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Classical stochastic control problems
Formulation of the problem

Markovian stochastic control problems on a given horizon of time T

u(0, x) = sup
α∈A

E[

∫ T

0
f (αs ,X

α
s )ds + g(Xα

T )]

where

A is a set of admissible control processes αs

(Xα
s ) is a controlled process

g(Xα
T ) : terminal reward ; f (αs ,X

α
s ) : instantaneous reward process.

Formally, for all (t, y) the associated value function is defined by

u(t, y) = sup
α∈A

E[

∫ T

t
f (αs ,X

α
s )ds + g(Xα

T ) | Xα
t = y ].
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Classical stochastic control problems
Dynamic Programming Principle

The dynamic programming principle can formally be stated as

u(0, x) = sup
α∈A

E[

∫ t

0
f (αs ,X

α
s )ds + u(t,Xα

t )], for all t in [0,T ].

Classically established under assumptions which ensure that the value
function u satisfies some regularity/ measurability properties.
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Classical stochastic control problems
Weak Dynamic Programming Principle

Deterministic control : Case of a discontinuous value function :
Barles’86, Barles-Perthame’93

Stochastic control : Case of a discontinuous value function, not even
measurable : Bouchard-Touzi’11,
(with a lower semi continuity assumption of the terminal reward g , to
obtain the super-optimality principle).

Bouchard-Nutz’12 (state constraints)

Bayraktar-Yao’13 (zero-sum stochastic games).
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General stochastic control problems

Goal : Generalize these results obtained for the classical case :

sup
α∈A

E[

∫ T

0
f (αs ,X

α
s )ds + g(Xα

T )] (1)

to the case when linear expectation E is replaced by nonlinear expectation :

sup
α∈A
E f α0,T [g(Xα

T )], (2)

where E f α [η] is the nonlinear conditional expectation associated with a
BSDE with jumps with controlled driver f (αt ,X

α
t , y , z , k), and terminal

condition η, and g Borelian only.
Problem (1) is a particular case of (2) when the driver f does not depend
on the solution of the BSDE, that is when f (αt ,X

α
t , y , z , k) ≡ f (αt ,X

α
t ).
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General stochastic control problems
Example : Minimization of shortfall risk of terminal wealth

Dynamic risk-measure ρ defined for each position ξ ∈ L2(FT ) by

ρt,T (ξ) := −E ft,T [ξ], 0 ≤ t ≤ T ,

where E f is the conditional expectation associated with a BSDE with
jumps with driver f .

Properties of the risk measure (Consistency, Continuity, Zero-one law,
Translation invariance, monotonicity ) depend on the driver of the BSDE.
(Quenez-S. SPA ’13).

Example of driver : f (t, z , k) := −C1|z | − C2

∫
E |k(e)|Ψ(e)ν(de),

where C1, C2 ≥ 0 can be interpreted as risk-aversion coefficients.
If C2 ≤ 1, the risk measure is monotone w.r.t. terminal wealth.
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Consider the seller of a European option

payoff G (ST ), with G irregular (e.g. G (x) = 1[a,b](x) or 1[a,b[(x), ...)

S : price process of the underlying asset.

Wealth process : Xα,t,x , controlled by α, a portfolio-strategy.

Shortfall risk of his terminal position :
ρt,T [−(Xα,t,x

T − G (ST ))−] = −E ft,T [−(Xα,t,x
T − G (ST ))−].

Problem : At time t, for initial wealth x , minimize over all predictable
α ∈ At

t this shortfall risk.
Value function :

v(t, x) := − sup
α∈At

t

E ft,T [−(Xα,t,x
T − G (ST ))−].
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General stochastic control problems
Mixed problems

Mixed generalized optimal control/stopping problems

sup
α∈A

sup
τ∈T
E f α0,τ [h̄(τ,Xα

τ )],

Xα
τ : controlled jump diffusion

T : set of stopping times in [0,T ]

h̄ is an irregular reward function.

The value function is not continuous, not even measurable.
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Outline

1 Mixed control-optimal stopping problem with E f -expectation
Reduction to an optimal control problem for reflected BSDEs

2 Weak dynamic programming principle

3 Nonlinear Hamilton-Jacobi-Bellman variational inequality
Characterisation of the value function as a weak viscosity solution.
(need of comparison theorems between BSDEs and reflected BSDEs with

weak hypothesis on the drivers)

9



Probability setup

Product space Ω := ΩW ⊗ ΩN

ΩW := C([0,T ]) : Wiener space, that is the set of continuous functions ω1

from [0,T ] into R such that ω1(0) = 0.
ΩN := D([0,T ]) : Skorohod space of RCLL functions ω2 from [0,T ] into
R, such that ω2(0) = 0.

B = (B1,B2) : canonical process defined for t and ω = (ω1, ω2) by
B i
t(ω) = B i

t(ω
i ) := ωi

t , i = 1, 2.

We denote the first coordinate process B1 by W .
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PW : probability measure on (ΩW ,B(ΩW )) s.t. W is a Brownian motion.

Set E := Rn\{0}, n ≥ 1. We define the jump random measure N as :
for t > 0 and B ∈ B(E), N(., [0, t]× B) :=

∑
0<s≤t 1{∆B2

s ∈B}.
(E,B(E)) is equipped with a σ-finite positive measure ν s.t.∫

E(1 ∧ |e|)ν(de) <∞.

PN : probability measure on (ΩN ,B(ΩN)) s.t. N is a Poisson r.m. with
compensator ν(de)dt and s.t. B2

t =
∑

0<s≤t ∆B2
s .

Set Ñ(dr , de) = N(dr , de)− ν(de)dt.

F := (Ft)t≥0 completed filtration associated with canonical process B.

We define the product probability measure P := PW ⊗ PN .
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Nonlinear conditional expectation

Let A be the set of controls, defined as predictable processes valued in a
compact subset A of Rp.
For α ∈ A, t ∈ [0,T ] and x in R, we introduce the nonlinear conditional
expectation Eα,t,x defined for all stopping time S and η ∈ L2(FS) as

Eα,t,xr ,S [η] := Xα,t,xr , t ≤ r ≤ S

where (Xα,t,xr )t≤r≤S is the solution of the BSDE :
−dXα,t,xr = f (αr , r ,X

α,t,x
r ,Xα,t,xr ,Zα,t,x

r ,Kα,t,x
r (·))dr − Zα,t,x

r dWr

−
∫

E Kα,t,x
r (e)Ñ(dr , de)

Xα,t,xS = η,

and (Xα,t,x
s )t≤s≤T is the state process :

Xα,t,x
s = x +

∫ s

t
b(Xα,t,x

r , αr )dr +

∫ s

t
σ(Xα,t,x

r , αr )dWr

+

∫ s

t

∫
E
β(Xα,t,x

r− , αr , e)Ñ(dr , de),
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Assumptions on the driver f of the BSDE :
f is measurable, satisfies |f (α, t, x , 0, 0, 0)| ≤ C (1 + |x |p), is Lipschitz
continuous wrt to α, x , y , z , k, and

f (α, t, x , y , z , k1)− f (α, t, x , y , z , k2) ≥
∫

E

γ(x , y , z , k1, k2)(e)(k1 − k2)(e)ν(de)

with |γ(·, e)| ≤ Ψ(e), and γ(·, e) ≥ −1, where Ψ ∈ L2
ν .

L2
ν : set of Borelian functions l such that ‖l‖2

ν :=
∫

E l2(e)ν(de) <∞.
(this condition ensures the Comparison principle for BSDEs with jumps)

Assumptions on the coefficients of the SDE :
b, σ are Lipschitz continuous with respect to x and α,
|β(x , α, e)| ≤ C Ψ(e) ; where Ψ ∈ L2

ν

|β(x , α, e)− β(x ′, α′, e)| ≤ C (|x − x ′|+ |α− α′|) Ψ(e)
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The solution (Xα,t,x ,Zα,t,x ,Kα,t,x) of the BSDE belongs to

S2 : set of real-valued RCLL adapted processes (ϕs) with
E[sup0≤s≤T ϕ

2
s ] <∞

H2 : set of predictable processes (Zt) such that E
∫ T

0 Z 2
s ds <∞

H2
ν : set of predictable processes (kt(·)) such that E

∫ T
0 ‖ks‖

2
L2
ν
ds <∞

and (Xα,t,x
s )t≤s≤T belongs to S2.
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General mixed optimal Control/Stopping problem

Suppose the initial time is equal to 0. For each initial condition x ∈ R, we
consider the mixed optimal stopping/stochastic control problem :

u(0, x) := sup
τ∈T

sup
α∈A
Eα,0,x0,τ [h̄(τ,Xα,0,x

τ )]

where
h̄(t, x) := h(t, x)1t<T + g(x)1t=T ,

with

• g : R→ R is Borelian.

• h : [0,T ]× R→ R is uniformly continuous with respect to (t, x).

• |h(t, x)|+ |g(x)| ≤ C (1 + |x |p)

Note that h̄ is Borelian but not necessarily continuous in (t, x).
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We now make the problem dynamic.

For t ∈ [0,T ] and ω ∈ Ω, define the t-translated path
ωt = (ωt

s)s≥t := (ωs − ωt)s≥t .

Ft = (F t
s )t≤s≤T completed filtration associated with the translated

Brownian motion W t := (Ws −Wt)s≥t and the translated Poisson
random measure Nt := N(]t, s], .)s≥t .

T t
t : set of Ft-stopping times with respect to Ft with values in [t,T ].

Pt : the predictable σ-algebra on Ω× [t,T ] equipped with the
filtration Ft .

At
t : set of controls α : Ω× [t,T ] 7→ A, which are predictable.
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Value function

u(t, x) := sup
α∈At

t

sup
τ∈T t

t

Eα,t,xt,τ [h̄(τ,Xα,t,x
τ )].

Since α and τ depend only on ωt , the SDE satisfied by Xα,t,x and the
BSDE satisfied by Eα,t,xt,τ [h̄(τ,Xα,t,x

τ )] can be solved with respect to the
translated Brownian motion W t and the translated Poisson random
measure Nt .
Hence the function u is well defined as a deterministic function of t and x .
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Expression of the mixed problem as a control problem for reflected BSDEs

u(t, x) := sup
α∈At

t

sup
τ∈T t

t

Eα,t,xt,τ [h̄(τ,Xα,t,x
τ )].

For each α ∈ At
t , we introduce the function uα defined as

uα(t, x) := sup
τ∈T t

t

Eα,t,xt,τ [h̄(τ,Xα,t,x
τ )].

Key result :Value function of optimal stopping pbs with
E f -expectation = solution of nonlinear reflected BSDE (Quenez-A.S.

SPA’14)

So uα(t, x) = Y α,t,x
t , where (Y α,t,x ,Zα,t,x ,Kα,t,x) is the solution of the

reflected BSDE with driver f α,t,x := f (α·, ·,Xα,t,x
· , y , z , k), obstacle

process h̄(s,Xα,t,x
s )t≤s≤T , and terminal condition g(Xα,t,x

T ), that is

18



Reflected BSDE

Y α,t,x
s = g(Xα,t,x

T ) +

∫ T

s
f (αr , r ,X

α,t,x
r ,Y α,t,x

r ,Zα,t,x
r ,Kα,t,x

r (·))dr

+ Aα,t,xT − Aα,t,xs −
∫ T

s
Zα,t,x
r dWr −

∫ T

s

∫
R∗

Kα,t,x(r , e)Ñ(dr , de)

Y α,t,x
s ≥ h(s,Xα,t,x

s ), 0 ≤ s < T a.s. ,

Aα,t,x is a RCLL nondecreasing predictable process with Aα,t,xt = 0 and s.t.∫ T

0
(Y α,t,x

s − h̄(s,Xα,t,x
s ))dAc

s = 0; ∆Ad
s = −∆Aα,t,xs 1{Yα,t,x

s−
=h̄(s−,Xα,t,x

s−
)} a.s.

Here Aα,t,x ,c denotes the continuous part of A and Aα,t,x ,d its
discontinuous part.

This reflected BSDE can be solved on the restricted space Ω× [t,T ] wrt
the t-translated BM and the t-translated Poisson random measure.
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Remark : When lim supt→T ,y→x h(t, y) ≤ g(x), then the obstacle

h̄(·,Xα,t,x
· ) is left upper-semi continuous along stopping times, which

implies the continuity of the process Aα,t,x .
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Our initial mixed optimal stopping/control problem can thus be expressed
as an optimal control problem for reflected BSDEs :

u(t, x) = sup
τ∈T t

[t,T ]

sup
α∈At

t

Eα,t,xt,τ [h(τ,Xα,t,x
τ )] = sup

α∈At
t

uα(t, x)= sup
α∈At

t

Yα,t,x
t

where Y α,t,x
t is the solution of the RBSDE associated to driver f α,t,x ,

obstacle h(u,Xα,t,x
u )t≤u≤T , and terminal condition g(Xα,t,x

T ).

Remarks :

Also in the case of linear expectations, this approach provides
alternative proofs of the dynamic programming principle

Some mixed problems with nonlinear expectations are studied in
Bayraktar and Yao’12 and Quenez-S. SPA ’14. There, the obstacle
process does not depend on the control, which yields the
characterization of the value function as the solution of a reflected
BSDE. This is not the case here, and hence the dynamic
programming principle can not be derived directly from the flow
property of reflected BSDEs.
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2. Weak Dynamic programming principle
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Since for fixed s, the value function x 7→ u(s, x) is not necessarily
Borelian, we cannot a priori establish a classical dynamic programming
principle. We will provide a weak DDP involving the lower- and upper-
semicontinuous envelope of u defined by

u∗(t, x) := lim inf
(t′,x ′)→(t,x)

u(t ′, x ′)

u∗(t, x) := lim sup
(t′,x ′)→(t,x)

u(t ′, x ′)

Define now
ū∗(t, x) := u∗(t, x)1t<T + g(x)1t=T

ū∗(t, x) := u∗(t, x)1t<T + g(x)1t=T

We have : ū∗ ≤ u ≤ ū∗.
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Theorem :[A weak dynamic programming principle]

The function ū∗ satisfies the sub–optimality principle of dynamic
programming : ∀t ∈ [0,T ] and θ ∈ T t

t ,

u(t, x) ≤ sup
α∈At

t

sup
τ∈T t

t

Eα,t,xt,θ∧τ
[
h(τ,Xα,t,x

τ )1τ<θ + ū∗(θ,Xα,t,x
θ )1τ≥θ

]
The function ū∗ satisfies the super–optimality principle of dynamic
programming : ∀t ∈ [0,T ] and θ ∈ T t

t ,

u(t, x) ≥ sup
α∈At

t

sup
τ∈T t

t

Eα,t,xt,θ∧τ
[
h(τ,Xα,t,x

τ )1τ<θ + ū∗(θ,X
α,t,x
θ )1τ≥θ

]
.
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Proof of Weak Dynamic Programming Principle

Super-optimality principle (ii)
We approximate θ by a sequence of stopping times (θn)n∈N.

existence of weak ε- controls (requires some measurable selection
theorem) ,
a ”splitting” result, (which basically states that, given an intermediary
time t ≤ T , and a fixed path up to t, the BSDE can be solved wrt to
the t-translated Brownian motion and Poisson random measure).

a Fatou lemma for reflected BSDEs where the limit involves both
terminal condition and terminal time.
comparison theorems for reflected BSDEs with jumps,
estimates on reflected BSDEs
flow property of reflected BSDEs

Sub-optimality principle (i) : (the easiest)
Similar arguments (but without need of existence of weak ε- controls).
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Remarks :
The weak dynamic programming principle still holds with θ replaced by θα

in the inequalities, given a family of stopping times indexed by controls
{θα, α ∈ At

t}.

No regularity condition is required on the terminal reward map g to ensure
the DDP, even for the super optimality one. This is not the case in the
previous literature even in the case of a classical expectation, where the
reward g is supposed to be lower-semicontinuous.
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Proof of Weak Dynamic Programming Principle
Splitting properties

Let s ∈ [0,T ]. For each ω, let sω := (ωr∧s)0≤r≤T and
ωs := (ωr − ωs)s≤r≤T .
We shall identify the path ω with (sω, ωs), which means that a path can
be splitted into two parts : the path before time s and the s-translated
path after time s.
Let α be a given control in A. We show the following :
- at time s, for fixed past path ω̃ :=sω, the process α(ω̃, .) which only
depends on the future path ωs is an s-admissible control, that is
α(ω̃, .) ∈ As

s ;
- furthermore, Y α,0,x(ω̃, .) from time s coincides with the solution of the
reflected BSDE driven by W s and Ñs , controlled by α(ω̃, .) and associated
with initial time s and initial state condition Xα,0,x

s (ω̃).
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Proof of Weak Dynamic Programming Principle
Existence of weak ε-optimal controls

- We first show a measurability property of the functions uα(t, x) with
respect to control α and initial condition x .
- For s ≥ t, we introduce the set At

s of restrictions to [s,T ] of the controls
in At

t . Let η ∈ L2(F t
s ). For each ω ∈ Ω, by definition of u we have :

u(s, η(ω)) = sup
α∈As

s

uα(s, η(ω)). (3)

Theorem : (Existence of weak ε-optimal controls) : Let t ∈ [0,T ],
s ∈ [t,T ] and η ∈ L2(F t

s ). Let ε > 0. There exists αε ∈ At
s such that, for

almost every ω ∈ Ω, αε(sω,T s) is weakly ε-optimal for Problem (3), that
is

u∗(s, η(ω)) ≤ uα
ε(sω,T s)(s, η(ω)) + ε. (4)
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Proof of Weak Dynamic Programming Principle
A Fatou lemma for reflected BSDEs

Assumption 1. Assume that dP ⊗ dt-a.s for each (y , z , k1, k2) ∈
R2 × (L2

ν)2,

f (t, y , z , k1)− f (t, y , z , k2) ≥ 〈γy ,z,k1,k2
t , k1 − k2〉ν ,

with γ measurable, bounded, and satisfying

γy ,z,k1,k2
t (e) ≥ −1 and |γy ,z,k1,k2

t (e)| ≤ ψ(e), where ψ ∈ L2
ν .

This assumption ensures the comparison theorem for BSDEs with jumps.
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Proof of Weak Dynamic Programming Principle
A Fatou lemma for reflected BSDEs

Theorem : Let T > 0. Let (ηt) be an RCLL process in S2. Let f be a
Lipschitz driver satisfying Assumption 1. Let (θn)n∈N be a non increasing
sequence of stopping times in T , converging a.s. to θ ∈ T as n tends to
∞. Let (ξn)n∈N be a sequence of random variables s.t.
E[supn(ξn)2] < +∞, and for each n, ξn is Fθn -measurable.
Let Y.,θn(ξn) ; Y.,θ(lim infn→+∞ ξ

n) and Y.,θ(lim supn→+∞ ξ
n) be the

solutions of the reflected BSDEs associated with driver f , obstacle
(ηs)s<θn (resp. (ηs)s<θ) , terminal time θn (resp. θ), terminal condition ξn

(resp. lim infn→+∞ ξ
n and lim supn→+∞ ξ

n).
Suppose that

lim inf
n→+∞

ξn ≥ ηθ (resp. lim sup
n→+∞

ξn ≥ ηθ) a.s., then

Y0,θ(lim inf
n→+∞

ξn) ≤ lim inf
n→+∞

Y0,θn(ξn) (resp. Y0,θ(lim sup
n→+∞

ξn) ≥ lim sup
n→+∞

Y0,θn(ξn)).
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Nonlinear Hamilton-Jacobi-Bellman variational inequalities

Theorem : The value function u of the optimal control/optimal stopping
problem is a weak viscosity solution of the HJB variational inequality, i.e.
u∗ is a viscosity subsolution and u∗ is a viscosity supersolution.

min
(

u(t, x)− h(t, x), inf
α∈A

(−∂u

∂t
(t, x)− Lαu(t, x)

− f (α, t, x , u(t, x), (σ
∂u

∂x
)(t, x),Bαu(t, x)))

)
= 0, (t, x) ∈ [0,T )× R

u(T , x) = g(x), x ∈ R

where Lα := Aα + Kα, and for φ ∈ C 2(R),

Aαφ(x) :=
1

2
σ2(x , α)

∂2φ

∂x2
(x) + b(x , α)

∂φ

∂x
(x)

Kαφ(x) :=
∫

E

(
φ(x + β(x , α, e))− φ(x)− ∂φ

∂x
(x)β(x , α, e)

)
ν(de)

Bαφ(x) := φ(x + β(x , α, ·))− φ(x).
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• A usc function u is a viscosity subsolution of the HJBVI if for all
(t0, x0) ∈ [0,T [×R and φ ∈ C 1,2([0,T ]× R) such that φ(t0, x0) = u(t0, x0) and
φ− u attains its minimum at (t0, x0), we have

min{u(t0, x0)− h(t0, x0),

inf
α∈A

(
−∂φ
∂t

(t0, x0)− Lαφ(t0, x0)

−f (α, t0, x0, u(t0, x0), (σ
∂φ

∂x
)(t0, x0),Bαφ(t0, x0))

)
} ≤ 0.

• A lsc function u is a viscosity supersolution of the HJBVI if for all
(t0, x0) ∈ [0,T [×R and φ ∈ C 1,2([0,T ]× R) such that φ(t0, x0) = u(t0, x0) and
φ− u attains its maximum at (t0, x0), we have

min(u(t0, x0)− h(t0, x0),

inf
α∈A

(−∂φ
∂t

(t0, x0)− Lαφ(t0, x0)− f (α, t0, x0, u(t0, x0), (σ
∂φ

∂x
)(t0, x0),Bαφ(t0, x0))) ≥ 0.
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Note that if a map u is both a viscosity subsolution and a viscosity
supersolution and u(T , x) = g(x), then it is continuous and it is a
viscosity solution in the classical sense.
Here, since the value function u is not regular, it is not in general a
viscosity solution in the classical sense.
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Proof :

subsolution : use a new comparison thm between a BSDE and a
reflected BSDE + sub-optimality weak Dynamic Programming
principle

supersolution : comparison thm for BSDEs + super-optimality weak
Dynamic Programming principle.

In the case of classical expectations, the proof is classical.

Here, in the case of f -expectations, the arguments are different. In particular, we

need to establish a comparison thm between a BSDE and a reflected BSDE with

a weak hypothesis on the corresponding drivers (the inequality between the

drivers is only required along the solution of the BSDE).
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Concluding remarks

We have proven a weak dynamic programming principle for a mixed
stochastic control/optimal controlproblem with f -expectation.

This has required some specific techniques of stochastic analysis and
BSDEs to handle measurability and other issues due to the nonlinearity of
the expectation and the lack of regularity of the terminal reward.

Our result on the existence of weak ε-controls allows us to get rid off
regularity assumption on the reward g .
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Note that our approach allows us to treat ambiguity both on the drift and
the volatility

Extension to generalized Dynkin games with uncertainty and irregular
rewards.
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