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Pure Random Search (PRS)

The first stochastic optimization algorithm, introduced before any genetic algorithm (GA) or evolution
strategy (ES), is the so-called pure random search, or PRS for short1. Assuming a bounded search
domain, the algorithm consists in sampling independently points uniformly distributed in the search
space.

We will implement the algorithm PRS in the context of the maximization of functions defined on the
space of bit strings of a certain length n, i.e. on the search space Ω = {0, 1}n.

Pure Random Search to maximize f : {0, 1}n → R

Initialize uniformly at random x ∈ Ω = {0, 1}n
while not terminate

Sample x′ uniformly at random in Ω
if f(x′) ≥ f(x)

x = x′

return x

Example 1 For x ∈ {0, 1}n, the function Onemax is defined as

fOnemax(x) =

n∑
i=1

xi

1. What is the maximum of the Onemax function? What is the value of fOnemax at the optimum?

2. Write a Python function onemax that takes as argument a bitstring x of arbitrary length (as
numpy.array) and gives back the value fOnemax(x) (useful instruction: numpy.sum).

3. Write a Python function pureRS that takes as argument the search space size n and returns the
number of function evaluations needed to reach the optimum of the Onemax function, as well as a

1The historical papers proposing the use of the PRS are:

? S.H. Brooks: “Discussion of random methods for locating surface maxima”. Operations Research 6 (1958), pp.
244–251.

? L.A. Rastrigin: “The convergence of the random search method in the extremal control of a many-parameter system”.
Automation and Remote Control 24 (1963), pp. 1337–1342.



vector fitness that contains the sequence of the best-ever objective function values found so far.
In other words, the ith coordinate of the vector fitness contains the best function value found
until iteration i. To sample, you might use the instructions numpy.random.rand, numpy.round,
and numpy.random.randint.

4. Plot the evolution of the function value (“fitness”) as a function of the number of function evalu-
ations for two independent runs of the algorithm. What do you observe? You might want to use
matplotlib for the plotting: check in particular the instructions plot and show.

5. Write the code to plot for n = 2, . . . , 14 the empirical expected value of the time needed to reach
the optimum of fOnemax with the PRS algorithm. Plot as well the standard deviation around the
expected value. We advise to compute the empirical expected value and the standard deviation
based on 11 independent runs of the algorithm.

Note: in a blackbox scenario, the time to reach the optimum is measured by counting the number of
function evaluations needed to reach the optimum and not by the real wall-clock time. Indeed, internal
operations are generally negligible compared to the cost of evaluating the objective function.

6. Compute theoretically the expected time to reach the optimum as a function of n. Compare the
theoretical and empirical results. Hint: show that the time to reach the optimum follows a geometric
distribution with a parameter to determine.

(1+1)-EA

We will now implement a simple evolutionary algorithm, the so-called (1+1)-EA. Its population is reduced
to a single individual. The single parent (the first “1” in the notation (1+1)) mutates to give a single
offspring (the second “1” in the notation (1+1)). The best among the offspring and the parent is kept
for the next iteration (symbolized by the “+” in the notation (1+1)).

The mutation used is the so-called bit-flip mutation where each bit of the parent is changed with proba-
bility 1/n (and thus stays unchanged with a probability 1− 1/n).

(1+1)-EA to maximize f : {0, 1}n → R

Initialize uniformly at random x ∈ Ω = {0, 1}n
while not terminate

Create x′ by flipping each bit of x with probability 1/n
if f(x′) ≥ f(x)

x = x′

return x

7. Follow again the steps 3, 4, and 5 above—now for the (1+1)-EA.

8. The theoretical complexity2 of the expected time to reach the optimum is Θ(n log n). Compare
the theoretical and empirical results. Give an idea for the theoretical proof of the upper bound of
cn log n.

9. Explain the differences obtained between the PRS and the (1+1)-EA.

Optional: Behavior on Other Functions

We consider now the function Needle in the Haystack defined as follows.

2Reminder: f(n) ∈ Θ(g(n)) if ∃k1, k2, g(n) · k1 ≤ f(n) ≤ g(n) · k2.
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Example 2 For x ∈ {0, 1}n, the function Needle is defined as

fNeedle(x) =

{
1 if x = (1, . . . , 1)
0 otherwise

10. What will be the performances of PRS and (1+1)-EA on the function fNeedle? Comment the
differences w.r.t. the function fOnemax.

11. Can other algorithms outperform the above algorithms on the Needle function?

11. What is the performance of the two investigated algorithms on the Zeromax function that aims
at maximizing the number of zeros in the bit string instead of the number of ones?.
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