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Assignment of Papers

2) RM-MEDA: A reqgularity model-based multiobjective
estimation of distribution algorithm. Gaetano, Francesco

3) A universal catalyst for first-order optimization. Simon, Wafa

5) Efficient optimization of many objectives by approximation-
guided evolution. Gerémy

6) A Mean-Variance Optimization Algorithm. Ramine, Gaspard

8) Population Size Adaptation for the CMA-ES Based on the
Estimation Accuracy of the Natural Gradient. Florian, Theo

9) CMA-ES with Optimal Covariance Update and Storage
Complexity. Eric, Clement

10) Challenges of Convex Quadratic Bi-Objective Benchmark
Problems Ghassen, Moez

11) A modified ABC algorithm approach for power system
harmonic estimation problems Ansaar
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Assignment of Papers

2) RM-MEDA: A reqgularity model-based multiobjective
estimation of distribution algorithm. Gaetano, Francesco

3) A universal catalyst for first-order optimization. Simon, Wafa

5) Efficient optimization of many objectives by approximation-
qguided evolution. Geréemy

hm. Ramine, Gaspard

A-ES Based on the
ient. Florian, Théo

ate and Storage

too many students for one afternoon!

New: 10 minutes talk +
10 minutes questions

XITy.
10) Challenges of Convex Quadratic Bi-Objective Benchmark
Problems Ghassen, Moez

11) A modified ABC algorithm approach for power system
harmonic estimation problems Ansaar
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Organization Oral Exams

Wednesday, Feb 5, 2020

1pm — 1:30pm

1:30pm — 2pm
2pm — 2:30pm
2:30pm — 3pm
3pm — 3:30pm
3:30pm — 4pm

break
4:30pm — 5pm
Spm — 5:30pm
5:30pm — 6pm
6pm — 6:30pm
6:30pm — 7pm
/pm — 7:30pm
7:30pm — 8pm

Ansaar
Simon
Wafa
Theéo
Florian
Géremy

Francesco
Gaetano
Eric
Clément
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3:30pm — 3:55pm
3:55pm — 4:20pm
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4:35pm — 5pm
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5:25pm — 5:50pm
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6:40pm — 7:05pm
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Course Overview

o e

1 Wed, 27.11.2019

Wed, 4.12.2019
Wed, 11.12.2019
Mon, 16.12.2019
Wed, 18.12.2019
Vacation

6 Wed, 8.1.2020
(morning!)

7 Wed, 22.1.2020
(morning!)
Wed, 5.2.2020

or » W DN

Dimo
Dimo
Dimo
Dimo
Dimo

Anne

Anne

Randomized Algorithms for Discrete Problems

Exercise: The Travelling Salesperson Problem
Evolutionary Multiobjective Optimization |
Evolutionary Multiobjective Optimization Il
Looking at Data

Continuous Optimization |
Continuous Optimization |l

oral presentations (individual time slots)
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Critically Looking at Data

why?
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(Some) Main Research Goals

= novelty
= repeatability
= applicability
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A Possible Way to Learn Science...

...Is to look at how others do it ©

...Is to critically ask whether what others are doing is the right thing

...Is to get your hands dirty and tackle a difficult open question
yourself (most time consuming part probably)

...Is to actively review papers

© Anne Auger and Dimo Brockhoff, Inria



Paper Review:
"Dynamic Search in Fireworks Algorithm*



Dynamic Search in Fireworks Algorithm

» Read Sec.V
= Sec. V.B less important
= read rather only until V.A and look at the results
= Do not care about what the algorithms are actually doing
=  Questions:
= What is well done in the experimental comparison?
= What can be improved?
= What shall be done and is not done?
= Concretely: Mark in Tables I and Il what you find remarkable

wrt. repeatability, interpretability, clarity, ...

© Anne Auger and Dimo Brockhoff, Inria



Review Form

= Short summary of what is done (3-4 sentences)

= 1-2 positive points

= 1-2 negative points (to be improved)

= Fill out the following form (from 1 (poor), over 2 (below average),
3 (average), 4 (good) till 5 (excellent)):

| Yourevaluation (1—5)

Clarity

Novelty
Repeatability

Consistency (what is
promised vs. what is
delivered)

Significance
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Exercise: Looking at COCO Data



https://github.com/numbbo/coco

0 GitHub - numbbo/coco: M. ®

': (' :' % | (i) @ GitHub, Inc. (US) | https://github.com/numbbo/coco G || C®search

Most Visited @ Getting Started rlq{ algorithms [COmparin... 0 numbbo/numbbo - Gi..

O Personal Opensource Business Explore Pricing Blog Support | This repository

numbbo / coco © Watch

<> Code Issues 113 Pull requests 2 Ste p 1 .
Numerical Black-Box Optimization Benchmarking d OW n I O ad COCO

0 7,902 commits ¥ 12 branches > 25 releases

Branch: master = MNew pull request

!,'.! brockho committed on GitHub Merge pull request #1075 from numbbo/development

BB code-experiments Merge pull request #1071 from ttusar/debug

BB code-postprocessing further clean up of postprocessing output,

B code-preprocessing/archive-update Added empty last lines.

B docs updated reference to biobjective perf-assessment paper on arXiv in ge...
B howtos Update documentation-howto.md

& .clang-format raising an error in bbob2009_logger.c when best_value is NULL. Plus s...
& .hgignore raising an error in bbob2009_logger.c when best_value is NULL. Plus s...

[E AUTHORS small correction in AUTHORS

12

* Star

16

2 months ago
2 months ago
2 months ago
3 months ago
5 months ago

a year ago

a year ago

4 months ago




https://github.com/numbbo/coco

) GitHub - numbbo/coco: N... %

[ 4 ) % | & GitHub, Inc. (US] | https://github.com/numbbo/coca

[2h Most Visited @ Getting Started rl..::{! algorithms [COmparin... Q numbbo/numbbo - Gi...
corresponds to the master branch as linked above.

3.In a system shell, ¢d into the coco Or coco-<version> folder (framework root), where the file do.py can be found. Type,
i.e. execute, one of the following commands once

python . run-c
python . run-java
python . run-matlab
python . run-octave
python . run-python

depending on which language shall be used to run the experiments. run-* will build the respective code and run the
example experiment once. The build result and the example experiment code can be found under
code-experiments/build/<language> ( <language>=matlab for Octave). python do.py lists all available commands.

4. On the computer where experiment data shall be post-processed, run

python do.py install-postprocessing Step 2.

Installation of post-processing

to (user-locally) install the post-processing. From
the builds to a new release.

5. Copy the folder code-experiments/build/YOUR-FAVORITE-LANGUAGE and its content to another location. In Python it is
sufficient to copy the file example experiment.py . Run the example experiment (it already is compiled, in case). As the
details vary, see the respective read-me's and/or example experiment files:

o ¢ read me and example experiment

© Java read me and example experiment

O Matlab/Octave read me and example experiment



https://github.com/numbbo/coco

— [ERNEE—
) GitHub - numbbo/coco: N... % ‘
F A - A ————

é " i) @@ GitHub, Inc. (US) https://github.com/numbbo/coco (& C?Secr\:r" ﬁ E ; ‘ﬁ‘ e

[2h Most Visited @ Getting Started .‘{ algorithms [COmparin... Q numbbo/numbbo - Gi...

6. Now you can run your favorite algorithm on the bbob-biobj (for multi-objective algorithms) or on the bbob suite (for
single-objective algorithms). Output is automatically generated in the specified data result_folder .

7. Postprocess the data from the results folder by typing

python -m bbob_pproc [-o OUTPUT FOLDERNAME] YOURDATAFOLDER [MORE_DATAFOLDERS]

The name bbob_pproc will become cocopp in future. Any subfolder in the folder argu Step 3
data. That is, experiments from different batches can be in different folders collected
YOURDATAFOLDER folder. We can also compare more than one algorithm by specifying p O S t p ro C es S
generated by different algorithms.

e |

python -m cocopp 2010/IPOP-CMA! BIPOP!

NelderDoerr BFGS! 2009/GA! ONEFIFTH'!

Description by Folder




Already done for you:

http://www.cmap.polytechnique. fr/
~dimo.brockhoff/advancedOptSaclay
/2019/exercises/coco-results/


http://www.cmap.polytechnique.fr/~dimo.brockhoff/advancedOptSaclay/2019/exercises/coco-results/

Measuring Performance Empirically
convergence graphs is all we have to start with...
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ECDF:

Empirical Cumulative Distribution Function of the
Runtime

[aka data profile]



A Convergence Graph
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First Hitting Time Is Monotonous
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15 Runs
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15 Runs £ 15 Runtime Data Points
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Empirical Cumulative Distribution

I I 0 ST A T
TR
»
o \ AV

100+

function value

70t

60

90+

801

et V AP TY

: i i IR W

1 2 3 4
log,(function evaluations)

the of run

lengths to reach
the target

has for each
data point a
vertical step of
constant size

displays for
each x-value
(budget) the
count of
observations to
the left (first
hitting times)



Empirical Cumulative Distribution
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Aggregation

15 runs
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Aggregation
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Aggregation

function value
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Fixed-target: Measuring Runtime

ps(Algo A) << 1, fast convergence

ps(Algo B) ~ 1, slow convergence




Fixed-target: Measuring Runtime

 Algo Restart A:

ps(Algo Restart A) = 1

 Algo Restart B:

ps(Algo Restart B) = 1



Fixed-target: Measuring Runtime

» Expected running time of the restarted algorithm:

1-p
E[RTT] — D - E[RTunsuccessful] + E[RTsuccessful]
S

« Estimator average running time (aRT):

__ #successes
Ps =

#runs

RT, . cucc = Average evals of unsuccessful runs

RT,, .. = Average evals of successful runs

total #evals

aRT =
#successes



ECDFs with Simulated Restarts

What we typically plot are ECDFs of the simulated
restarted algorithms:

i ORNEr/opheErE
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The single-objective BBOB functions

https://coco.gforge.inria.fr/downloads/downloadl6.00/bbobdocfunctions.pdf


https://coco.gforge.inria.fr/downloads/download16.00/bbobdocfunctions.pdf

The bbob Testbed

24 functions in 5 groups:

1 Separable Functions

f1
f2
f3
f4
f5

@ Sphere Function

@ Ellipscidal Function

() Rastrigin Function

@ Biiche-Rastrigin Function
@Linear Slope

2 Functions with low or moderate conditioning

fig
f7
fa
fa

(@) Attractive Sector Function
@ Step Ellipsoidal Function
@ Rosenbrock Function, original

@ Rosenbrock Function, rotated

3 Functions with high conditioning and unimodal
f10 @Ellipsoidal Function

f11 @Discus Function

f12 @ Bent Cigar Function

f13 @ 5Sharp Ridge Function

f14 @nDifferent Powers Function

6 dimensions: 2, 3, 5,

4 Multi-modal functions with adequate global structure
f15 @ Rastrigin Function

f16 @ Weierstrass Function

f17 ‘@ Schaffers F7 Function

f18 |@ 5chaffers F7 Functions, moderately ill-conditioned
f19 @ Composite Griewank-Rosenbrock Function FEBF2
5 Multi-modal functions with weak global structure
f20 @ Schwefel Function

f21 @ Gallagher's Gaussian 101-me Peaks Function

f22 @ Gallagher's Gaussian 21-hi Peaks Function

f23 @ Katsuura Function

f24 @ Lunacek bi-Rastrigin Function

20, (40 optional)



Notion of Instances

* All COCO problems come in form of instances

* e.g. as translated/rotated versions of the same
function

* Prescribed instances typically change from year to
year

 avoid overfitting
5 Instances are always kept the same

Plus:

* the bbob functions are locally perturbed by non-
linear transformations



Notion of Instances
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Exercise (Part 1)

Objectives:
* investigate the performance of these 6 algorithms:

CMA-ES ("IPOP-CMA-ES" version)

CMA-ES ("BIPOP-CMA-ES" version)

Nelder-Mead simplex (use "NelderDoerr" version here)
BFGS quasi-Newton

Genetic Algorithm: discretization of cont. variables ("GA")
ONEFIFTH: (1+1)-ES with 1/5 rule

= postprocessed available here:
http://www.cmap.polytechnique. fr/~dimo.brock

hoff/advancedOptSaclay/2019/exercises/coco-
results/

" SO0 now: investigate the datal!
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Exercise (Part 2)

Objective:
iInvestigate the data:
a) which algorithms are the best ones?
b) does this depend on the dimension? Or on other things?

c) look at single graphs: can we say something about the
algorithms' invariances, e.g. wrt. rotations of the search
space?

d) what's the impact of covariance-matrix-adaptation?

e) what do you think: are the displayed algorithms well-suited
for problems with larger dimension?
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