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Some models with discontinuous coefficients



Continuous time threshold AR models Brockwell, Tweedie, Stramer,
Tong, Chan etc.

X(p)
t +

p−1∑
k=0

ak,iX(k)
t + bi = σ1Z t; if ri−1 < Xt < ri

Here X(i) denotes the i-th derivative and ri−1 < ri.
The SDE extension which is obtained using a limiting procedure has
coefficients which are discontinuous at points.
This is also associated with the so-called change point models:

Xt = x +

∫ t

0
σi(Xs)dZ i

t

Here σ may have discontinuities of the type

σi(x) =

n∑
j=1

σ
j
i
(x)1{r j−1 < x < r j}.

Goal:Estimate parameters, prove that they are efficient, test design



The symmetrization of the Carr-Lee (By Akahori-Imamura)

dXt = σ(Xt)dWt + b(Xt)dt τk = inf{t; Xt = k}
Theorem Let X be a solution to a 1-dim SDE and X̃ be the solution to

dX̃t = σ̃(X̃t) dWt + b̃(X̃t) dt,

where
σ̃(x) = σ(x)1{x>k} ± σ(2k − x)1{x≤k},

and
b̃(x) = b(x)1{x>k} − b(2k − x)1{x≤k}.

We assume X0 = X̃0 > k. Then we have

E[ f (Xt − K)1{Xt>k}1{τk>t}]

= E[ f (X̃t − k)1{X̃t>k}] − E[ f (k − X̃t)1{X̃t<k}]
(1)

for any bounded Borel function f and t > 0.
Goal: Volatility estimation, Simulation, Static hedging



A generic stochastic volatility model is given as follows:

dXt = σ11(Xt ,Vt)dWt + b1(Xt ,Vt) dt
dVt = σ21(Vt)dWt + σ22(Vt)dBt + b2(Vt) dt,

(2)

where W ⊥ B, b(x, v) = (b1(x, v), b2(v)) ∈ C(R2) and

σ(x, v) =

(
σ11(x, v) 0
σ21(v) σ22(v)

)
∈ C(R2)

In most cases, σ11(x, v) = xν(v) for some ν and b1(x, v) = rx .
Theorem Let X0 > K > 0 and τK is the first hitting time of X to K

σ̃11(x, v) =

σ11(x, v) x ≥ K
−σ11(2K − x, v) x < K

.

Similarly for b̃1 and let X̃ be the unique (weak) solution to

dX̃t = σ̃11(X̃t ,Vt)dWt + b̃1(X̃t ,Vt) dt,

Then, it holds for any bounded Borel function f and t > 0 that

E[ f (Xt − K)1{Xt>K}1{τK>t}] = E[ f (X̃t − K)1{X̃t>K}] − E[ f (K − X̃t)1{X̃t<K}],



Relation b/w SkD and SDE with dis-continuous coefficients
Define for α ∈ (0, 1)

sα(x) := (1 − α)x1(x ≥ 0) + αx1(x < 0).

Then (note that if α < (0, 1) then sα is not bijective)

Xt(x) = x +

∫ t

0
b(Xs(x))ds +

∫ t

0
σ(Xs(x))dWs + (2α − 1)L0

t (X)

sα ↓ ↑ s−1
α

Z t = z +

∫ t

0
µ(Z s)ds +

∫ t

0
ρ(Z s)dWs,

where

µ(z) := (1 − α)b
( z

1 − α

)
1(z > 0) + αb

( z
α

)
1(z < 0) +

b(0)
2

1(z = 0),

ρ(z) := (1 − α)σ
( z

1 − α

)
1(z > 0) + ασ

( z
α

)
1(z < 0) +

σ(0)
2

1(z = 0).

Weak solution: Krylov , Le Gall , Nakao .



Physical interpretation

In physical/biological models, diffusions have the corresponding
interpretation by Kolmogorov equation In the case that
ρ(x) = (1 − α)1(x > 0) + α1(x < 0) + 1

2 1(x = 0), this is strongly related
with the transmission problem

∂tu(t, x) = µ(x)∂xu(t, x) +
ρ2(x)

2
∂2

xu(t, x)

α∂xu(t, 0+) = (1 − α)∂xu(t, 0−)
u(0, x) = f (x).

This problem is related with the skew Brownian motion and the boundary
condition is interpreted as a transmission condition at the boundary. It is
well known that there is a unique strong solution for skew Brownian
motion (µ = 0, ρ = 1) iff α ∈ [0, 1].

Xt = x + Wt + L0
t (X).



Some partial conclusions/questions

I Simple models are necessary to understand the behavior of the
model

I Some flexibility in the coefficients is necessary in order to fit to data
I When are regular models close to irregular models?
I Are approximations always correct?
I Many different types of transmission conditions are possible
I Extensive literature and applications
I One needs to understand the behavior of the density even at

discontinuity points.

A. Lejay, E. Mordecki, S. Torres, Is Brownian skew?, Preprint.



Skew diffusion



· A skew diffusion is the unique solution of the following one-dimensional
stochastic differential equation with symmetric local time:

Xt(x) = x +

∫ t

0
b(Xs(x))ds +

∫ t

0
σ(Xs(x))dWs + (2α − 1)L0

t (X). (3)

·W = (Wt)0≤t≤T is a one-dimensional standard Brownian motion.
· L0(X) = (L0

t (X))0≤t≤T is a symmetric local time of X at the origin.
· t ∈ [0, T], α ∈ (0, 1).
· If α = 1/2, then a solution to the equation (3) is a diffusion process.
· If α = 1 or α = 0, then a solution to the equation (3) is Reflected
stochastic differential equation.
·We want to prove that

(i) Existence of the density of a skew diffusion.

(ii) The behavior of the density of a skew diffusion up to the boundary.

(iii) Probabilistic representation for E[ f (XT(x))] for some function f
(iv) Other applications and extensions



Theoretical result

Let R0 := R \ {0}. Our first main result on this talk is the following.
Theorem Assume that

(i) There exist positive constants a and a, such that for any x ∈ R,

a ≤ a(x) := σ2(x) ≤ a.

(ii) b ∈ Mb, a ∈ Cη

b
with η ∈ (0, 1], i.e., ∃K > 0 such that

sup
x∈R
|b(x)| + sup

x,y∈R,x,y

|a(x) − a(y)|
|x − y|η

≤ K.

Then ∀(t, x) ∈ (0, T] × R0, there exists the density function of Xt(x),
pt(x, ·), so that i.e., ∃C > 0 and c > 0 s.t. ∀(t, x, y) ∈ (0, T] × R0 × R,

pt(x, y) ≤
Ce−

(y−x)2

2ct

√
2πct

and |∂x pt(x, y)| ≤
C

t1/2

e−
(y−x)2

2ct

√
2πct

.

This density is continuous in x, its side derivatives exist at x = 0, its
second derivatives is continuous. If a ∈ C1+η

b
, b ∈ Cη

b
then the first

derivative condition at y = 0 is also satisfied.



Some transformations with solution construction

sα(x) := (1 − α)x1(x ≥ 0) + αx1(x < 0),

rα(x) := s−1
α (x) =

x
(1 − α)

1(x ≥ 0) +
x
α

1(x < 0)

fα(x) :=
D−sα(x) + D+sα(x)

2
= (1 − α)1(x > 0) + α1(x < 0) +

1
2

1(x = 0).

Note that fα ◦ rα(x) = fα ◦ sα(x) = fα(x).
Proposition Suppose that α ∈ (0, 1), and that b and σ are measurable
functions. Define Z t = sα(Xt). Then X = (Xt)0≤t≤T is solution of the
X-SDE if and only if Z = (Z t)0≤t≤T solves the following continuous flow
SDE

Z t = z +

∫ t

0
µ(Z s)ds +

∫ t

0
ρ(Z s)dWs, z := sα(x),

where ρ(z) := fα(z)σ(rα(z)) and

µ(z) := fα(z)b(rα(z)) = (1 − α)b
( z

1 − α

)
1(z > 0) + αb

( z
α

)
1(z < 0) +

b(0)
2

1(z = 0).



Parametrix method for Skdiffusion



In this section, we introduce a parametrix method for diffusion process
(α = 1/2):

dXt = b(Xt)dt + σ(Xt)dWt , X0 = x.

The parametrix method is a “Taylor-like expansion” for the density of
diffusion process and is used to construct a fundamental solution for
parabolic type PDEs (Levi or Friedman [?])
Consider a “frozen process”

dXy
t = b(y)dt + σ(y)dWt , ( or dX̄y

t = σ(y)dWt), X̄y
0

= x.

Then p(x, y) := e
|y−x−b(y)t|2

2a(y)t
√

2πa(y)t
or p(x, y) := e

|y−x|2
2a(y)t
√

2πa(y)t
satisfies

∂s pt−s(x, y) = −Ly py
t−s(x, y), lim

t↓s

∫
R

f (x)pt−s(x, y)dx = f (y).

L f (z) = b(z)∂x f (z) +
1
2
σ2(z)∂2

x f (z)

Ly f (z) = b(y)∂x f (z) +
1
2
σ2(y)∂2

x f (x)

Closeness is measured by L f (z) − Ly f (z)



Hence we have the following “distance” type argument

pt(x, y) − pt(x, y) =

∫ t

0
ds∂s

∫
R

dzps(x, z)pt−s(z, y)

=

∫ t

0
ds

∫
R

dz
(
∂s ps(x, z)pt−s(z, y) + ps(x, z)∂s pt−s(z, y)

)
=

∫ t

0
ds

∫
R

dz
(
L∗ps(x, z)pt−s(z, y) − ps(x, z)Ly pt−s(z, y)

)
=

∫ t

0
ds

∫
R

dzps(x, z)(L − Ly)pt−s(z, y)
=:At−s(z,y)

=

∫ t

0
ds

∫
R

dzps(x, z)At−s(z, y)

=: p~ A(t, x, y).

Given good integrable estimates on (L − Ly)pt−s(z, y), this implies that

pt(x, y) = pt(x, y) + p~ A(t, x, y).

pt(x, y) is called the “parametrix” and this procedure is called the
“parametrix method”.



By iterating the above procedure, we have the following “formal
expansion”

pt(x, y) = pt(x, y) + p~ A(t, x, y)

= pt(x, y) + p~ A(t, x, y) + p~ A~2(t, x, y)
= · · ·

“ = ”
∞∑

n=0

p~ A~n(t, x, y),

where f~1 := f , f~n := f ~ f~(n−1) and f ~ g~0 := f .
Under the condition

(i) σ is a positive, bounded and uniformly elliptic function.

(ii) b is bounded and a is η-Hölder continuous with η ∈ (0, 1],
the above expansion holds and pt(x, y) satisfies a Gaussian upper bound
because we have the following estimate:

|p~ A~n(t, x, y)| ≤
Cn

Γ(1 + nη/2)
e−

|y−x|2

2ct

√
2πct

=:
Cn

Γ(1 + nη/2)
gct(y − x).



The notion of closeness

pt(x, y) − pt(x, y) =

∫ t

0
ds

∫
R

dzps(x, z)(L − Ly)pt−s(z, y)
=:At−s(z,y)

=

∫ t

0
ds

∫
R

dzps(x, z)At−s(z, y)

=: p~ A(t, x, y).

The distance is measured by (L − Ly)pt−s(z, y) together with the
integrability of the above time integral. In fact,

At−s(z, y) = (L − Ly)pt−s(z, y)

∼

(b(z) − b(y))
z − y
t − s

+
1
2

(σ2(z) − σ2(y))
(z − y)2

(t − s)2


× pt−s(z, y)

How to make it work in our case where b = δ0? Using the same
degeneracy in the approximation term!



Recall that for the parametrix method for diffusion process, a “frozen
process” Xy is defined by

Xy
t = x + b(y)t + σ(y)Wt , ( or Xy

t = x + σ(y)Wt).

For a skew diffusion process:

Xt(x) = x +

∫ t

0
b(Xs(x))ds +

∫ t

0
σ(Xs(x))dWs + (2α − 1)L0

t (X),

a “frozen process” Xy which is the unique strong solution to the equation

Xy
t = x + σ(y)Wt + (2α − 1)L0

t (Xy),

which is a slightly generalized version of “skew Brownian motion”.

L f (z) = (b(z) + (2α − 1)δ0(z))∂x f (z) +
1
2
σ2(z)∂2

x f (z)

Ly f (z) = (b(y) + (2α − 1)δ0(z))∂x f (z) +
1
2
σ2(y)∂2

x f (x)

Closeness is measured by L f (z) − Ly f (z)



The solution of the equation

Yt = x + Wt + (2α − 1)L0
t (Y),

is called the “skew Brownian motion” (Harrison and Shepp [2]).
The density function of Yt , pYt (x, ·), can be given explicitly by using the
Gaussian density :
if x ≥ 0

pYt (x, y) −

pD
t (x,y)︷     ︸︸     ︷

gt (y − x) = (2α − 1)

pαt (x,y)︷                                                      ︸︸                                                      ︷
{gt (y + x) 1(y ≥ 0) − gt (y − x) 1(y < 0)},

and if x < 0

pYt (x, y) − gt (y − x) = (2α − 1) {−gt (y + x) 1(y < 0) + gt (y − x) 1(y ≥ 0)} .

Note that pYt (x, y) satisfies the following condition:

α∂x pYt (0+, y) = (1 − α)∂x pYt (0−, y)

and if α , 1/2, pYt (x, ·) is discontinuous at 0 because

pYt (x, 0+) = 2αgt(x) and pYt (x, 0−) = 2(1 − α)gt(x).

Distance Notice all the differentiability properties.



In the same way, the density py
t (x, ·)of Xy

t = x + σ(y)Wt + (2α − 1)L0
t (Xy)

is given explicitly. We denote pt(x, y) := py
t (x, y). Then we can prove that

pt(x, y) :=
∞∑

n=0

p~ A~n(t, x, y)

is the density function of a skew diffusion Xt(x) and other properties hold.
Moreover, pt(x, y) has the same property of pYt (x, y):

α∂x pt(0+, y) = (1 − α)∂x pt(0−, y).

and if α , 1/2, pt(x, ·) is discontinuous at 0 and satisfies

pt(x, y) ≤ C
exp

(
−

(y−x)2

2ct

)
√

2πct
.

pt(·, y) is a Lipschitz function with discontinuous derivative at x = 0.
Notice that proving existence of ∂t pt(x, y) is possible even at x = 0.



Some problems in detail
I The parametrix works for the skew Brownian motion because it is

close enough. It probably does not work if one uses only Brownian
motion.

I The idea of the proof requires three steps: In the first step, we use
the parametrix method for semigroup of Xt(x), we prove that the
expansion holds for any f ∈ C∞c almost every x ∈ R0. So pT(x, ·) is
the density function of Xt(x) for almost every x ∈ R0.
This weakness in the argument is due to the duality that is used in
order to apply the backward parametrix method.

I In the second step, we prove the existence of the density pZ t (z, ·) of
Z t(z), z ∈ R0. Then using the continuity of the flow defined by Z and
the continuity of the function pZ t (z, ·) for every z ∈ R0, we obtain that
pZ t (z, ·) is the density for every z ∈ R0.

I Transform back from Z to X.
I Why does it work? Use the domain for the expansion: f

differentiable in R0 and satisfying α f ′(0+) = (1 − α) f ′(0−). L has
the local time term as well as L̄!



Probabilistic representation



Diffusion case

(1) {Nt; t ≥ 0} Poisson (1) (2)Jump times

(3) Euler-Maruyama (EM) scheme using this time partition.

X∗,πτi+1
= X∗,πτi

+ σ(X∗,πτi
)(W(τi+1) −W(τi)) − b1(X∗,πτi

)(τi+1 − τi).
Here X∗,π

0
= X0 follows the density f (assumption). Then we have

E[ f (XT)] = eT
E

 p̄T−τNT
(X∗,π

T
, x)

NT−1∏
j=0

θD
τ j+1−τ j

(X∗,πτ j+1
, X∗,πτ j

)


θD

t (x, y) =
1
2

(a(y)−a(x))H2
ta(y)(y−x−b1(y)t)−(b(y)−b1(x))H1

a(y)t
(y−x−b1(y)t)

H1
a(z) = −a−1 z H2

a(y) = (a−1 z)(a−1 z) − a−1.

Note the degeneration in t−(1− α
2 ) of the Hermite polynomials and T − τNT

above.
Idea of the proof Recall that pt(x, y) =

∑∞
n=0 p~ A~n(t, x, y). By the

definition of convolution ~, we have

p~ A~n(t, x, y) =

∫ t0

0
dt1 · · ·

∫ tn−1

0
dtn

∫
R

n
dy1 · · · dyn

n−1∏
i=0

At i−t i+1 (yi+1, yi)ptn
(yn+1, yn).
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