Exercise: Pole Balancing

Advanced Control lecture at Ecole Centrale Paris

Anne Auger and Dimo Brockhoff firstname.lastname@inria.fr

Jan 11, 2013

Abstract

Balancing a pole on a moving cart is a standard benchmark problem of control engineering. A related control problem has to be solved within the Segway personal transporter. In this exercise, we implement the most basic pole balancing problem (one single pole mounted on a cart that is only able to move in one dimension where we abstract from friction).

Please keep your code for the next exercises!

1 Simulating the Pole Balancing Problem

Choose your favorite language (recommended: MATLAB/SciLab¹) and implement the pole balancing problem from the lecture. To this end, use the simple Euler method to approximate the ODEs for angle and position accel-

¹Useful commands to look at: sign, fprintf, disp

erations, given by

$$\ddot{\theta}_t = \frac{g \sin \theta_t + \cos \theta_t \left[\frac{-F_t - m_p l \dot{\theta}_t^2 \sin \theta_t}{m_c + m_p} \right]}{l \left[\frac{4}{3} - \frac{m_p \cos^2 \theta_t}{m_c + m_p} \right]}$$

$$\ddot{x}_t = \frac{F_t + m_p l \left[\dot{\theta}_t^2 \sin \theta_t - \ddot{\theta}_t \cos \theta_t \right]}{m_c + m_p},$$

the linear controller mentioned in the lecture, and the variables and parameters as described in Table 1.

Recommended Procedure:

- a) Start with functions/methods for computing $\ddot{\theta}$ and \ddot{x} .
- b) Continue with a function for the linear controller. The response F_t of the controller is based on the four constants k_1 , k_2 , k_3 , and k_4 (choose them from [0,1]) as well as on $F_m = 100N$:

$$F_t = F_m \operatorname{sgn}(k_1 x_t + k_2 \dot{x}_t + k_3 \theta_t + k_4 \dot{\theta}_t).$$

The function sgn(x) is the signum function, giving 1 if x > 1, 0 if x = 0, and -1 otherwise.

c) Combine all parts to a single script/function that simulates the system for 120s and a fixed parameter setting using the Euler method:

$$\begin{array}{rcl} x_{t+1} & = & x_t + \tau \dot{x}_t \\ \dot{x}_{t+1} & = & x_t + \tau \ddot{x}_t \\ \theta_{t+1} & = & \theta_t + \tau \dot{\theta}_t \\ \dot{\theta}_{t+1} & = & \dot{\theta}_t + \tau \ddot{\theta}_t \end{array}$$

- d) Output the number of iterations until your simulation results in an unstable pole (θ not in [-12°, +12°]) to see whether a given parameter setting is producing a good controller.
- e) Test your controller by choosing 1000 different (randomly chosen²) settings for k_1 , k_2 , k_3 , and k_4 .

²Look out for the command rand(n,1).

Table 1: System parameters and variable names for the pole balancing problem.

lem.		
Symbol	Name	Description
θ	Pole Angle	measured (in radians) relatively to the upright position, initial value in $[-0.1, +0.1]$
$\dot{ heta}$	Pole Velocity	angular velocity of the pole in rad/s
$\ddot{ heta}$	Pole Accelara- tion	acceleration of the pole in rad/s^2
x	Card Position	measured relatively to the middle of the track (in m), initial value in $[-1, +1]$
\dot{x}	Card Velocity	velocity of the cart (in m/s)
\ddot{x}	Card Accelera- tion	acceleration of the cart (in m/s)
g	Gravitational Acceleration	acceleration due to gravity ($g = 9.81 \text{ m/s}^2$)
m_c	Cart Mass	1.0 kg
m_p	Pole Mass	0.1 kg
l	Pole Length	distance from pivot to the pole's center of mass (l=0.5m)
t	Time	measured in s
F_t	Force	force applied to the cart at time t (in N, always $F_t \neq 0$ for a bang-bang controller)
h	Track Limit	± 2.4 m from track center
r	Pole Failure Angle	$\pm 12^{\circ}$ from vertical (12° ≈ 0.209 rad)
τ	Time Step	discrete integration time step for the simulation ($\tau = 0.02s$)
F_m	Controller Constant	constant of linear controller (set to $F_m = 100N$)
k_1, k_2, k_3, k_4	Controller Constants	further constants of controller (in $[0, 1]$, to be optimized)

2 Questions

- a) Is it easy to find parameter values that produce a stable controller?
- b) Are different starting conditions x and θ of the system simulation equally difficult for the linear controller?
- c) What is the influence of the simulation accuracy τ ?

3 Non-Mandatory Questions

If you have more time, are you able to answer the following two questions?

- a) Are the found good controllers also robust to changes in the cart and the pole mass?
- b) How would you find robust parameter values of a controller for (more or less) arbitrary starting conditions and masses?
- c) Is is easier to build a bang-bang controller or one that allows arbitrary (continuous) forces to be applied in each step?
- d) Is this also true if the starting position of the pole is exactly in the middle?