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Stochastic Differential Equation

We are interested in the simulation of the It6-type SDE

d i .
dXt = b(Xt)dt + Z O'J(Xt)dWl{

j=1
Xo = X0
Where:
@ xp € R".
@ (Xt)¢epo,77 is @ n—dimensional stochastic process.
o W= (W ... ,W%) isa d—dimensional standard Brownian motion.
o b,ol,..., 09 R" — R" Lipschitz with o!,..., 0% CL.

This stochastic differential equation can be written in Stratonovich form:

d )
dX; = o%(Xe)dt + 3 o9 (Xe) o W/

Jj=1
Xo = xo

d

where 0% = b — % >~ do/a! and Do’ is the Jacobian matrix of /.
=1



Related Ordinary Differential Equations

For j € {0,...,d} and x € R, let (exp(to’)x):cr solve the ODE

exp(OUJ )X = X

One has % = dolol (exp(to’)x) so that by Itd’s formula, for
Jje{1,...,d},

dexp(W/o!)x = o/ (exp( Wl{O'J)X> dWi + 580"’0"] (exp( WtJaJ)x> dt

=0’ (exp( W{aj)x> o dW!



Commutative case

Assume that
Vj,me{0,...,d}, dc™o) = Dol ie. [0™, 0] =0 (1)
By Frobenius theorem, 3¢ : Rt — R” such that

{@(0,...,0):x0

Vi€ {0, ... d}, GE(s0,51,---5q) = 07 (0,51, -, 54)) -

ey 2 2
(1) < Schwarz compatibility between agaﬁm a afmgsj.

Then (X:)es0 = (@(t, W2, ..., WT))e>o0.



Ninomiya-Victoir scheme

Let N € N*, (tk = %)OS‘(SN' AWtk_*_1 = Wtk+1 — Wtk and n= (nk)lgng be a
sequence of i.i.d. Rademacher random variables independent of W such that
Pl =1) =P(k = —1) = 3.

Starting point: thglv,n =xp. For ke {0...,N —1}:
If N1 = 1

trt1 eyl

¢ t
XWVan _ evo (5100) exp (AWd o‘d) ...exp (AW}MUI) exp (5100) thzlv’"

And if ng41 = —1:

i1 tet1 78] ti

(& i
XNV = exp (5100) exp (AW:l 01) ...exp (AWd ad) exp (5100) XNV

Under commutation (1), by induction, Vk € {0,..., N},
NV NV,—
Xe, ’”:th ’ ":cp(tk,thk,...,W,_fk’):th.



Order 2 of weak convergence

Denoting by (X{)t>0 the solution to the SDE starting from X5 = x € R”,
for f : R"” — R"” smooth, u(t,x) := E [f(X])] solves the Feynman-Kac
PDE

%(t,X) = Lu(t,x), (t,x) € [0,00) x R"
u(0,x) = f(x), x e R"

with L:= b.V, + 1Tr [(0,...,09)(cL,...,09)" V2] =0 + 1 00 ()2
the infinitesimal generator.

Py D o,
W—aLU—LaU—LU

#2
and u(ty, x) = f(x) + t1Lf(x) + %sz(x) + O(t})
Ninomiya and Victoir have designed their scheme so that
t2
E[f(Xy "] = f(x0) + t1Lf (x0) + - L2 (x0) + O(£1).

One step error O(3) Nsteps O(2) global error.



Convergence in total variation results

Replace W/

tit1

W{k by +/ T/NZLrl where the random variables
(Zi)lgjgd,kzl are independent and such that
° E[Z] = E[(£)°] = E[(£)°] =0, E[(Z)’] = 1, E[(%)*] =3,
@ Ja non-empty open ball B and € > 0 such that £(Z]) >> elp(x)dx.
Theorem (Bally Rey 15)

Assume that Vj € {0,...,d}, oj : R" — R" is C>* bounded together with
its derivatives. Then 3C € (0,00), Vf € CS(R"),

UPqeNn:|o|<6 0% fHoo
N2

VN, sup [E[f(Xur)] — E[F(XM)]| < €2
0<k<N W N

If moreover uniform ellipticity holds, then
V0 < S < T,3C(S) € (0,00), Vf : R" — R" measurable and bounded,

VN, sup |E[f(XkT)]—IE[f(XNVn)]|§%.
k—>S N




Motivation for studying strong convergence

Derivation of a rate of convergence: Bayer Fritz 13 obtain convergence in
a < %—Hélder norm by rough paths theory but with no rate.
Multilevel Monte Carlo estimator of E[f(XT)]

w8 () (7))

Debrabant Rossler 15 replace X2hil by a scheme with high
order of weak convergence to reduce the bias

— variance controlled by strong error.

Giles Szpruch 14 replace f(X2 Py — (X2 'I) by
FOG )+ ()

2

— F(XZTHHY with X2\

. . . I ; .
antithetic version of X2/ to achieve

I ~ol
f X2 NN f X2 NN -1 -
Var | (0G0 p(x270)) < €

— complexity O(¢=2) for the precision «.
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Interpolation between the grid points ty

Natural interpolation between Xt’:IV’" and Xt’zll/l’" given for t € [tk, txs1] by

At At
Lipena=1} exp(700) exp(AWZ0?) .. exp(AWLe?) exp(Tao)Xfl’\(lv’77

At At
+ 1ip=—13 exp(700) exp(AWL o). .. exp(AWZ o) EXP(TUQ)X!’\(IVW

where (At, AW;) = (t — ty, Wy — W, ) — very complicated Itd
decomposition involving the flows of the ODEs. We rather set

t
ty

d t
oo 1 _ _
XMV = XV S / ol (XT)odWi+5 / o® (X07)+0° (XE41) ds
j=17%
H — _0777 — g 0 NV777
where for s € |ty ty1], if nxr1 =1, Xs7' = exp( >0 )th .
for j € {1,...,d}, XI" = exp (AWJo/) X{ 17

and X&TH7 = exp (5209) Xtiﬁ and X/ is defined symmetrically by
backward induction on j when 7,1 = —1.



Order 1/2 of strong convergence

Theorem (Strong convergence)
Assume that
@ b:R" — R" is Lipschitz
o Vje{l,...,d}, g; : R" — R" is C' with a bounded Jacobian matrix
Ooj and such that Ocjo; is Lipschitz.
Then Vp € [1,4+00),

1/(2p)

2 Cwy (1
ICuy < 00, YN € N*, E | sup || X, —Xt’VVWH ®ln < v (1 £ [xof))
t<T v N

v



Stable convergence of the normalized error

Theorem (Stable convergence)
Assume that

o 00 is C?, Lipschitz and with polynomialy growing 2" order deriv.,

o Vje{l,...,d}, o isC3, Lipschitz, Oa;j is Lipschitz and the derivatives of
dojoj have polynomial growth,

o Vjme{l,...,d},0clc™ is Lipschitz.

Then, as N — oo, (VN(X"" — X;))o<e<T converge in law stably towards the
unique solution (Vi)o<.< 7 to the affine equation:

d j—-1

Ve~ VTES. S [[0oiom — a0 () aee

j=1 m=1
t d t )
+/ db (Xs) Vsds+2/ Aol (Xs) VedW/,
0 : 0
j=1

where B is a d(d — 1)/2-dimensional Brownian motion indep. of W.




Stable convergence

@ The limit does not depend on 7.

@ If the Brownian vector fields commute, i.e. Vj,m € {1,...,d},
00jom = 00moj, then the limit is 0.




© Strong convergence properties

@ Commutation of the Brownian vector fields



The commutative case

We assume that Vj,m € {1,...,d},00/0™ = do™o’

The order of integration of these Brownian vector fields no longer matters
and 7 is useless.
We use the natural interpolation given for t € [ty, tk+1] by

At At
XNV = exp(TUo) exp(AWZ0?) .. exp(AWLet) exp(7ao)XtIZV’”,

where At =1t — ty and AWt = Wt — Wtk'



Order one of strong convergence

Theorem (Strong convergence)

We assume that

o b,o% ol ... 09 are Lipschitz,
e Vjc{l,...,d}, o isC!,

@ ¢ is C? with second order derivatives growing polynomially,

e Vjime{l,...,d},00/06™ = do™d’ i.e. [0/,0™] = 0.
Then
1/(2p)
2 Cnv(1
ICyy < 00, YN € N*, E |sup th _ XtNVH ,,] < w
t<T

Under the commutativity of the Brownian vector fields, it is possible to
implement the Milstein scheme which also exhibits order one of strong
convergence.



Stable convergence of the normalized error

Theorem (Stable convergence)
We assume that

o Vj€{0,...,d}, o/ is C3 with bounded derivatives,
e Vjime{l,...,d},0000™ = do™d’ i.e. [0/,0™] = 0.

Then (N(XMY — X;))o<t<T converge in law stably towards the unique
solution (Vt)o<,< T to the following affine equation

Ve = 2\[2/ (867 — 909 5°) (X;) dB’

/8b Vds+Z/ 9o’ (Xs) VedW!

with B a standard d-dimensional Brownian motion independent of W

The limit vanishes when all the vector fields 69, 01,..., 09 commute.
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The Giles-Szpruch scheme

X = xp and for k € {0,...,N — 1},

d .
X2 = X2+ b(XE) (e — 1)+ 3 of (X2) (Wi, — WE)
d
% 2 O-Jo-m (ths) (( W#k+1 )( tk+1 - Wt‘k) 1{] m}(tk+1 - tk)

Strong coupling (Giles Szpruch 15)
@ XN scheme with N steps
o X©52N scheme with 2N steps
o XG52N scheme with 2N steps and intervertion of the increments
(Wk+T1/2 — W%) and (W% — Wk+T1/2) forall k € {0,...,N —1}.

Assume that b,ol,..., o9 C? with bounded derivatives. Then,

X 2p]1/(2p)
dC < 00,VN € N* E [H% (X$S,2N —i—X-,Ci;S’ZN) _ ngwH P] <

=20



Coupling with the Ninomiya-Victoir scheme

Theorem (Strong convergence)

Assume that
e Vje{l,...,d},0/ isC3 with bounded first and second order
derivatives and with polynomially growing third order derivatives,
o Vj,me{l,...,d}, Oojon is Lipschitz,
o b is C? with bounded derivatives,
Then, Vp > 1, 9C < oo, VN € N¥,

2p
E

1 1/(2p)
NV, NV,—n,N GS,N
HE(XT "Xy = X7 77] =

=/




Derived multilevel estimators

Strong coupling with order one between successive levels — Optimal

complexity O(e2) where ¢ is the root mean-square error (accuracy).

antithetic NV-GS

e Z Xcsz i +Z Ab/z( Xcsz i _f-(X_,G_‘S’Q/—l,i))
I= i=

]_ - II' L—1 i
+ — Z ( 4(XITW’2 ") — f(X?S’2 ’ /)> where

- I 1 i
BXF*) = S(FXE2) + F(XF°2))
l(f(XNV,n2)+f(XNV —n,2 )+f(XNV,n2)+f(XNV —n,2! )

v




Derived multilevel estimators

antithetic NV

Moy L M,
1 = NV,20j 1 2 UNV2Lin 7 NV2IL
e 2RO EN 4 573 (RO BOGET)
i=1 =1 =1

where
1
2

= uNv2 1 NV ,2! NV,—n,2! SNV n,2! SNV, —n,2!
f4(XT ):Z(f(XT K )+f(XT K )+f(XT K )+f(XT ! ))

- / / _ |
RXPY?) = S(FXFY™) + F(xy Y 772)

v



ClarkCameron SDE

dx}! = dw}
dX? = X2 dW?

Parameters
o Xg=X¢=0.
ou=T=1

1 0 0 0
01:<0>,02:(X1),801:0,802:<0 1)

Oo10p = 0 # Joroy1 = < (1) >



Computation time ofy
~ Computation time of Yy, &

f(Xl,XQ) = COS (XQ), A=
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Heston model

dX}! = (r— %)dt + /XZdW}
dX2 = k(0 — X2)dt + o/ XZdW?

Parameters

e X} =0 X3=1,
e T=1 k=05 0=0.9 0=0.05
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