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1. Background



Controlled dynamics

e N interacting players (state in R)
o controlled players with mean-field interaction

o deterministic dynamics of player number i € {1,..., N}

dx; = (b(X}. 1)) + o} )dt, t € [0,T]

N
o 1.1.d. initial conditions X&, ...,X(])V, ﬂﬁv = N Z (5X{
J=1

o choose «;
——

at any ¢



Controlled dynamics

e N interacting players (state in R)
o controlled players with mean-field interaction

o deterministic dynamics of player number i € {1,..., N}

dx; = (b(X}. 1)) + o} )dt, t € [0,T]

o 1.1.d. initial conditions X&, ...,Xf)v, ﬁﬁv = N Z 5X{

o choose «!
——
at any ¢
e Willing to minimize cost/energy J'(a'!, ..., ")

J.) = Bl ) + f (Xt ) + HlalP )|



Controlled dynamics

e N interacting players (state in R)

o controlled players with mean-field interaction

o deterministic dynamics of player number i € {1, ...

dx! = (b(X). 1)) + f)dt, t € [0,T]

o choose a!
——
at any ¢
e Willing to minimize cost/energy J'(a'!, ..., ")

J = Bgh ) + f (15720 + S0P

e (a"*,...,a™*) Nash equilibrium if

i -1, 0 i+l % i i—1,%x _i%x
J(...,« o a U I A R ,



Principle of MFG

e Define the asymptotic equilibrium state of the population as the
solution of a fixed point problem

(1) fix a flow of probability measures (u;)o<;<r (in P2(R))

(2) solve the deterministic optimal control problem in the
environment ((;)o<s<T

dX; = (b(Xi. ) + v )dt

o with Xy random
q T
o with cost J(@) = E[g(Xr.pr) + [y (fXeoar) + gl )]

3) let (X,* ) o<i<r be the unique optimizer (under nice assumptions)
~» find (u;)o<s<7 such that

pe= LX), 1€10,7]

e Proof of convergence is non-trivial ~» recent works only



Program

¢ Existence of equilibria

o proved by compactness arguments using PDE or probabilistic
description of the optimal control problem

e Uniqueness of equilibria

o difficult question ~» known when b = 0 and f and g are
monotonous in the direction of the measure

fR (f (x, 1) —f(x,u’))d(,u -1)x)=0

o same condition on g ~» monotonicity condition of the same type
as for solving Burgers equation

o known example ~» local cost f(x, u) increases when local mass
at x increases

e Goal of the talk: remove monotonicity

o strategy is to randomize equilibria ~» inspired from restoration
of uniqueness for ODEs/SDEs



2. Forward-backward system



McKean-Vlasov forward backward

e Characterize MFG equilibrium through McKean-Vlasov
forward-backward system

o use the Pontryagin principle (when b(x, i) = b(w))

e When (u;)o<;<7 1s frozen, solve

dX; = (b(u;) — Yy)dt
dY, = =0xf Xy, uo)dt,  Yr = 0x8(Xr, ur)
o when d,f and d,g non-decreasing and Lipschitz in x ~» unique
solution
o forward path is optimal for control problem in (u;)o<;<r
e Implement the MFG condition

o solve forward-backward system with y; = L(X;) ~»
McKean-Vlasov system

o law is upon the randomness in the initial condition ~»
understand monotonicity in y as a parallel with monotonicity in x



Randomizing the solution

e Aim is to get rid of monotonicity in u
o strategy is to randomize the state variable ~» £(X;)!

o force the dynamics so that smoothing effect in the direction of
the measure

o instead of forcing the law ~» force the random variable itself
seen as an element of L? space

e Construct the initial condition on L2(S') with S! = circle
o random variables X;, ¥; : S! —» R and L(X;) = Lebgi o X,‘1

e Dynamics rewrite

dX,(x) = (b(Lebgi 0 X;") = ¥,(x))dt
dY,(x) = =0,/ (X,(x), Lebgi o X; Ndr
Yr(x) = 0,g(Xr(x), Lebg: OX}I), xeS!

o force the dynamics with infinite dimensional white noise!
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Infinite dimensional forward-backward

e Look at the system

dX,(x) = (b(Lebgi 0 X;") = Y,(x))dt + 02 X,(x)dt + dBy(x)
dY,(x) = =0 f(X,(x), Lebg o X; )dr + 277
Yr(x) = 0,g(Xr(x), Lebgi o X;l), xes!

o B, L*(S1)-valued white noise
o X, random element of L*(S!) ~» Lebgi o X I random measure
o 777 = dM, martingale w.r.t filtration generated by B

e Formal stochastic Pontryagin for the optimization of
E[f g(Ur(x), Lebgi o X7 )dx
N
T
+ f f [£(Uix), Lebgi 0 X71) + %Ia,(x)lz]dxdt]
0 Js!

o over dU,(x) = b(Lebg o X, )dt + a,(x)dt + 3°X,(x)dt + dB(x)



Solvability results

e Assumptions
o Oyf, 0yg non-decreasing in x ~» use of Pontryagin principle

o b, d,f, 0yg bounded and Lipschitz ~» use the 2-Wasserstein
distance to make it compatible with the L?> framework:

W2(u,v) = infE[IX - Y*|, X~p Y ~v
e Theorem: Existence and uniqueness for any initial condition

o Y; = U(t, X;) where U mild solution of infinite dimensional
system of PDEs on L*(ShH (Zabczyk, Fuhrman et al...)

U, X) + DU(t, X) - b(Lebgi 0 X™') = DU, X) - U1, X)
+0f(X, Lebgi o X™') + LU, X) = 0
U(T, X) = dxg(X. Lebgi o X™')

o where D is Fréchet derivative and L is Ornstein-Uhlenbeck
operator on L>(S') ~» viscous mollification of MFG master equation

LU(t,X) = §Trace(D*U(t, X)) + (DU(t,X), 0°X) 251,



Sketch of proof

e Cauchy Lipschitz theory works in small time

o small time ~» depends upon Lipschitz constant of terminal
condition U(T, -)
e Aim at propagating

o need a priori bound for Lipschitz constant of U(z, -)

o given by the smoothing property of Ornstein-Ulhenbeck

operator

sup |D(e)m)| < Ct'* sup |o(h)|
heL2(SY) heL2(Sh)

o control the Lipschitz constant away from the boundary using
mild formulation

e Next: Connection with games? Zero-noise limit?



3. Connection with games



Approximating particle system

e Consider N particles
o particle k located at exp(i27k/N) on S'
o X¥ ~» state of particle number k

e Mean-field plus local interactions to nearest neighbors

dxt = (b(@") - Yf+ N* (X' + X' = 2X))dt + VNaBf

discrete Laplace
dY* = —0.f (X, @V)dt + dmartingale,, Yk = 9,g(X%, i@

oB!,...,BY independent Brownian motions
(k+1)/N
VNdB* = N dB,(x)
k/N
(k+1)/N
e Expect X,k ~N X(x) dx

discrete state limiting state
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nearly solution of forward-backward



Interpretation as a game

o Interpret the particle system as a game?
o cannot be Nash over
dx! = (b)) + o} + N*(X[*' + X' = 2X)))dt + VNdB;
o local interaction too sensitive to variation of o
e Strategy ~» combine local and mean-field
o consider N? particles instead of N
o N particles per site
o Xf‘j ~> state of particle nb. k at site j

o Consider Nash system for

Xy’ = (b(@) + o +NZ(X]‘”" + XY = 2X))dt + VNdBE
j=1
oB',..., BV 1 Brownian motions and 7 = N~ Z Xk‘]

o Claim: Nash equilibrium — mollified solution™”

Nooo



4. Zero noise limit



Small noise system

e Consider small viscosity € > 0
dX,(x) = (b(Lebg 0 X;") = Y,(x))dt + &> 02X, (x)dt + edBy(x)
dY,(x) = —0f(X,(x), Lebg: o X; )dt + dmartingale,
Yr(x) = d,8(X7(x),Lebgi 0 X7'), xeS!
o (Xy, Yo<i<T ~ (Xf, Yf)OStST
e Limits as € N\, 07 (initial law of X being fixed)
o (45 = Lebg 0 (X*) o<r<1)pe(0.1) tight on C([0, T1, Po(R))
e Claim: Weak limits (u;)p<;<r are random equilibria of original MFG

o (t1)o<t<r random process L Xy ~ ug, F ~» canonical filtration

dX; = (b(r ) + ar)dt, Xo ~ po
o with cost J(@) = E[g(Xr. ur) + [ (fXeupt) + Sl )]

e = L (uposs<i), 1 €10,T]



Toy example in d = 1

e Choose the coefficients
0 b(u) = b( [, ¥'du(x")
o fe. ) = of (Jf ¥ du(x)
o g(x, ) = xg( [, X'du(x))
e Equilibria must be Gaussian! ~» characterized by mean only
o forward path of
X =bx) =y, Yi=~fx), yr=gQr)

e characteristics system of inviscid Burgers PDE

—0v(t, x) = Oxv(t, 0)(b(x) = v(t,x)) + f(),  W(T.x) = g(x)

o well-posed if f, g ,/ = ! of characteristics

o if not = shocks may emerge in finite time...



Plots of the characteristics

e Consider the simple example b =0, f = 0

o Plots of the characteristics

ifglx)=(-1VvxAl T=1
=
0 —_———
e Which limit to select when no uniqueness?

Bafico-Baldi...)

o When starting from 0, select T=1
extremal characteristics with /
probability 1/2 (generalization of 0
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Bon anniversaire !
La multi ani !



