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Problem Statement

Numerical Optimization without Derivatives / Black-Box Optimization

I Task: minimize an objective function (fitness function, loss
function) in continuous domain

f : X ✓ Rn
! R, x 7! f (x)

I Black Box scenario (direct search scenario)

f(x)x

I gradients are not available or not useful

I problem domain specific knowledge is used only within the

black box, e.g. within an appropriate encoding

I Search costs: number of function evaluations (often called

runtime of algorithms)

B: this is not the "real" runtime (i.e. time you have to wait) but

this is typically proportional to the real runtime. This measurement

is independent of the programming langage/ implementation

"tricks" chosen for the implementation.



Why Black-Box / Derivative-free Optimization?

Motivations

Many problems in various domains (medicine, biology, physics, ...)

or in industry involve the resolution of a (difficult) numerical

optimization problems where derivatives are either not available or

not useful.



Optimization of the Design of a Launcher

Example of a black-box problem



Control of the Alignement of Molecules

Example of a black-box problem (II)



Coffee Tasting Problem

Example of a black-box problem (III)

Coffee Tasting Problem

I Find a mixture of coffee in order to keep the coffee taste from

one year to another

I Objective function = opinion of one expert



A last example of a Black-Box Continuous Optimization

Problem



Numerical Optimization: General Framework

Unconstrained optimization: general setting
minimize

global minimum local minimum

local maximum
n=1

f : x ∈ Ω ⊂ ℝn ↦ f(x) ∈ ℝ
n : dimension of the search space
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Level Sets: Visualization of a Function

Source: Nykamp DQ, “Directional derivative on a mountain.” From Math Insight. http://mathinsight.org/applet/
directional_derivative_mountain 

http://mathinsight.org/contributor/dqnykamp
http://mathinsight.org/applet/directional_derivative_mountain
http://mathinsight.org/applet/directional_derivative_mountain


Level Sets: Visualization of a Function

One-dimensional (1-D) representations are often misleading 
(as 1-D optimization is “trivial”, see slides related to curse of 
dimensionality), we therefore often represent level-sets of 
functions 

Examples of level sets in 2D
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Level Sets: Visualization of a Function

Source: Nykamp DQ, “Directional derivative on a mountain.” From Math Insight. http://mathinsight.org/applet/
directional_derivative_mountain 

http://mathinsight.org/contributor/dqnykamp
http://mathinsight.org/applet/directional_derivative_mountain
http://mathinsight.org/applet/directional_derivative_mountain


Level Sets: Topographic Map

The function is the altitude

3-D picture

Topographic map



Level Set: Exercice

Consider a convex-quadratic function
f : x 7! 1

2(x� x
⇤)TH(x� x

⇤) = 1
2

P
i hi,i (xi � x

⇤
i )

2 + 1
2

P
i 6=j hi,j (xi � x

⇤
i )(xj � x

⇤
j )

with H a symmetric, positive, definite matrix

1. Assume n=2, H =


1 0
0 1

�
plot the level sets of f 

2. Same question with H =


1 0
0 9

�

3. Same question with H = P


1 0
0 9

�
P

T with P 2 R2⇥2

P orthogonal



Numerical Optimization: General Framework

Remarks: we can assume minimization without loss of 
generality as maximizing f boils down to minimizing -f 

Unconstrained optimization: general setting
minimize f : x ∈ Ω ⊂ ℝn ↦ f(x) ∈ ℝ
n : dimension of the search space



Why is Optimization a non-trivial Problem?

Curse of dimensionality

if n=1, which simple approach could you use to minimize:
f : [0, 1] ! R ?
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set a regular grid on [0,1] 
evaluate on f all the points of the grid 
return the lowest function value
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Why is Optimization a non-trivial Problem?

Curse of dimensionality

if n=1, which simple approach could you use to minimize:
f : [0, 1] ! R ?

set a regular grid on [0,1] 
evaluate on f all the points of the grid 
return the lowest function value

easy! But how does it scale when d increases?

1-D optimization is trivial



Curse of Dimensionality

The term curse of dimensionality (Richard Bellman) refers to 
problems caused by the rapid increase in volume associated 
with adding extra dimensions to a (mathematical) space. 

Example: Consider placing 100 points onto a real interval, say 
[0,1]. 

How many points would you need to get a similar coverage (in 
terms of distance between adjacent points) in dimension 10? 



Curse of Dimensionality

The term curse of dimensionality (Richard Bellman) refers to 
problems caused by the rapid increase in volume associated 
with adding extra dimensions to a (mathematical) space. 

Example: Consider placing 100 points onto a real interval, say 
[0,1]. To get similar coverage, in terms of distance between 
adjacent points, of the 10-dimensional space [0,1]10 would 
require 10010 = 1020 points. A 100 points appear now as 
isolated points in a vast empty space. 

Consequence: a search policy (e.g. exhaustive search) that is 
valuable in small dimensions might be useless in moderate or 
large dimensional search spaces. 



Curse of Dimensionality

How long would it take to evaluate 1020 points? 



Curse of Dimensionality

How long would it take to evaluate 1020 points ? 

import timeit 
timeit.timeit('import numpy as np ;  
np.sum(np.ones(10)*np.ones(10))', number=1000000) 
> 7.0521080493927

7 seconds for 106 evaluations of  

We would need more than 108 days for evaluating 1020 points 

[As a reference: origin of human species: roughly 6 x 108 days]

f(x) =
P10

i=1 x
2
i



What Makes a Function Difficult to Solve?

Why stochastic search?

I non-linear, non-quadratic, non-convex

on linear and quadratic functions
much better search policies are

available
I ruggedness

non-smooth, discontinuous,
multimodal, and/or noisy

function
I dimensionality (size of search space)

(considerably) larger than three
I non-separability

dependencies between the
objective variables

I ill-conditioning
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Separable Problems

Definition (Separable Problem)
A function f is separable if

arg min
(x1,...,xn)

f (x1, . . . , xn) =

✓
argmin

x1
f (x1, . . .), . . . , argmin

xn
f (. . . , xn)

◆

) it follows that f can be optimized in a
sequence of n independent 1-D optimization

processes

Example: Additively
decomposable functions

f (x1, . . . , xn) =
nX

i=1

fi (xi )

Rastrigin function
f (x) = 10n+

Pn
i=1(x

2
i �10 cos(2⇡xi )) −3 −2 −1 0 1 2 3

−3

−2
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Non-Separable Problems

Building a non-separable problem from a separable one (1,2)

Rotating the coordinate system

I f : x 7! f (x) separable

I f : x 7! f (Rx) non-separable

R rotation matrix
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1Hansen, Ostermeier, Gawelczyk (1995). On the adaptation of arbitrary normal mutation
distributions in evolution strategies: The generating set adaptation. Sixth ICGA, pp. 57-64, Morgan
Kaufmann

2Salomon (1996). "Reevaluating Genetic Algorithm Performance under Coordinate Rotation of
Benchmark Functions; A survey of some theoretical and practical aspects of genetic algorithms."
BioSystems, 39(3):263-278



Ill-Conditioned Problems

Exercice

Consider a convex-quadratic function
f : x 7! 1

2x
T
Hx = 1

2
P

i hi,i x
2
i + 1

2
P

i 6=j hi,j xixj , with H positive, definite,
symmetric matrix

I Why is it called a convex-quadratic function?
I What is the Hessian matrix of f ?

The condition number of the matrix H (w.r.t. the euclidean norm) is defined as

cond(H) =
�max(H)
�min(H)

Ill-conditioned means a high condition number of the Hessian Matrix H .
Consider now the specific case of the function f (x) = 1

2 (x
2
1 + 9x2

2 )

I Compute its Hessian matrix H , its condition number
I Relate the condition number of H to the axis ratio of the level sets of f
I Generalize to a general convex-quadratic function.

Real-world optimization problems are often ill-conditionned, hence
ill-conditionning is an important difficulty in optimization

I Why do you think it is the case?



Ill-conditionned Problems

consider the curvature of the level sets of a function

ill-conditioned means “squeezed” lines of equal function value (high

curvatures)

gradient direction �f 0(x)T

Newton direction

�H
�1f 0(x)T

Condition number equals nine here. Condition numbers up to 10
10

are not unusual in real world problems.



Landscape of Derivative Free Optimization Algorithms

Deterministic Algorithms
Quasi-Newton with estimation of gradient (BFGS) [Broyden et al. 1970]

Simplex downhill [Nelder and Mead 1965]

Pattern search [Hooke and Jeeves 1961]

Trust-region methods (NEWUOA, BOBYQA) [Powell 2006, 2009]

Stochastic (randomized) search methods
Evolutionary Algorithms (continuous domain)

I Differential Evolution [Storn and Price 1997]

I Particle Swarm Optimization [Kennedy and Eberhart 1995]

I Evolution Strategies, CMA-ES [Rechenberg 1965, Hansen and Ostermeier 2001]

I Estimation of Distribution Algorithms (EDAs) [Larrañaga, Lozano, 2002]

I Cross Entropy Method (same as EDA) [Rubinstein, Kroese, 2004]

I Genetic Algorithms [Holland 1975, Goldberg 1989]

Simulated annealing [Kirkpatrick et al. 1983]

Simultaneous perturbation stochastic approximation (SPSA) [Spall 2000]



Stochastic Search

A black box search template to minimize f : Rn
! R

Initialize distribution parameters ✓, set population size � 2 N
While not terminate

1. Sample distribution P (x |✓)! x1, . . . , x� 2 Rn

2. Evaluate x1, . . . , x� on f

3. Update parameters ✓  F✓(✓, x1, . . . , x�, f (x1), . . . , f (x�))

Everything depends on the definition of P and F✓

In Evolutionary Algorithms the distribution P is often implicitly

defined via operators on a population, in particular, selection,

recombination and mutation

Natural template for Estimation of Distribution Algorithms
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A Simple Example: The Pure Random Search

Also an Ineffective Example

The Pure Random Search
I Sample uniformly at random a solution

I Return the best solution ever found

Exercice
See the exercice on the document "Exercices - class 1".

Non-adaptive Algorithm
For the pure random search P (x |✓) is independent of ✓ (i.e. no ✓
to be adapted): the algorithm is "blind"

In this class: present algorithms that are "much
better" than that



Evolution Strategies

New search points are sampled normally
distributed

x i = m+� y i for i = 1, . . . , � with y i i.i.d. ⇠ N (0,C)

as perturbations of m, where x i ,m 2 Rn
, � 2 R+,

C 2 Rn⇥n

where

I the mean vector m 2 Rn
represents the favorite solution

I the so-called step-size � 2 R+ controls the step length
I the covariance matrix C 2 Rn⇥n

determines the shape

of the distribution ellipsoid

here, all new points are sampled with the same parameters

The question remains how to update m, C, and �.
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Normal Distribution

1-D case
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distribution N (0, 1)

(expected (mean) value, variance) = (0,1)

p(x) =
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exp

✓
�x
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◆

General case
I Normal distribution N

�
m,�2�

(expected value, variance) = (m,�2)
density: pm,�(x) = 1p

2⇡�
exp

⇣
� (x�m)2

2�2

⌘

I A normal distribution is entirely determined by its mean value and
variance

I The family of normal distributions is closed under linear transformations:
if X is normally distributed then a linear transformation aX + b is also
normally distributed

I Exercice: Show that m + �N (0, 1) = N
�
m,�2�



Normal Distribution

General case

A random variable following a 1-D normal distribution is determined by its
mean value m and variance �2.

In the n-dimensional case it is determined by its mean vector and covariance
matrix

Covariance Matrix
If the entries in a vector X = (X1, . . . ,Xn)T are random variables, each with
finite variance, then the covariance matrix ⌃ is the matrix whose (i , j) entries
are the covariance of (Xi ,Xj)

⌃ij = cov(Xi ,Xj) = E
⇥
(Xi � µi )(Xj � µj)

⇤

where µi = E(Xi ). Considering the expectation of a matrix as the expectation
of each entry, we have

⌃ = E[(X � µ)(X � µ)T ]

⌃ is symmetric, positive definite



The Multi-Variate (n-Dimensional) Normal Distribution

Any multi-variate normal distribution N (m,C) is uniquely determined by its
mean value m 2 Rn and its symmetric positive definite n ⇥ n covariance matrix
C.

density: pN(m,C)(x) =
1

(2⇡)n/2|C|1/2 exp
⇣
� 1

2 (x � m)TC
�1(x � m)

⌘
,

The mean value m

I determines the displacement (translation)
I value with the largest density (modal value)
I the distribution is symmetric about the

distribution mean
N (m,C) = m +N (0,C) −5
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2−D Normal Distribution

The covariance matrix C

I determines the shape
I geometrical interpretation: any covariance matrix can be uniquely

identified with the iso-density ellipsoid
{x 2 Rn | (x � m)TC

�1(x � m) = 1}
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. . . any covariance matrix can be uniquely identified with the iso-density
ellipsoid {x 2 Rn | (x � m)TC

�1(x � m) = 1}
Lines of Equal Density

N
�
m,�2I

�
⇠ m + �N (0, I)

one degree of freedom �
components are
independent standard
normally distributed

N
�
m,D2�⇠ m + DN (0, I)
n degrees of freedom

components are
independent, scaled

N (m,C)⇠ m + C
1
2 N (0, I)

(n2 + n)/2 degrees of freedom
components are
correlated

where I is the identity matrix (isotropic case) and D is a diagonal matrix
(reasonable for separable problems) and A⇥N (0, I) ⇠ N

�
0,AA

T� holds for all
A.
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Where are we?

Problem Statement

Black Box Optimization and Its Difficulties

Non-Separable Problems

Ill-Conditioned Problems

Stochastic search algorithms - basics

A Search Template

A Natural Search Distribution: the Normal Distribution

Adaptation of Distribution Parameters: What to Achieve?

Adaptive Evolution Strategies

Mean Vector Adaptation

Step-size control

Theory
Algorithms

Covariance Matrix Adaptation

Rank-One Update
Cumulation—the Evolution Path
Rank-µ Update



Adaptation: What do we want to achieve?

New search points are sampled normally distributed

x i = m + � y i for i = 1, . . . , � with y i i.i.d. ⇠ N (0,C)

where x i ,m 2 Rn
, � 2 R+, C 2 Rn⇥n

I the mean vector should represent the favorite solution

I the step-size controls the step-length and thus convergence

rate

should allow to reach fastest convergence rate possible
I the covariance matrix C 2 Rn⇥n

determines the shape of the

distribution ellipsoid

adaptation should allow to learn the “topography” of the problem
particulary important for ill-conditionned problems

C / H
�1 on convex quadratic functions
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Evolution Strategies (ES)

Simple Update for Mean Vector

Let µ: # parents, �: # offspring

Plus (elitist) and comma (non-elitist) selection
(µ + �)-ES: selection in {parents} [ {offspring}

(µ, �)-ES: selection in {offspring}

ES algorithms emerged in the community of bio-inspired methods where a parallel between
optimization and evolution of species as described by Darwin served in the origin as inspiration

for the methods. Nowadays this parallel is mainly visible through the terminology used:
candidate solutions are parents or offspring, the objective function is a fitness function, ...

(1 + 1)-ES
Sample one offspring from parent m

x = m + � N (0,C)

If x better than m select

m  x



The (µ/µ,�)-ES - Update of the mean vector

Non-elitist selection and intermediate (weighted) recombination

Given the i-th solution point x i = m + � y i|{z}
⇠N(0,C)

Let x i :� the i-th ranked solution point, such that

f (x1:�)  · · ·  f (x�:�).
Notation: we denote y i :� the vector such that x i :� = m + �y i :�

Exercice: realize that y i :� is generally not distributed as N (0,C)

The new mean reads

m  

µX

i=1

wi x i :�

= m + �
µX

i=1

wi y i :�

| {z }
=: yw

where

w1 � · · · � wµ > 0,
Pµ

i=1
wi = 1, 1Pµ

i=1 wi
2 =: µw ⇡

�
4

The best µ points are selected from the new solutions

(non-elitistic) and weighted intermediate recombination is applied.
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Invariance Under Monotonically Increasing Functions

Rank-based algorithms
Update of all parameters uses only the ranks

f (x1:�)  f (x2:�)  ...  f (x�:�)

g(f (x1:�))  g(f (x2:�))  ...  g(f (x�:�)) 8g
g is strictly monotonically increasing

g preserves ranks
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Why Step-Size Control?
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Why Step-Size Control?
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Why Step-Size Control?
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Step-size control

Theory

I On well conditioned problem (sphere function f (x) = kxk2) step-size
adaptation should allow to reach (close to) optimal convergence rates

need to be able to solve optimally simple scenario (linear function,
sphere function) that quite often (always?) need to be solved when

addressing a real-world problem
I Is it possible to quantify optimal convergence rate for step-size adaptive

ESs?



Lower bound for convergence

Exemplified on (1+1)-ES

Consider a (1+1)-ES with any step-size adaptation mechanism

(1+1)-ES with adaptive step-size
Iteration k :

X̃ k+1| {z }
offspring

= X k|{z}
parent

+ �k|{z}
step�size

Nk+1 with (Nk)k i.i.d. ⇠ N (0, I)

X k+1 =

(
X̃ k+1 if f (X̃ k+1)  f (X k)

X k otherwise



Lower bound for convergence (II)

Exemplify on (1+1)-ES

Theorem
For any objective function f : Rn

! R, for any y⇤ 2 Rn

E [ln kX k+1 � y⇤k] � E [ln kX k � y⇤k] � ⌧|{z}
lower bound

where ⌧ = max�2R+ E [ln� k e1|{z}
(1,0,...,0)

+�Nk]

| {z }
=:'(�)



"Tight" lower bound

Theorem
Lower bound reached on the sphere function f (x) = g(kx � y⇤k),
(with g : R! R, increasing mapping) for step-size proportional to
the distance to the optimum where �k = �kx � y⇤k with � := �opt
such that '(�opt) = ⌧ .



(Log)-Linear convergence of scale-invariant step-size ES

Theorem
The (1+1)-ES with step-size proportional to the distance to the
optimum �k = �kxk converges (log)-linearly on the sphere function
f (x) = g(kxk), (with g : R! R, increasing mapping) in the sense

1

k
ln
kX kk

kX 0k
���!
k!1

�'(�) =: CR(1+1)(�)

almost surely.
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Asymptotic results

When n!1

Theorem
Let � > 0, the convergence rate of the (1+1)-ES with
scale-invariant step-size on spherical functions satisfies at the limit

lim
n!1

n ⇥ CR(1+1)

⇣�

n

⌘
=
��
p

2⇡
exp

⇣
�

�2

8

⌘
+

�2

2
�
⇣
�

�

2

⌘

where � is the cumulative distribution of a normal distribution.
optimal convergence rate decreases to zero like 1

n

0 2 4 6 8 10
−0.5

−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

sigma*dimension

c
(s
ig
m
a
)*
d
im
e
n
s
io
n



Summary of theory results
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Methods for Step-Size Control

I 1/5-th success ruleab, often applied with “+”-selection

increase step-size if more than 20% of the new solutions are
successful, decrease otherwise

I �-self-adaptationc, applied with “,”-selection

mutation is applied to the step-size and the better one, according to
the objective function value, is selected

simplified “global” self-adaptation

I path length controld (Cumulative Step-size Adaptation, CSA)e, applied
with “,”-selection

aRechenberg 1973, Evolutionsstrategie, Optimierung technischer Systeme nach Prinzipien der

biologischen Evolution, Frommann-Holzboog
bSchumer and Steiglitz 1968. Adaptive step size random search. IEEE TAC

cSchwefel 1981, Numerical Optimization of Computer Models, Wiley
dHansen & Ostermeier 2001, Completely Derandomized Self-Adaptation in Evolution Strategies,

Evol. Comput. 9(2)

eOstermeier et al 1994, Step-size adaptation based on non-local use of selection information, PPSN

IV



One-fifth success rule

#

increase �
#

decrease �



One-fifth success rule

Probability of success (ps)

1/2
1/5

Probability of success (ps)

“too small”



One-fifth success rule

ps : # of successful offspring / # offspring (per iteration)

�  � ⇥ exp

✓
1

3
⇥

ps � ptarget

1� ptarget

◆
Increase � if ps > ptarget
Decrease � if ps < ptarget

(1 + 1)-ES
ptarget = 1/5

IF offspring better parent
ps = 1, �  � ⇥ exp(1/3)

ELSE

ps = 0, �  �/ exp(1/3)1/4



Why 1/5?

Asymptotic convergence rate and probability of success of
scale-invariant step-size (1+1)-ES

0 2 4 6 8 10
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

sigma*dimension

c
(s

ig
m

a
)*

d
im

e
n
s
io

n

 

 

CR
(1+1)

min (CR
(1+1)

)

proba of success

sphere - asymptotic results, i.e. n =1 (see slides before)

1/5 trade-off of optimal probability of success on the sphere and

corridor



Path Length Control (CSA)

The Concept of Cumulative Step-Size Adaptation

x i = m + � y i

m  m + �yw

Measure the length of the evolution path
the pathway of the mean vector m in the iteration sequence

+
decrease �

+
increase �



Path Length Control (CSA)

The Equations

Sampling of solutions, notations as on slide “The (µ/µ, �)-ES - Update of

the mean vector” with C equal to the identity.

Initialize m 2 Rn
, � 2 R+, evolution path p� = 0,

set c� ⇡ 4/n, d� ⇡ 1.

m  m + �yw where yw =
Pµ

i=1
wi y i :� update mean

p�  (1� c�) p� +
q

1� (1� c�)2
| {z }
accounts for 1�c�

p
µw| {z }

accounts for wi

yw

�  � ⇥ exp

✓
c�
d�

✓
kp�k

EkN (0, I) k
� 1

◆◆

| {z }
>1() kp�k is greater than its expectation

update step-size
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Step-size adaptation

What is achieved

(1 + 1)-ES with one-fifth success rule (blue)
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Step-size adaptation

What is achieved

(5/5, 10)-CSA-ES, default parameters

k
m
�

x
⇤ k

f (x) =
nX

i=1

x2

i

in [�0.2, 0.8]n

for n = 30
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Evolution Strategies

Recalling

New search points are sampled normally
distributed

x i ⇠ m + � Ni (0,C) for i = 1, . . . , �

as perturbations of m, where x i ,m 2 Rn
, � 2 R+,

C 2 Rn⇥n

where

I the mean vector m 2 Rn
represents the favorite solution

I the so-called step-size � 2 R+ controls the step length
I the covariance matrix C 2 Rn⇥n

determines the shape

of the distribution ellipsoid

The remaining question is how to update C.



Covariance Matrix Adaptation

Rank-One Update

m  m + �yw , yw =
Pµ

i=1
wi y i :�, y i ⇠ Ni (0,C)

initial distribution, C = I
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Covariance Matrix Adaptation

Rank-One Update

m  m + �yw , yw =
Pµ

i=1
wi y i :�, y i ⇠ Ni (0,C)

yw , movement of the population mean m (disregarding �)



Covariance Matrix Adaptation

Rank-One Update

m  m + �yw , yw =
Pµ

i=1
wi y i :�, y i ⇠ Ni (0,C)

mixture of distribution C and step yw ,

C 0.8⇥ C + 0.2⇥ yw y
T
w



Covariance Matrix Adaptation

Rank-One Update
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Pµ
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new distribution (disregarding �)



Covariance Matrix Adaptation

Rank-One Update
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Covariance Matrix Adaptation

Rank-One Update

m  m + �yw , yw =
Pµ

i=1
wi y i :�, y i ⇠ Ni (0,C)

mixture of distribution C and step yw ,

C 0.8⇥ C + 0.2⇥ yw y
T
w



Covariance Matrix Adaptation

Rank-One Update

m  m + �yw , yw =
Pµ

i=1
wi y i :�, y i ⇠ Ni (0,C)

new distribution,

C 0.8⇥ C + 0.2⇥ yw y
T
w

the ruling principle: the adaptation increases the likelihood of

successful steps, yw , to appear again



Covariance Matrix Adaptation

Rank-One Update

Initialize m 2 Rn
, and C = I, set � = 1, learning rate ccov ⇡ 2/n2

While not terminate

x i = m + � y i , y i ⇠ Ni (0,C) ,

m  m + �yw where yw =
µX

i=1

wi y i :�

C  (1� ccov)C + ccovµw yw y
T
w| {z }

rank-one

where µw =
1Pµ

i=1
wi

2
� 1
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Cumulation

The Evolution Path

Evolution Path
Conceptually, the evolution path is the search path the strategy takes over a
number of iteration steps. It can be expressed as a sum of consecutive steps of
the mean m.

An exponentially weighted sum
of steps yw is used

pc /
gX

i=0

(1� cc)
g�i

| {z }
exponentially
fading weights

y
(i)
w

The recursive construction of the evolution path (cumulation):

pc  (1� cc)| {z }
decay factor

pc +
p

1� (1� cc)2
p
µw| {z }

normalization factor

yw|{z}
input =

m�mold
�

where µw = 1P
wi

2 , cc ⌧ 1. History information is accumulated in the evolution
path.
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Cumulation

Utilizing the Evolution Path

We used yw y
T
w for updating C. Because yw y

T
w = �yw (�yw )T the sign of yw

is lost.

The sign information is (re-)introduced by using the evolution path.

pc  (1� cc)| {z }
decay factor

pc +
p

1� (1� cc)2
p
µw| {z }

normalization factor

yw

C  (1� ccov)C + ccov pc pc
T

| {z }
rank-one

where µw = 1P
wi

2 , cc ⌧ 1.
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Using an evolution path for the rank-one update of the covariance

matrix reduces the number of function evaluations to adapt to a

straight ridge from O(n2) to O(n).(3)

The overall model complexity is n2
but important parts of the

model can be learned in time of order n

3Hansen, Müller and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized
Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1),
pp. 1-18



Rank-µ Update

x i = m + � y i , y i ⇠ Ni (0,C) ,
m  m + �yw yw =

Pµ
i=1 wi y i :�

The rank-µ update extends the update rule for large population

sizes � using µ > 1 vectors to update C at each iteration step.

The matrix

Cµ =
µX

i=1

wi y i :�y
T
i :�

computes a weighted mean of the outer products of the best µ
steps and has rank min(µ, n) with probability one.

The rank-µ update then reads

C (1� ccov)C + ccov Cµ

where ccov ⇡ µw/n2
and ccov  1.
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x i = m + � y i , y i ⇠ N (0,C)

sampling of

� = 150 solutions

where C = I and

� = 1

Cµ = 1
µ

P
y i :�yT

i :�
C  (1� 1)⇥ C + 1⇥ Cµ

calculating C where

µ = 50, w1 = · · · =
wµ = 1

µ , and

ccov = 1

mnew  m + 1
µ

P
y i :�

new distribution



The rank-µ update

I increases the possible learning rate in large populations

roughly from 2/n2 to µw/n
2

I can reduce the number of necessary iterations roughly from

O(n2) to O(n) (4)

given µw / � / n

Therefore the rank-µ update is the primary mechanism whenever a

large population size is used

say � � 3 n + 10

The rank-one update

I uses the evolution path and reduces the number of necessary

function evaluations to learn straight ridges from O(n2) to

O(n) .

Rank-one update and rank-µ update can be combined

4Hansen, Müller, and Koumoutsakos 2003. Reducing the Time Complexity of the Derandomized
Evolution Strategy with Covariance Matrix Adaptation (CMA-ES). Evolutionary Computation, 11(1),
pp. 1-18
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Summary of Equations

The Covariance Matrix Adaptation Evolution Strategy

Input: m 2 Rn
, � 2 R+, �

Initialize: C = I, and pc = 0, p� = 0,

Set: cc ⇡ 4/n, c� ⇡ 4/n, c1 ⇡ 2/n2
, cµ ⇡ µw/n2

, c1 + cµ  1,

d� ⇡ 1 +
pµw

n , and wi=1...� such that µw = 1Pµ
i=1 wi

2 ⇡ 0.3 �

While not terminate

x i = m + � y i , y i ⇠ Ni (0,C) , for i = 1, . . . , � sampling

m  
Pµ

i=1 wi x i :� = m + �yw where yw =
Pµ

i=1 wi y i :� update mean

pc  (1� cc)pc + 1I{kp�k<1.5
p
n}
p

1� (1� cc)2
p

µw yw cumulation for C

p�  (1� c�) p� +
p

1� (1� c�)2
p

µw C� 1
2 yw cumulation for �

C (1� c1 � cµ)C + c1 pc pc
T + cµ

Pµ
i=1 wi y i :�y

T
i :� update C

�  � ⇥ exp
⇣

c�
d�

⇣
kp�k

EkN(0,I)k � 1

⌘⌘
update of �

Not covered on this slide: termination, restarts, useful output, boundaries

and encoding



Experimentum Crucis (0)

What did we want to achieve?

I reduce any convex-quadratic function

f (x) = x
T
Hx

e.g. f (x) =
Pn

i=1 106 i�1
n�1 x

2
i

to the sphere model

f (x) = x
T
x

without use of derivatives

I lines of equal density align with lines of equal fitness

C / H
�1

in a stochastic sense



Experimentum Crucis (1)

f convex quadratic, separable

0 2000 4000 6000
10−10
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1010

1e−05

1e−08
f=2.66178883753772e−10

blue:abs(f), cyan:f−min(f), green:sigma, red:axis ratio
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x(2)=2.2083e−06
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Standard Deviations in Coordinates divided by sigma

function evaluations

f (x) =
Pn

i=1
10

↵ i�1
n�1 x2

i , ↵ = 6



Experimentum Crucis (2)

f convex quadratic, as before but non-separable (rotated)

0 2000 4000 6000
10−10
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f=7.91055728188042e−10

blue:abs(f), cyan:f−min(f), green:sigma, red:axis ratio
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x(9)=−7.3812e−08
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C / H
�1

for all

g ,H

f (x) = g
�
x

T
Hx

�
, g : R! R stricly increasing



Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, separable with varying condition number ↵
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Ellipsoid dimension 20, 21 trials, tolerance 1e−09, eval max 1e+07

Condition number

S
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DE2 
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CMAES 

BFGS (Broyden et al 1970)
NEWUAO (Powell 2004)
DE (Storn & Price 1996)
PSO (Kennedy & Eberhart
1995)
CMA-ES (Hansen &
Ostermeier 2001)

f (x) = g(xT
Hx) with

H diagonal
g identity (for BFGS and
NEWUOA)
g any order-preserving =
strictly increasing function (for
all other)

SP1 = average number of objective function evaluations5 to reach the target
function value of g�1(10�9)

5Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA



Comparison to BFGS, NEWUOA, PSO and DE

f convex quadratic, non-separable (rotated) with varying condition number ↵
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f (x) = g(xT
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H full
g identity (for BFGS and
NEWUOA)
g any order-preserving =
strictly increasing function (for
all other)

SP1 = average number of objective function evaluations6 to reach the target
function value of g�1(10�9)

6Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA



Comparison to BFGS, NEWUOA, PSO and DE

f non-convex, non-separable (rotated) with varying condition number ↵
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NEWUAO (Powell 2004)
DE (Storn & Price 1996)
PSO (Kennedy & Eberhart
1995)
CMA-ES (Hansen &
Ostermeier 2001)

f (x) = g(xT
Hx) with

H full
g : x 7! x

1/4 (for BFGS and
NEWUOA)
g any order-preserving =
strictly increasing function (for
all other)

SP1 = average number of objective function evaluations7 to reach the target
function value of g�1(10�9)

7Auger et.al. (2009): Experimental comparisons of derivative free optimization algorithms, SEA



Comparison during BBOB at GECCO 2009

24 functions and 31 algorithms in 20-D



Comparison during BBOB at GECCO 2010

24 functions and 20+ algorithms in 20-D



Comparison during BBOB at GECCO 2009

30 noisy functions and 20 algorithms in 20-D



Comparison during BBOB at GECCO 2010

30 noisy functions and 10+ algorithms in 20-D



Problem Statement

Stochastic search algorithms - basics

Adaptive Evolution Strategies
Mean Vector Adaptation
Step-size control
Covariance Matrix Adaptation

Rank-One Update
Cumulation—the Evolution Path
Rank-µ Update



The Continuous Search Problem

Difficulties of a non-linear optimization problem are

I dimensionality and non-separabitity

demands to exploit problem structure, e.g. neighborhood

I ill-conditioning demands to acquire a second order model

I ruggedness demands a non-local (stochastic?) approach

Approach: population based stochastic search, coordinate system

independent and with second order estimations (covariances)



Main Features of (CMA) Evolution Strategies

1. Multivariate normal distribution to generate new search points

follows the maximum entropy principle

2. Rank-based selection

implies invariance, same performance on
g(f (x)) for any increasing g

more invariance properties are featured
3. Step-size control facilitates fast (log-linear) convergence

based on an evolution path (a non-local
trajectory)

4. Covariance matrix adaptation (CMA) increases the likelihood

of previously successful steps and can improve performance by

orders of magnitude

C / H
�1 () adapts a variable metric

() new (rotated) problem representation
=) f (x) = g(xT

Hx) reduces to g(xT
x)



Limitations

of CMA Evolution Strategies

I internal CPU-time: 10
�8n2

seconds per function evaluation on a

2GHz PC, tweaks are available

100 000 f -evaluations in 1000-D take 1/4 hours
internal CPU-time

I better methods are presumably available in case of

I smooth, convex functions

CMA-ES is a method for addressing “difficult”
optimization problems

I partly separable problems

I specific problems, for example with cheap gradients

specific methods
I small dimension (n⌧ 10)

for example Nelder-Mead
I small running times (number of f -evaluations ⌧ 100n)

model-based methods



Source code for CMA-ES in C, Java, Matlab, Octave, Scilab,

Python is available at

http://cma.gforge.inria.fr/cmaes_sourcecode_page.html



Not covered

and open questions

I Handling of constraints: many applications come with constraints

(bound constraint, or non-linear, black-box constraints)

constraint handling exist for CMA, already
provided within the codes provided (adaptive

penalization)
yet still a research question how to better

handle constraints
I Large-scale optimization: for problems with say n � 100 or 1000,

development of variants with linear number of coefficients to be

adapted within the covariance (linear complexity).
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