{x} f\left(X_{t}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right) d t \\
& Y_{T}(x)=\partial_{x} g\left(X_{T}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{T}^{-1}\right), \quad x \in \mathbb{S}^{1}
\end{aligned}
$$

- force the dynamics with infinite dimensional white noise!

Randomizing the solution

- Aim is to get rid of monotonicity in μ
- strategy is to randomize the state variable $\leadsto \mathcal{L}\left(X_{t}\right)$!
- force the dynamics so that smoothing effect in the direction of the measure
- instead of forcing the law \leadsto force the random variable itself seen as an element of L^{2} space
- Construct the initial condition on $L^{2}\left(\mathbb{S}^{1}\right)$ with $\mathbb{S}^{1}=$ circle
\circ random variables $X_{t}, Y_{t}: \mathbb{S}^{1} \rightarrow \mathbb{R}$ and $\mathcal{L}\left(X_{t}\right)=\operatorname{Leb}_{\mathbb{S} 1} \circ X_{t}^{-1}$
- Dynamics rewrite

$$
\begin{array}{ll}
d X_{t}(x)=\left(b\left(\operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right)-Y_{t}(x)\right) d t & +d B_{t}(x) \\
d Y_{t}(x)=-\partial_{x} f\left(X_{t}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right) d t & \\
Y_{T}(x)=\partial_{x} g\left(X_{T}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{T}^{-1}\right), \quad x \in \mathbb{S}^{1}
\end{array}
$$

- force the dynamics with infinite dimensional white noise!

Randomizing the solution

- Aim is to get rid of monotonicity in μ
- strategy is to randomize the state variable $\leadsto \mathcal{L}\left(X_{t}\right)$!
- force the dynamics so that smoothing effect in the direction of the measure
\circ instead of forcing the law \leadsto force the random variable itself seen as an element of L^{2} space
- Construct the initial condition on $L^{2}\left(\mathbb{S}^{1}\right)$ with $\mathbb{S}^{1}=$ circle
\circ random variables $X_{t}, Y_{t}: \mathbb{S}^{1} \rightarrow \mathbb{R}$ and $\mathcal{L}\left(X_{t}\right)=\operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}$
- Dynamics rewrite

$$
\begin{aligned}
& d X_{t}(x)=\left(b\left(\operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right)-Y_{t}(x)\right) d t+\partial_{x}^{2} X_{t}(x) d t+d B_{t}(x) \\
& d Y_{t}(x)=-\partial_{x} f\left(X_{t}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right) d t \\
& Y_{T}(x)=\partial_{x} g\left(X_{T}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{T}^{-1}\right), \quad x \in \mathbb{S}^{1}
\end{aligned}
$$

- force the dynamics with infinite dimensional white noise!

Randomizing the solution

- Aim is to get rid of monotonicity in μ
- strategy is to randomize the state variable $\leadsto \mathcal{L}\left(X_{t}\right)$!
- force the dynamics so that smoothing effect in the direction of the measure
- instead of forcing the law \leadsto force the random variable itself seen as an element of L^{2} space
- Construct the initial condition on $L^{2}\left(\mathbb{S}^{1}\right)$ with $\mathbb{S}^{1}=$ circle
\circ random variables $X_{t}, Y_{t}: \mathbb{S}^{1} \rightarrow \mathbb{R}$ and $\mathcal{L}\left(X_{t}\right)=\operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}$
- Dynamics rewrite

$$
\begin{aligned}
& d X_{t}(x)=\left(b\left(\operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right)-Y_{t}(x)\right) d t+\partial_{x}^{2} X_{t}(x) d t+d B_{t}(x) \\
& d Y_{t}(x)=-\partial_{x} f\left(X_{t}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right) d t+? ? ? \\
& Y_{T}(x)=\partial_{x} g\left(X_{T}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{T}^{-1}\right), \quad x \in \mathbb{S}^{1}
\end{aligned}
$$

- force the dynamics with infinite dimensional white noise!

Infinite dimensional forward-backward

- Look at the system

$$
\begin{aligned}
& d X_{t}(x)=\left(b\left(\operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right)-Y_{t}(x)\right) d t+\partial_{x}^{2} X_{t}(x) d t+d B_{t}(x) \\
& d Y_{t}(x)=-\partial_{x} f\left(X_{t}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right) d t+? ? ? \\
& Y_{T}(x)=\partial_{x} g\left(X_{T}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{T}^{-1}\right), \quad x \in \mathbb{S}^{1}
\end{aligned}
$$

- $B_{t} L^{2}\left(\mathbb{S}^{1}\right)$-valued white noise
$\circ X_{t}$ random element of $L^{2}\left(\mathbb{S}^{1}\right) \leadsto \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}$ random measure
- ??? $=d M_{t}$ martingale w.r.t filtration generated by B
- Formal stochastic Pontryagin for the optimization of

$$
\begin{aligned}
& \mathbb{E}\left[\int_{\mathbb{S}^{1}} g\left(U_{T}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{T}^{-1}\right) d x\right. \\
& \left.\quad+\int_{0}^{T} \int_{\mathbb{S}^{1}}\left[f\left(U_{t}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right)+\frac{1}{2}\left|\alpha_{t}(x)\right|^{2}\right] d x d t\right]
\end{aligned}
$$

\circ over $d U_{t}(x)=b\left(\operatorname{Leb}_{\mathbb{S}} \circ X_{t}^{-1}\right) d t+\alpha_{t}(x) d t+\partial^{2} X_{t}(x) d t+d B_{t}(x)$

Solvability results

- Assumptions
- $\partial_{x} f, \partial_{x} g$ non-decreasing in $x \leadsto$ use of Pontryagin principle
$\circ b, \partial_{x} f, \partial_{x} g$ bounded and Lipschitz \leadsto use the 2-Wasserstein distance to make it compatible with the L^{2} framework:

$$
W_{2}^{2}(\mu, v)=\inf \mathbb{E}\left[|X-Y|^{2}\right], \quad X \sim \mu, Y \sim v
$$

- Theorem: Existence and uniqueness for any initial condition
- $Y_{t}=\mathcal{U}\left(t, X_{t}\right)$ where \mathcal{U} mild solution of infinite dimensional system of PDEs on $L^{2}\left(\mathbb{S}^{1}\right)$ (Zabczyk, Fuhrman et al...)

$$
\begin{aligned}
& \partial_{t} \mathcal{U}(t, X)+D \mathcal{U}(t, X) \cdot b\left(\operatorname{Leb}_{\mathbb{S}^{1}} \circ X^{-1}\right)-D \mathcal{U}(t, X) \cdot \mathcal{U}(t, X) \\
& \quad+\partial_{x} f\left(X, \operatorname{Leb}_{\mathbb{S}^{1}} \circ X^{-1}\right)+L \mathcal{U}(t, X)=0 \\
& \mathcal{U}(T, X)=\partial_{x} g\left(X, \operatorname{Leb}_{\mathbb{S}^{1}} \circ X^{-1}\right)
\end{aligned}
$$

- where D is Fréchet derivative and L is Ornstein-Uhlenbeck operator on $L^{2}\left(\mathbb{S}^{1}\right) \leadsto$ viscous mollification of MFG master equation

$$
L U(t, X)=\frac{1}{2} \operatorname{Trace}\left(D^{2} U(t, X)\right)+\left\langle D U(t, X), \partial^{2} X\right\rangle_{L^{2}\left(\mathbb{S}^{1}\right)}
$$

Sketch of proof

- Cauchy Lipschitz theory works in small time
- small time \leadsto depends upon Lipschitz constant of terminal condition $\mathcal{U}(T, \cdot)$
- Aim at propagating
- need a priori bound for Lipschitz constant of $\mathcal{U}(t, \cdot)$
- given by the smoothing property of Ornstein-Ulhenbeck operator

$$
\sup _{h \in L^{2}\left(\mathbb{S}^{1}\right)}\left|D\left(e^{t L} \varphi\right)(h)\right| \leq C t^{-1 / 2} \sup _{h \in L^{2}\left(\mathbb{S}^{1}\right)}|\varphi(h)|
$$

- control the Lipschitz constant away from the boundary using mild formulation
- Next: Connection with games? Zero-noise limit?

3. Connection with games

Approximating particle system

- Consider N particles
- particle k located at $\exp (i 2 \pi k / N)$ on \mathbb{S}^{1}
- $X_{t}^{k} \leadsto$ state of particle number k

- Mean-field plus local interactions to nearest neighbors

$$
\begin{aligned}
& d X_{t}^{k}=(b\left(\bar{\mu}_{t}^{N}\right)-Y_{t}^{k}+\underbrace{N^{2}\left(X_{t}^{k+1}+X_{t}^{k-1}-2 X_{t}^{k}\right)}_{\text {discrete Laplace }}) d t+\sqrt{N} d B_{t}^{k} \\
& d Y_{t}^{k}=-\partial_{x} f\left(X_{t}^{k}, \bar{\mu}_{t}^{N}\right) d t+d \text { martingale }, \quad Y_{T}^{k}=\partial_{x} g\left(X_{T}^{k}, \bar{\mu}_{T}^{N}\right)
\end{aligned}
$$

- B^{1}, \ldots, B^{N} independent Brownian motions

$$
\sqrt{N} d B_{t}^{k}=N \int_{k / N}^{(k+1) / N} d B_{t}(x)
$$

- Expect discrete state limiting state

Approximating particle system

- Consider N particles
- particle k located at $\exp (i 2 \pi k / N)$ on \mathbb{S}^{1}
- $X_{t}^{k} \leadsto$ state of particle number k

- Mean-field plus local interactions to nearest neighbors

$$
d X_{t}^{k}=(b\left(\bar{\mu}_{t}^{N}\right)-Y_{t}^{k}+\underbrace{N^{2}\left(X_{t}^{k+1}+X_{t}^{k-1}-2 X_{t}^{k}\right)}_{\text {discrete Laplace }}) d t+\sqrt{N} d B_{t}^{k}
$$

$$
d Y_{t}^{k}=-\partial_{x} f\left(X_{t}^{k}, \bar{\mu}_{t}^{N}\right) d t+d \text { martingale }_{t}, \quad Y_{T}^{k}=\partial_{x} g\left(X_{T}^{k}, \bar{\mu}_{T}^{N}\right)
$$

- B^{1}, \ldots, B^{N} independent Brownian motions

$$
\sqrt{N} d B_{t}^{k}=N \int_{k / N}^{(k+1) / N} d B_{t}(x)
$$

- Expect $\sum_{k=0}^{N-1} X_{t}^{k} 1_{[k / N,(k+1) / N)} \approx X_{t}$
\circ Claim: $\bar{\mu}_{t}^{N} \xrightarrow{\text { u.c.p }} \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}$ limit law of mollified model

Approximating particle system

- Consider N particles
- particle k located at $\exp (i 2 \pi k / N)$ on \mathbb{S}^{1}
- $X_{t}^{k} \leadsto$ state of particle number k

- Mean-field plus local interactions to nearest neighbors

$$
d X_{t}^{k}=(b\left(\bar{\mu}_{t}^{N}\right)-Y_{t}^{k}+\underbrace{N^{2}\left(X_{t}^{k+1}+X_{t}^{k-1}-2 X_{t}^{k}\right)}_{\text {discrete Laplace }}) d t+\sqrt{N} d B_{t}^{k}
$$

$$
d Y_{t}^{k}=-\partial_{x} f\left(X_{t}^{k}, \bar{\mu}_{t}^{N}\right) d t+d \text { martingale }_{t}, \quad Y_{T}^{k}=\partial_{x} g\left(X_{T}^{k}, \bar{\mu}_{T}^{N}\right)
$$

- B^{1}, \ldots, B^{N} independent Brownian motions

$$
\sqrt{N} d B_{t}^{k}=N \int_{k / N}^{(k+1) / N} d B_{t}(x)
$$

- Expect $\sum_{k=0}^{N-1} X_{t}^{k} 1_{[k / N,(k+1) / N)} \approx X_{t}$
- Proof: Expand master PDE along discrete the dynamics \sim nearly solution of forward-backward

Interpretation as a game

- Interpret the particle system as a game?
- cannot be Nash over

$$
d X_{t}^{i}=\left(b\left(\bar{\mu}_{t}^{N}\right)+\alpha_{t}^{i}+N^{2}\left(X_{t}^{i+1}+X_{t}^{i-1}-2 X_{t}^{i}\right)\right) d t+\sqrt{N} d B_{t}^{i}
$$

- local interaction too sensitive to variation of α^{i}
- Strategy \leadsto combine local and mean-field
- consider N^{2} particles instead of N
- N particles per site
- $X_{t}^{k, j} \leadsto$ state of particle nb. k at site j

- Consider Nash system for

$$
d X_{t}^{k, j}=\left(b\left(\bar{\mu}_{t}^{N}\right)+\alpha_{t}^{k, j}+N \sum_{j=1}^{N}\left(X_{t}^{k+1, j}+X_{t}^{k-1, j}-2 X_{t}^{k, j}\right)\right) d t+\sqrt{N} d B_{t}^{k}
$$

$\circ B^{1}, \ldots, B^{N} \Perp$ Brownian motions and $\bar{\mu}_{t}^{N}=N^{-2} \sum_{k, j} \bar{X}_{t}^{k, j}$
\circ Claim: Nash equilibrium $\xrightarrow[N \rightarrow \infty]{\longrightarrow}$ mollified solution
4. Zero noise limit

Small noise system

- Consider small viscosity $\varepsilon>0$

$$
\begin{aligned}
& d X_{t}(x)=\left(b\left(\operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right)-Y_{t}(x)\right) d t+\varepsilon^{2} \partial_{x}^{2} X_{t}(x) d t+\varepsilon d B_{t}(x) \\
& d Y_{t}(x)=-\partial_{x} f\left(X_{t}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{t}^{-1}\right) d t+d \text { martingale }_{t} \\
& Y_{T}(x)=\partial_{x} g\left(X_{T}(x), \operatorname{Leb}_{\mathbb{S}^{1}} \circ X_{T}^{-1}\right), \quad x \in \mathbb{S}^{1} \\
& \circ\left(X_{t}, Y_{t}\right)_{0 \leq t \leq T} \leadsto\left(X_{t}^{\varepsilon}, Y_{t}^{\varepsilon}\right)_{0 \leq t \leq T}
\end{aligned}
$$

- Limits as $\varepsilon \searrow 0$? (initial law of X_{0} being fixed)

$$
\circ\left(\left(\mu_{t}^{\varepsilon}=\operatorname{Leb}_{\mathbb{S}^{1}} \circ\left(X_{t}^{\varepsilon}\right)^{-1}\right)_{0 \leq t \leq T}\right)_{\varepsilon \in(0,1)} \text { tight on } C\left([0, T], \mathcal{P}_{2}(\mathbb{R})\right)
$$

- Claim: Weak limits $\left(\mu_{t}\right)_{0 \leq t \leq T}$ are random equilibria of original MFG
- $\left(\mu_{t}\right)_{0 \leq t \leq T}$ random process $\Perp X_{0} \sim \mu_{0}, \mathbb{F} \leadsto$ canonical filtration

$$
d X_{t}=\left(b\left(X_{t}, \mu_{t}\right)+\alpha_{t}\right) d t, \quad X_{0} \sim \mu_{0}
$$

- with cost $J(\boldsymbol{\alpha})=\mathbb{E}\left[g\left(X_{T}, \mu_{T}\right)+\int_{0}^{T}\left(f\left(X_{t}, \mu_{t}\right)+\frac{1}{2}\left|\alpha_{t}\right|^{2}\right) d t\right]$

$$
\mu_{t}=\mathcal{L}\left(X_{t}^{\star,} \mid\left(\mu_{s}\right)_{0 \leq s \leq t}\right), \quad t \in[0, T]
$$

Toy example in $d=1$

- Choose the coefficients

$$
\begin{aligned}
& \circ b(\mu)=b\left(\int_{\mathbb{R}} x^{\prime} d \mu\left(x^{\prime}\right)\right) \\
& \circ f(x, \mu)=x f\left(\int_{\mathbb{R}} x^{\prime} d \mu\left(x^{\prime}\right)\right) \\
& \circ g(x, \mu)=x g\left(\int_{\mathbb{R}} x^{\prime} d \mu\left(x^{\prime}\right)\right)
\end{aligned}
$$

- Equilibria must be Gaussian! \leadsto characterized by mean only
- forward path of

$$
\dot{x}_{t}=b\left(x_{t}\right)-y_{t}, \quad \dot{y}_{t}=-f\left(x_{t}\right), \quad y_{T}=g\left(x_{T}\right)
$$

- characteristics system of inviscid Burgers PDE

$$
-\partial_{t} v(t, x)=\partial_{x} v(t, x)(b(x)-v(t, x))+f(x), \quad v(T, x)=g(x)
$$

- well-posed if $f, g \nearrow \Rightarrow$! of characteristics
- if not \Rightarrow shocks may emerge in finite time...

Plots of the characteristics

- Consider the simple example $b \equiv 0, f \equiv 0$
- Plots of the characteristics
if $g(x)=(-1 \vee x \wedge 1)$

- Which limit to select when no uniqueness?
- When starting from 0 , select extremal characteristics with probability $1 / 2$ (generalization of Bafico-Baldi...)

Plots of the characteristics

- Consider the simple example $b \equiv 0, f \equiv 0$
- Plots of the characteristics if $g(x)=-(-1 \vee x \wedge 1)$

- Which limit to select when no uniqueness?
- When starting from 0 , select extremal characteristics with probability $1 / 2$ (generalization of Bafico-Baldi...)

Bon anniversaire ! La multii ani !

