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Date Topic
Fri, 11.1.2013 DB Introduction to Control, Examples of Advanced Control, 

Introduction to Fuzzy Logic
Fri, 18.1.2013 DB Fuzzy Logic (cont’d), Introduction to Artificial Neural 

Networks
Fri, 25.1.2013 AA Bio-inspired Optimization, discrete search spaces
Fri, 1.2.2013 AA The Traveling Salesperson Problem
Fri, 22.2.2013 AA Continuous Optimization I
Fri, 1.3.2013 AA Continuous Optimization II
Fr, 8.3.2013 DB Controlling a Pole Cart
Do, 14.3.2013 DB Advanced Optimization: multiobjective optimization, 

constraints, ...
Tue, 19.3.2013 written exam (paper and computer)

Course Overview

all classes + exam at 8h00-11h15 (incl. a 15min break around 9h30)
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Remark to last exercise

All information also available at 

http://researchers.lille.inria.fr/~brockhof/advancedcontrol/

(exercise sheets, lecture slides, additional information, links, ...)
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Result for angle = 0 and pos = 0 showed that
both “bang-bang” and “continuous force” controller with 
random k1, ..., k4 resulted in 100% stable controllers

I said
“should not be the case”

What happened?
“bang-bang” was not really bang-bang in my simulation: (F=0 
in the beginning)
“bang-bang” with F0≠Fm gives <<100% stable results

Remarks to Last Exercise
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Fuzzy Logic
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a mathematical tool to deal with uncertainties
often described as “computing with words”1

e.g. {low, medium, high} instead of {0,1}

standard sets: either a in A or a not in A
fuzzy sets: a in A with probability pa

e.g. “high fever with probability 50% and
mild fever with 30%”

Fuzzy Logic

37.2°C
high fever

38°C

42°C39.3°C

40.1°C
41.4°C
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Fuzzification:
= transferring a real-valued

variable into a fuzzy one

Several membership functions known to do that:

In the end...
...everything is based on intuition (there are no strict rules)

Fuzzification and Membership Functions

1

41°C

high fever

40°C39°C38°C37°C

normal mild fever

80% mild and 10% high fever

triangular Gaussian

trapezoidal
exponential



8Advanced Control Lecture: FL and ANNs, ECP, Jan. 18, 2013© Anne Auger and Dimo Brockhoff, INRIA 8

Mastertitelformat bearbeiten

is called normalized if its height is 1
is called the support of     
is called the core of

An α-cut of      is the set
If      contains only one maximum, we call      unimodal and

convex
otherwise,       is called multimodal and      nonconvex

Properties of Membership Functions

dimo
Sticky Note
this should read \mu_A

dimo
Sticky Note
this should read {x | \mu_A(x) > 0}
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is called normalized if its height is 1
is called the support of     
is called the core of

An α-cut of      is the set
If      contains only one maximum, we call      unimodal and

convex
otherwise,       is called multimodal and      nonconvex

Properties of Membership Functions

1 2 3 4 5 6 7 8 9

0.2

1.0

0.6

normalized?
support?

yes core? [3,7]    {8}

∩

0.5-cut?

unimodal or
multimodal?
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Union, intersection, and complement:

Operations on Fuzzy Sets

A B A B B

st
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A

union = max intersection = min complement = 1-x
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How do we get back “crisp” numbers (fuzzy set real number)?
there are many ways of doing it!

Maximum defuzzification: take       with 
simple but not accurate if       multimodal

Centroid defuzzification:
very accurate
might be complicated to compute
often used

Defuzzifying

1

20
ml

200 
ml

100 
ml

140 
ml

160 
ml

40 
ml

60 
ml

80 
ml

120 
ml

180 
ml

fullempty half empty
almost empty almost full
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Classical Logic: 
IF p THEN q
equivalent to

Fuzzy Logic:
not so easy with fuzzy sets

interpretation as            results in some undesired effects
hence, rather “inference” than implication (for math. reasons)

in general, implication is a function 
> 40 different implication rules proposed
here, we consider only three (the easy and most used ones)

Fuzzy Logic: Inferring Statements

q = true q = false
p = true true false
p = false true true
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The sharp implication:

intuition:  if    and    are crisp sets, then             iff   

Mamdani’s inference1:
membership function of implication:

only ¼ of corner values
equal to 2-valued logic!

inference, no implication
1 E. H. Mamdani. “Application of fuzzy logic to approximate reasoning using linguistic synthesis”. IEEE 

Transactions on Computers, C-26(12):1182–1191, December 1977.

Fuzzy Logic: Inferring Statements

q=0 q=0.5 q=1
p=0 1 1 1

p=0.5 0 1 1
p=1 0 0 1

q=0 q=0.5 q=1
p=0 0 0 0

p=0.5 0 0.5 0.5
p=1 0 0.5 1
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Larsen Product implication1:
membership function of implication:

again: only ¼ of corner
values equal 2-valued logic!

inference, no implication

1 P. M. Larsen, "Industrial Applications of Fuzzy Logic Control”, International Journal of Man-Machine 
Studies, Vol. 12, No. 1, 1980, pp. 3-10.

Fuzzy Logic: Inferring Statements

q=0 q=0.5 q=1
p=0 0 0 0

p=0.5 0 0.25 0.5
p=1 0 0.5 1
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IF service is excellent AND food is delicious THEN tip is generous

What happens for different service and food qualities?
fuzzify inputs
compute value of left-hand side
then apply above rule (e.g. wrt. Mamdani’s rule)
use defuzzification rule (e.g. centroid)

Example

1

100%

good excellent

80%

1

100%

delicious outstanding

80%

food qualityservice quality
1

15%

generous

20%

tip
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IF service is excellent AND food is delicious THEN tip is generous

What happens for different service and food qualities?
fuzzify:

60% excellent AND 20% delicious

Example

1

100%

good excellent

80%

1

100%

delicious outstanding

80%

food qualityservice quality
1

15%

generous

20%

tip

60% excellent 20% delicious
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IF service is excellent AND food is delicious THEN tip is generous

What happens for different service and food qualities?
fuzzify:

60% excellent AND 20% delicious
50% excellent AND 90% delicious

compute value of left-hand: here “AND = min.”
20%
50%

Example

1

100%

good excellent

80%

1

100%

delicious outstanding

80%

food qualityservice quality
1

15%

generous

20%

tip

50% excellent 90% delicious
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IF service is excellent AND food is delicious THEN tip is generous

What happens for different service and food qualities?
apply Mamdani’s rule: 

Example

1

100%

good excellent

80%

1

100%

delicious outstanding

80%

food qualityservice quality
1

15%

generous

20%

tip

1

15%

generous

20%

tip
1

15%

generous

20%

tip

0.2
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IF service is excellent AND food is delicious THEN tip is generous

What happens for different service and food qualities?
use defuzzification rule (e.g. centroid)
here: same result, but also only 1 rule applied

Example

1

100%

good excellent

80%

1

100%

delicious outstanding

80%

food qualityservice quality
1

15%

generous

20%

tip

1

15%

generous

20%

1

15%

generous

20%

0.2

20% 20%
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IF service is excellent AND food is delicious THEN tip is generous

Multiple rules
a) apply all inference rules
b) aggregate resulting membership functions (e.g. with max.)

Example

1

100%

good excellent

80%

1

100%

delicious outstanding

80%

food qualityservice quality
1

15%

generous

20%

tip

1

15% 20%

1

15%

normal

20%

0.4

1

15%

generous

20%

0.6

10% 10%

aggregate 

IF service is normal AND food is normal THEN tip is normal
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IF service is excellent AND food is delicious THEN tip is generous

Multiple rules
a) apply all inference rules
b) aggregate resulting membership functions (e.g. with max.)

Example

1

100%

good excellent

80%

1

100%

delicious outstanding

80%

food qualityservice quality
1

15%

generous

20%

tip

1

15% 20%

1

15%

normal

20%

0.4

18%

1

15%

generous

20%

0.6

10% 10%

aggregate 

IF service is normal AND food is normal THEN tip is normal
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“Classical” control:
mathematical (“crisp”) formulations
based on mathematical models, especially ODEs
e.g. "210°C < TEMP < 220°C"

Fuzzy control:
design formalized by words
based on experience of the designer
e.g. "IF (process is too cool) AND (process is getting colder) 
THEN (add heat to the process)" or "IF (process is too hot) 
AND (process is heating rapidly) THEN (cool the process 
quickly)"

Fuzzy Control
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Back to the water tap problem from last week:

imagine measurements of temperature and
water flow (e.g. per second) and the
controllable inputs “hot water” and “cold water”
further assume the inputs are fuzzified as
{too cold, fine, too hot} (for the temperature) and
{not enough, fine, too much} (for the water flow)
00

Then, a 3x3 rule matrix can show the responses:

A Simple Rule Matrix

Frank C.
Müller

too cold fine too hot
not enough

fine
too much
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Back to the water tap problem from last week:

imagine measurements of temperature and
water flow (e.g. per second) and the
controllable inputs “hot water” and “cold water”
further assume the inputs are fuzzified as
{too cold, fine, too hot} (for the temperature) and
{not enough, fine, too much} (for the water flow)
00

Then, a 3x3 rule matrix can show the responses:

e.g. IF temperature is fine AND water flow is not enough THEN
increase both cold and hot water

A Simple Rule Matrix

Frank C.
Müller

too cold fine too hot
not enough increase hot increase hot & cold increase cold

fine decrease cold &
increase hot

do nothing increase cold & 
decrease hot

too much decrease cold decrease hot & cold decrease hot
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Example: electric heater
given: goal temperature Topt

measured: temperature T and
temperature change dT/dt
controlled inputs: heat (heating on)
and cool (fan on)
fuzzify: T-Topt and d(T-Topt)/dt in {negative, zero, positive}

Another Rule Matrix

temperature: T-Topt

negative zero positive

te
m

pe
ra

tu
re

 
ch

an
ge

:
d 

(T
-T

op
t)/

dt negative

zero

positive
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Example: electric heater
given: goal temperature Topt

measured: temperature T and
temperature change dT/dt
controlled inputs: heat (heating on)
and cool (fan on)
fuzzify: T-Topt and d(T-Topt)/dt in {negative, zero, positive}

Another Rule Matrix

temperature: T-Topt

negative zero positive

te
m

pe
ra

tu
re

 
ch

an
ge

:
d 

(T
-T

op
t)/

dt negative heat heat cool

zero heat do nothing cool

positive heat cool cool
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nothing fancy, but assisting to not forget a rule
not much helpful if >2 input variables
not always necessary to define output for all input combinations 
not usable if rules are not of the form “IF a AND b THEN c”
odd number of rows and columns often helpful (to have a “zero” 
state with no change)

Again: What if a fuzzified “crisp” input value fire >1 rule?
then: aggregation (union, max) of output membership functions

Remarks on Rule Matrices
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1) Define control objectives and criteria

What am I trying to control? What do I have to do to control 
the system? What kind of response do I need? What are the 
possible (probable) system failure modes?

2) Determine input/output relationships and choose the variables.
3) Break the control problem down into a series of IF X AND Y 

THEN Z rules (or similar) that define the desired system output 
response for given system input conditions.
! If possible, use at least one variable and its time derivative. 

4) Create Fuzzy Logic membership functions and decide on 
inference rules that define the meaning (values) of the 
Input/Output terms used in your rules.

5) Implement the system in software (or hardware).
6) Test, evaluate, and tune the rules and membership functions, 

until satisfactory results are obtained.
according to the Fuzzy Logic Tutorial by Steven D. Kaehler 

http://www.seattlerobotics.org/encoder/mar98/fuz/flindex.html

How to Design a Fuzzy Controller
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Exercise:
A Fuzzy Controller for the
Pole Balancing Problem
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Artificial Neural Networks
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W.-C. A. Lee, H. Huang, G. Feng, J. R. Sanes, E. N. Brown, P. T. So, E. Nedivi

1836: Discovery of the
neural cell of the brain,
the neuron



32Advanced Control Lecture: FL and ANNs, ECP, Jan. 18, 2013© Anne Auger and Dimo Brockhoff, INRIA 32

Mastertitelformat bearbeitenThe Biological Neuron

dendrite

soma

nucleus

node of Ranvier

myelin sheath

axon terminal

Schwann cell

inputs output

Quasar 
Jarosz 
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weights

inputs

transfer function

output

1943: Warren McCulloch 
and Walter Pitts propose
the Threshold Logic Unit
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linear

step

sigmoidal

advantage: differentiable

Types of Transfer Functions
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Artificial Neurol Networks = a network of artificial neurons

Combining Artificial Neurons

layer of 
neurons
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Artificial Neural Networks (ANNs) = a network of artificial neurons

Combining Artificial Neurons

input 
layer

hidden 
layer(s)

output 
layer

Feed-forward network:
no “backwards” flow of
information

Linear transfer functions:
multi-layer networks can be
simulated by a single-layer ANN



37Advanced Control Lecture: FL and ANNs, ECP, Jan. 18, 2013© Anne Auger and Dimo Brockhoff, INRIA 37

Mastertitelformat bearbeiten

Supervised learning scenario:
neural network with     inputs and      outputs
given a set of training data
what are “optimal” weights such that

is minimal?

Optimizing Weights in Order to Optimize Output

n m
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training data set vs. testing data set

training error vs. validation error

Generalization vs. Overfitting
generalization behaviour desired
overfitting especially when not much training data available

Testing and Training in Supervised Learning

training error

validation error
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Optimization:

Gradient Descent Algorithm
initialize 
At each iteration   :

compute gradient 

Gradient Descent to Optimize

learning rate
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Optimization:

Gradient Descent Algorithm
initialize 
At each iteration   :

compute gradient 

! can be slow close to optimum
other algorithms might be favorable

Gradient Descent to Optimize

learning rate
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Optimization:

Gradient Descent Algorithm
initialize 
At each iteration   :

compute gradient 

! can be slow close to optimum
other algorithms might be favorable
(keyword: natural gradient)

Gradient Descent to Optimize

learning rate

P.A. Simionescu

Example:
Rosenbrock function
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How to choose the weights in a multi-layered ANN?
Why not optimize weights directly?

since complicated*, better:
gradient descent after each training sample
= stochastic gradient descent (SGD, online gradient descent)

descent steps can be performed multiple times over the 
training set (e.g. with random shuffling)

* complicated: difficult analytically, numerically expensive

Optimizing Weights in a Layered Network
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The Backpropagation Algorithm
introduced around 1970, it gave rise to a renaissance of ANNs
mainly useful for feed-forward networks
all transfer functions must be differentiable
main idea:

an efficient stochastic gradient descent by updating all weights at 
once in a smart way
for simplicity here: only one output layer

Optimizing Weights in a Layered Network
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Goal:

using stochastic gradient descent, we need

Backpropagation: Notations
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we can compute                                           one by one

analytically or numerically
or with a trick at once for all i,j,l

what needs to be done is to compute the
we can start with the output layer and propagate the 
information backwards by means of the derivative of 

Computing the Partial Derivatives
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Notes:
stochastic gradient descent converges to local minimum
random initial values, restarts
more about optimization algorithms within the next weeks

Computing the δj
(l)

If time allows:
math for this part in the end of the course



48Advanced Control Lecture: FL and ANNs, ECP, Jan. 18, 2013© Anne Auger and Dimo Brockhoff, INRIA 48

Mastertitelformat bearbeiten

Many application areas: e.g.
identification problems

face recognition
medical diagnoses
character recognition in mobile devices

predictions/forecasting
stock market
electronic nose

control

Applications of Neural Networks

At the end of the course:
exercise using ANNs for
the pole balancing problem

Ralf Pfeifer

1993
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I hope it became clear...

...how to build a fuzzy controller (at least in principle)

...what artificial neural networks are

...and that designing a good controller is not always easy

Conclusions
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