Advanced Control

January 18, 2013 École Centrale Paris, Châtenay-Malabry, France

Anne Auger INRIA Saclay – Ile-de-France

Innio

Dimo Brockhoff INRIA Lille – Nord Europe

Course Overview

Date		Торіс
Fri, 11.1.2013	DB	Introduction to Control, Examples of Advanced Control, Introduction to Fuzzy Logic
Fri, 18.1.2013	DB	Fuzzy Logic (cont'd), Introduction to Artificial Neural Networks
Fri, 25.1.2013	AA	Bio-inspired Optimization, discrete search spaces
Fri, 1.2.2013	AA	The Traveling Salesperson Problem
Fri, 22.2.2013	AA	Continuous Optimization I
Fri, 1.3.2013	AA	Continuous Optimization II
Fr, 8.3.2013	DB	Controlling a Pole Cart
Do, 14.3.2013	DB	Advanced Optimization: multiobjective optimization, constraints,
Tue, 19.3.2013		written exam (paper and computer)

all classes + exam at 8h00-11h15 (incl. a 15min break around 9h30)

Remark to last exercise

All information also available at

http://researchers.lille.inria.fr/~brockhof/advancedcontrol,

(exercise sheets, lecture slides, additional information, links, ...)

Remarks to Last Exercise

Result for angle = 0 and pos = 0 showed that

 both "bang-bang" and "continuous force" controller with random k₁, ..., k₄ resulted in 100% stable controllers

l said

"should not be the case"

What happened?

- "bang-bang" was not really bang-bang in my simulation: (F=0 in the beginning)
- "bang-bang" with $F_0 \neq F_m$ gives <<100% stable results

Fuzzy Logic

Fuzzy Logic

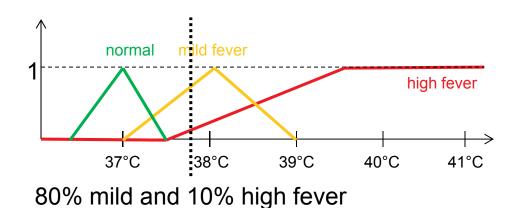
- a mathematical tool to deal with uncertainties
- often described as "computing with words"¹
 - e.g. {low, medium, high} instead of {0,1}
- standard sets: either a in A or a not in A
- fuzzy sets: a in A with probability p_a
- e.g. "high fever with probability 50% and mild fever with 30%"

38°C	40.1°C
	41.4°C
39.3°C	42°C
	high fever
37.2°C	

Fuzzification and Membership Functions

Fuzzification:

transferring a real-valued
 variable into a fuzzy one



Several membership functions $\mu_A(x)$ known to do that: $\mu_A(x)$ triangular \bigcap_{x} Gaussian \bigcap_{x} exponential trapezoidal

In the end...

...everything is based on intuition (there are no strict rules)

Properties of Membership Functions

- μ_A is called normalized if its height is 1
- $\{x \mid \mu_A(x) = 1\}$ is called the support of $\overline{\mathbb{F}}_n$
- $\{x \mid \mu_A(x) = 1\}$ is called the core of μ_A
- An α -cut of μ_A is the set $A_{\alpha} = \{x \mid \mu_A(x) \ge \alpha\}$
- If μ_A contains only one maximum, we call μ_A unimodal and A convex
- otherwise, μ_A is called multimodal and A nonconvex

Properties of Membership Functions

- μ_A is called normalized if its height is 1
- $\{x \mid \mu_A(x) = 1\}$ is called the support of w_n

2

3

- $\{x \mid \mu_A(x) = 1\}$ is called the core of μ_A
- An α -cut of μ_A is the set $A_{\alpha} = \{x \mid \mu_A(x) \ge \alpha\}$
- If μ_A contains only one maximum, we call μ_A unimodal and A convex
- otherwise, µ_A is called multimodal and A nonconvex
 normalized? yes
 core? [3,7] ∪{8}
 1.0
 0.6

0.5-cut?

6

5

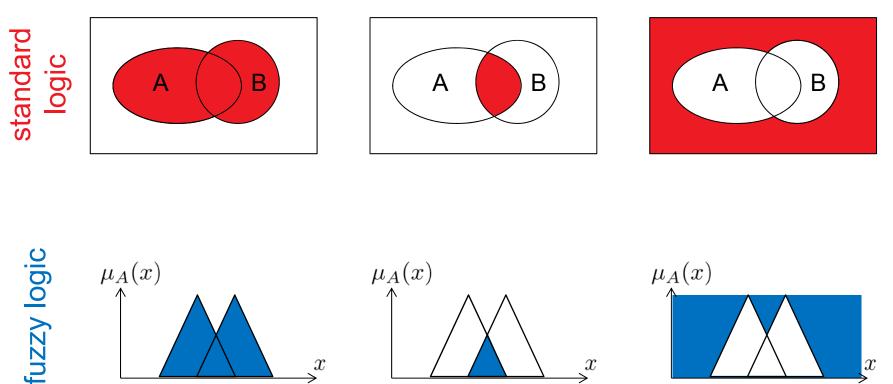
0.2

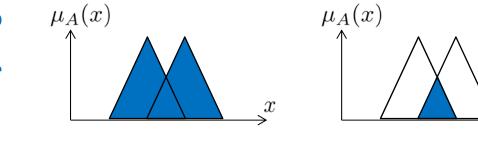
9

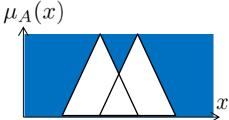
8

Operations on Fuzzy Sets

Union, intersection, and complement:







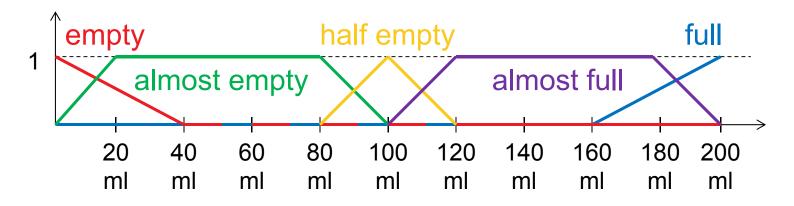
union $= \max$

intersection = min

complement = 1-x

x

Defuzzifying



How do we get back "crisp" numbers (fuzzy set \rightarrow real number)?

there are many ways of doing it!

Maximum defuzzification: take x^* with $\forall x : \mu_A(x^*) \ge \mu_A(x)$

• simple but not accurate if μ_A multimodal

Centroid defuzzification: x^* =

$$=\frac{\int \mu_A(x)xdx}{\int \mu_A(x)dx}$$

- very accurate
- might be complicated to compute
- often used

Fuzzy Logic: Inferring Statements

Classical Logic:

- IF p THEN q
- equivalent to $\neg p \lor q$

	q = true	q = false
p = true	true	false
p = false	true	true

Fuzzy Logic:

- not so easy with fuzzy sets
 - interpretation as $\neg p \lor q$ results in some undesired effects
 - hence, rather "inference" than implication (for math. reasons)
- in general, implication is a function $\mu(x, y) = \Phi(\mu_A(x), \mu_B(y))$
- > 40 different implication rules proposed
- here, we consider only three (the easy and most used ones)

Fuzzy Logic: Inferring Statements

The sharp implication:

•
$$\mu(x,y) = \Phi(\mu_A(x),\mu_B(y)) = \begin{cases} 1 & \text{if } \mu_A(x) \le \mu_B(y) \\ 0 & \text{else} \end{cases}$$

• intuition: if Y and Y are crisp sets, then $X \Rightarrow Y$ iff $X \subseteq Y$

	q=0	q=0.5	q=1
p=0	1	1	1
p=0.5	0	1	1
p=1	0	0	1

Mamdani's inference¹:

membership function of implication:

 $\mu(x,y) = \Phi(\mu_A(x),\mu_B(y)) = \min(\mu_A(x),\mu_B(y))$

only ¼ of corner values equal to 2-valued logic! inference, no implication

	q=0	q=0.5	q=1
p=0	0	0	0
p=0.5	0	0.5	0.5
p=1	0	0.5	1

¹ E. H. Mamdani. "Application of fuzzy logic to approximate reasoning using linguistic synthesis". IEEE Transactions on Computers, C-26(12):1182–1191, December 1977.

Fuzzy Logic: Inferring Statements

Larsen Product implication¹:

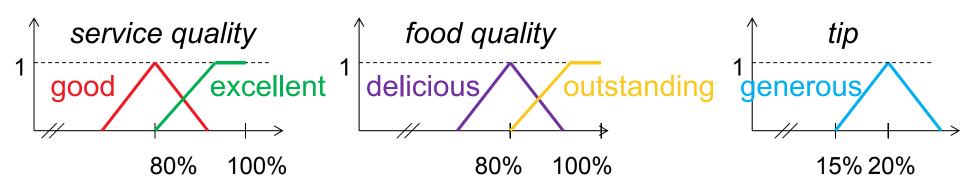
membership function of implication:

 $\mu(x,y) = \Phi(\mu_A(x),\mu_B(y)) = \mu_A(x) \cdot \mu_B(y)$

again: only ¼ of corner values equal 2-valued logic! *inference, no implication*

	q=0	q=0.5	q=1
p=0	0	0	0
p=0.5	0	0.25	0.5
p=1	0	0.5	1

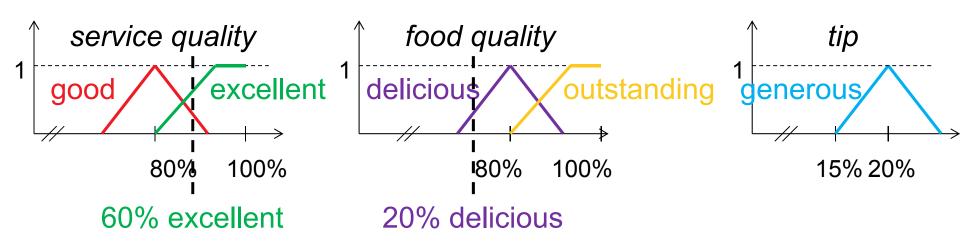
¹ P. M. Larsen, "Industrial Applications of Fuzzy Logic Control", International Journal of Man-Machine Studies, Vol. 12, No. 1, 1980, pp. 3-10.



IF service is excellent AND food is delicious THEN tip is generous

What happens for different service and food qualities?

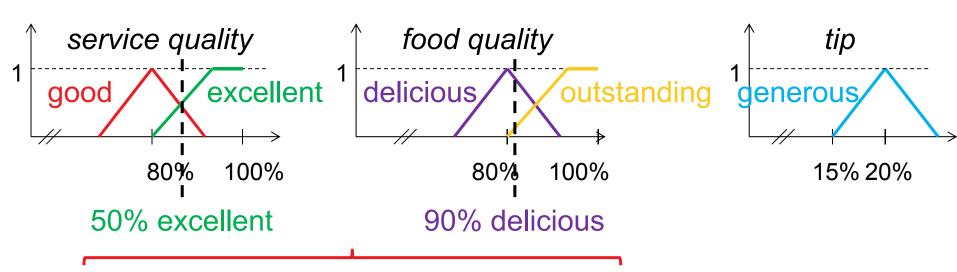
- fuzzify inputs
- compute value of left-hand side
- then apply above rule (e.g. wrt. Mamdani's rule)
- use defuzzification rule (e.g. centroid)



IF service is excellent AND food is delicious THEN tip is generous

What happens for different service and food qualities?

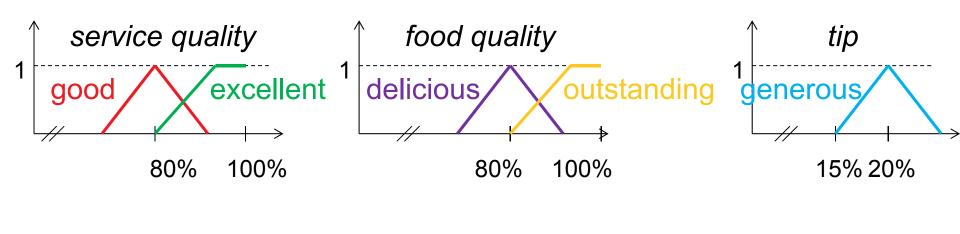
- fuzzify:
 - 60% excellent AND 20% delicious



IF service is excellent AND food is delicious THEN tip is generous

What happens for different service and food qualities?

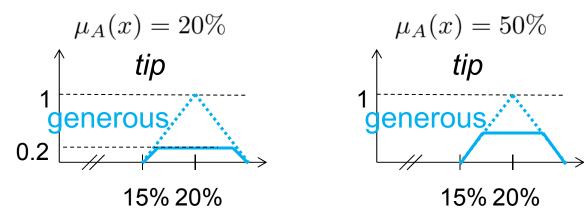
- fuzzify:
 - 60% excellent AND 20% delicious
 - 50% excellent AND 90% delicious
- compute value of left-hand: here "AND = min."
 - **20%**
 - **50%**

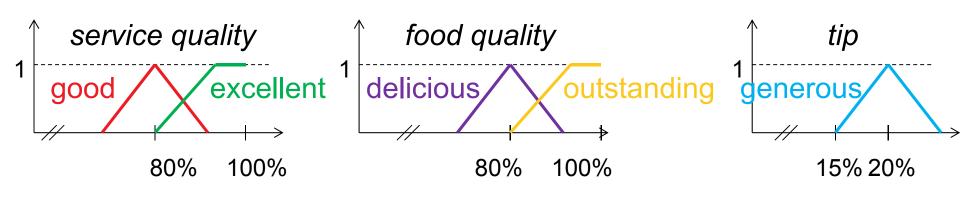


IF service is excellent AND food is delicious THEN tip is generous

What happens for different service and food qualities?

3 apply Mamdani's rule: $\mu(x, y) = \min(\mu_A(x), \mu_B(y))$

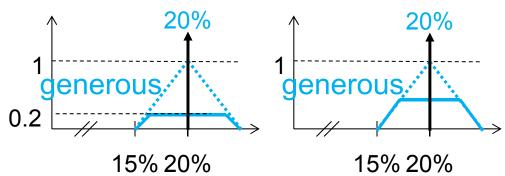


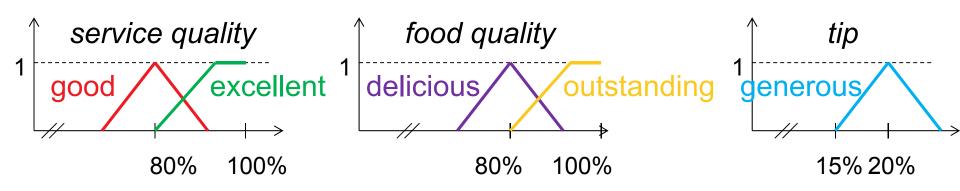


IF service is excellent AND food is delicious THEN tip is generous

What happens for different service and food qualities?

use defuzzification rule (e.g. centroid)
 here: same result, but also only 1 rule applied

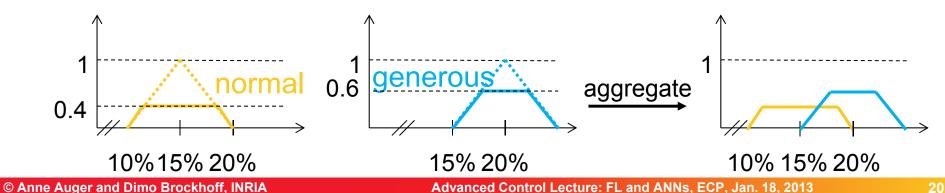


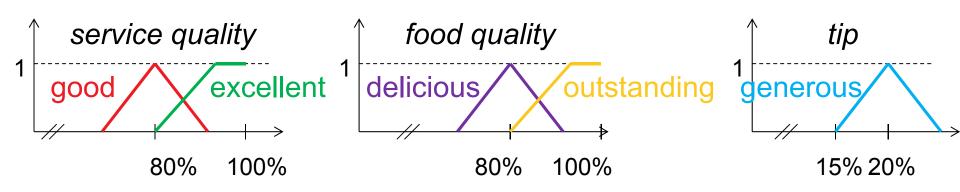


IF service is normal AND food is normal THEN tip is normal IF service is excellent AND food is delicious THEN tip is generous

Multiple rules

- a) apply all inference rules
- b) aggregate resulting membership functions (e.g. with max.)

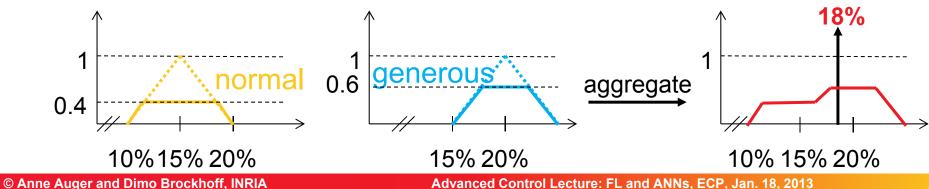




IF service is normal AND food is normal THEN tip is normal IF service is excellent AND food is delicious THEN tip is generous

Multiple rules

- a) apply all inference rules
- 6 b) aggregate resulting membership functions (e.g. with max.)



Fuzzy Control

"Classical" control:

- mathematical ("crisp") formulations
- based on mathematical models, especially ODEs
- e.g. "210°C < TEMP < 220°C"

Fuzzy control:

- design formalized by words
- based on experience of the designer
- e.g. "IF (process is too cool) AND (process is getting colder) THEN (add heat to the process)" or "IF (process is too hot) AND (process is heating rapidly) THEN (cool the process quickly)"

A Simple Rule Matrix

Back to the water tap problem from last week:

- imagine measurements of temperature and water flow (e.g. per second) and the controllable inputs "hot water" and "cold water"
- further assume the inputs are fuzzified as {too cold, fine, too hot} (for the temperature) and {not enough, fine, too much} (for the water flow)

Then, a 3x3 rule matrix can show the responses:

	too cold	fine	too hot
not enough			
fine			
too much			

A Simple Rule Matrix

Back to the water tap problem from last week:

- imagine measurements of temperature and water flow (e.g. per second) and the controllable inputs "hot water" and "cold water"
- further assume the inputs are fuzzified as {too cold, fine, too hot} (for the temperature) and {not enough, fine, too much} (for the water flow)

Then, a 3x3 rule matrix can show the responses:

	too cold	fine	too hot
not enough	increase hot	increase hot & cold	increase cold
fine	decrease cold & increase hot	do nothing	increase cold & decrease hot
too much	decrease cold	decrease hot & cold	decrease hot

e.g. IF temperature is fine AND water flow is not enough THEN increase both cold and hot water

© Anne Auger and Dimo Brockhoff, INRIA

Another Rule Matrix

Example: electric heater

- given: goal temperature T_{opt}
- measured: temperature T and temperature change dT/dt
- controlled inputs: heat (heating on) and cool (fan on)
- fuzzify: T-T_{opt} and d(T-T_{opt})/dt in {negative, zero, positive}

		temperature: T-T _{opt}		
		negative	zero	positive
ature ge: _{pt})/dt	negative			
temperature change: d (T-T _{opt})/dt	zero			
tem cl d (7	positive			

Another Rule Matrix

Example: electric heater

- given: goal temperature T_{opt}
- measured: temperature T and temperature change dT/dt
- controlled inputs: heat (heating on) and cool (fan on)
- fuzzify: T-T_{opt} and d(T-T_{opt})/dt in {negative, zero, positive}

		temperature: T-T _{opt}		
		negative	zero	positive
ature je:)/dt	negative	heat	heat	cool
temperature change: d (T-T _{opt})/dt	zero	heat	do nothing	cool
tem cl d (7	positive	heat	cool	cool

Remarks on Rule Matrices

- nothing fancy, but assisting to not forget a rule
- not much helpful if >2 input variables
- not always necessary to define output for all input combinations
- not usable if rules are not of the form "IF a AND b THEN c"
- odd number of rows and columns often helpful (to have a "zero" state with no change)

Again: What if a fuzzified "crisp" input value fire >1 rule?

then: aggregation (union, max) of output membership functions

How to Design a Fuzzy Controller

1) Define control objectives and criteria

What am I trying to control? What do I have to do to control the system? What kind of response do I need? What are the possible (probable) system failure modes?

- 2) Determine input/output relationships and choose the variables.
- 3) Break the control problem down into a series of IF X AND Y THEN Z rules (or similar) that define the desired system output response for given system input conditions.
 ! If possible, use at least one variable and its time derivative.
- 4) Create Fuzzy Logic membership functions and decide on inference rules that define the meaning (values) of the Input/Output terms used in your rules.
- 5) Implement the system in software (or hardware).
- 6) Test, evaluate, and tune the rules and membership functions, until satisfactory results are obtained.

according to the Fuzzy Logic Tutorial by Steven D. Kaehler http://www.seattlerobotics.org/encoder/mar98/fuz/flindex.html

Exercise: A Fuzzy Controller for the Pole Balancing Problem

Artificial Neural Networks

The Biological Neuron

1836: Discovery of the neural cell of the brain, the neuron

5

W.-C. A. Lee, H. Huang, G. Feng, J. R. Sanes, E. N. Brown, P. T. So, E. Nedivi

© Anne Auger and Dimo Brockhoff, INRIA

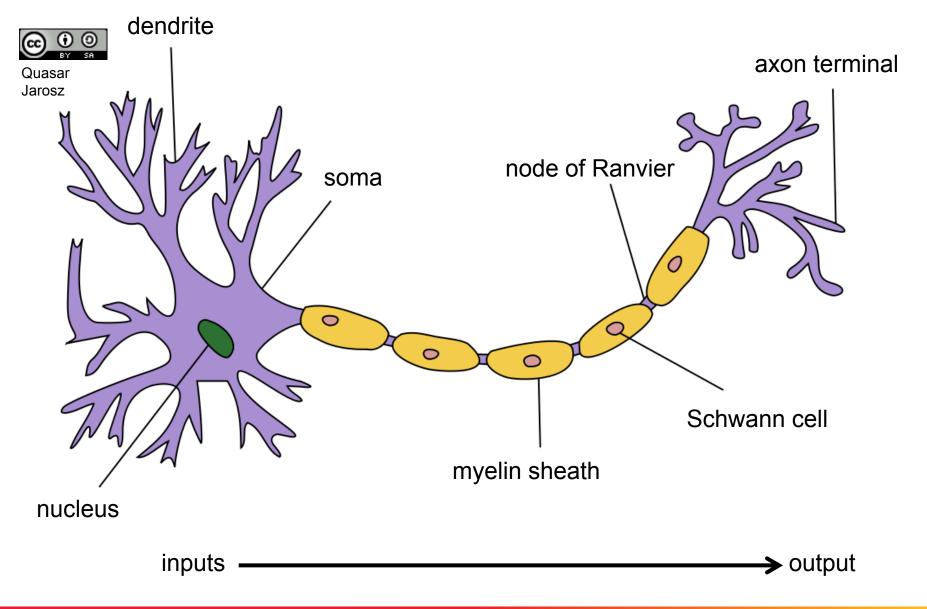
Ο

Advanced Control Lecture: FL and ANNs, ECP, Jan. 18, 2013

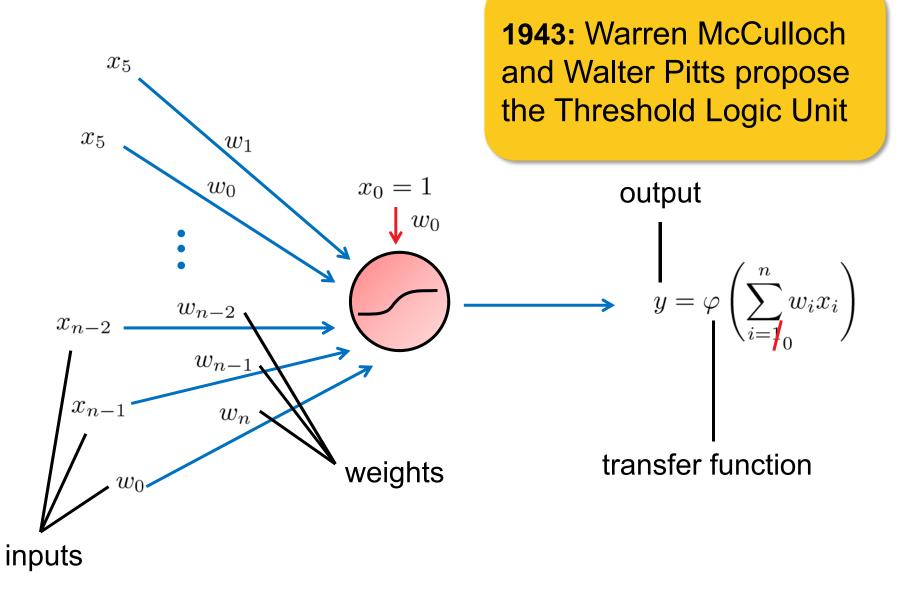
\$2206

a

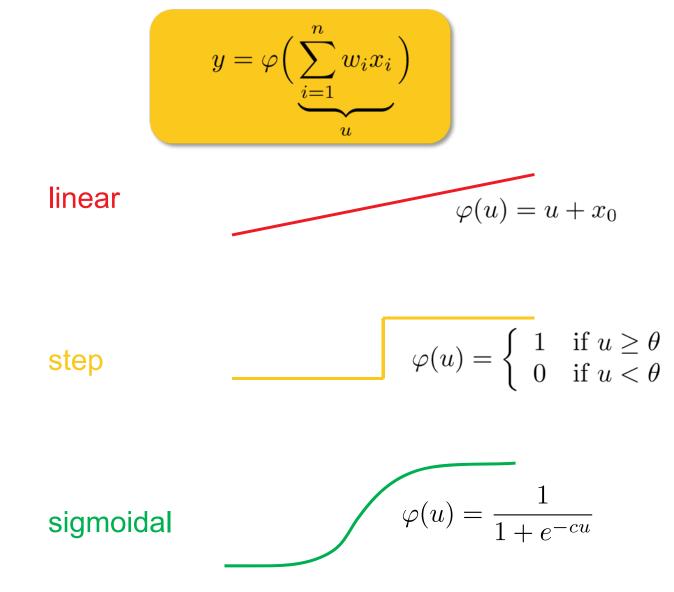
The Biological Neuron



An Artificial Neuron



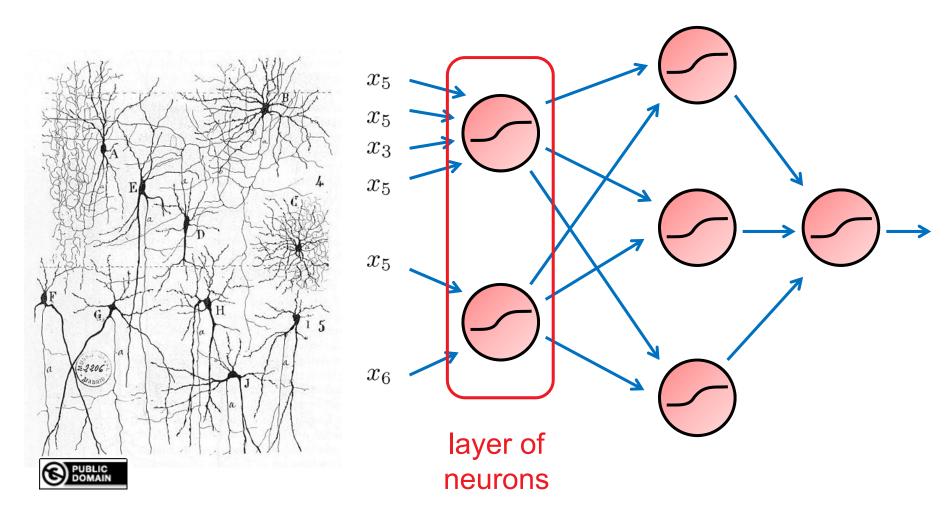
Types of Transfer Functions



advantage: differentiable

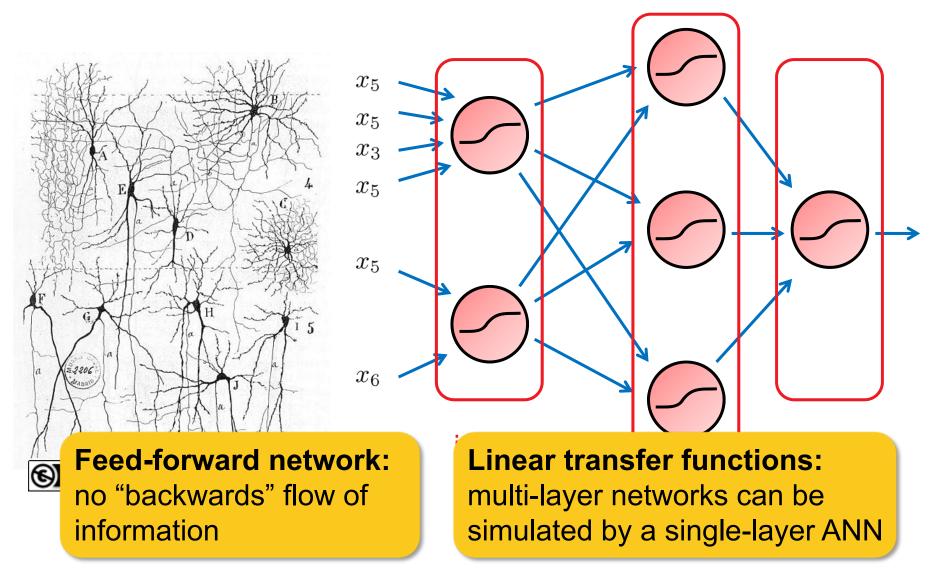
Combining Artificial Neurons

Artificial Neurol Networks = a network of artificial neurons



Combining Artificial Neurons

Artificial Neural Networks (ANNs) = a network of artificial neurons



© Anne Auger and Dimo Brockhoff, INRIA

Optimizing Weights in Order to Optimize Output

Supervised learning scenario:

- neural network with n inputs and m outputs
- given a set of training data $(\vec{x}_1, \vec{d}_1), \dots, (\vec{x}_p, \vec{d}_p)$
- what are "optimal" weights such that

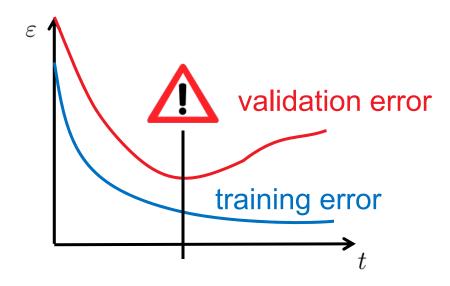
$$E(\vec{w}) = \sum_{j=1}^{p} \sum_{k=1}^{m} ||y_{j,k} - d_{j,k}||^2 = \sum_{j=1}^{p} \sum_{k=1}^{m} ||\varphi_k(\vec{x}_j, \vec{w}) - d_{j,k}||^2$$

is minimal?

Testing and Training in Supervised Learning

training data set vs. testing data set

training error vs. validation error



Generalization vs. Overfitting

- generalization behaviour desired
- overfitting especially when not much training data available

Gradient Descent to Optimize

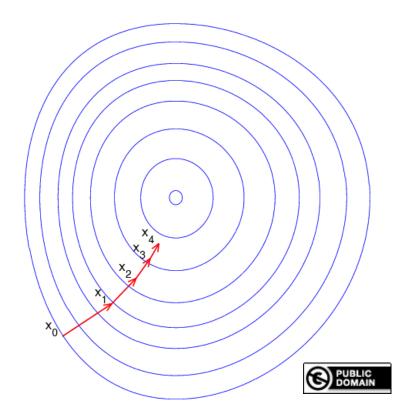
Optimization:

$$\min_{x \in \mathbb{R}^n} f(x)$$

Gradient Descent Algorithm

initialize $x_0 \in \mathbb{R}^n$ At each iteration t:

- compute gradient ∇f
- $x_{t+1} = x_t \gamma \nabla f(x_t)$ • **Iearning rate**



Gradient Descent to Optimize

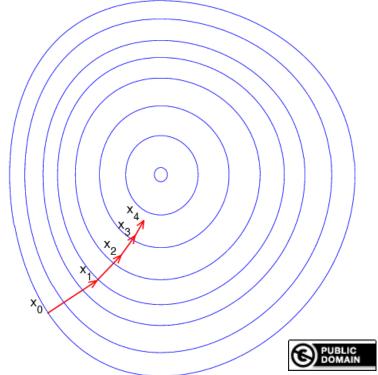
Optimization:

$$\min_{x \in \mathbb{R}^n} f(x)$$

Gradient Descent Algorithm

initialize $x_0 \in \mathbb{R}^n$ At each iteration t:

- compute gradient ∇f
- $x_{t+1} = x_t \gamma \nabla f(x_t)$ • Iearning rate



! can be slow close to optimum other algorithms might be favorable

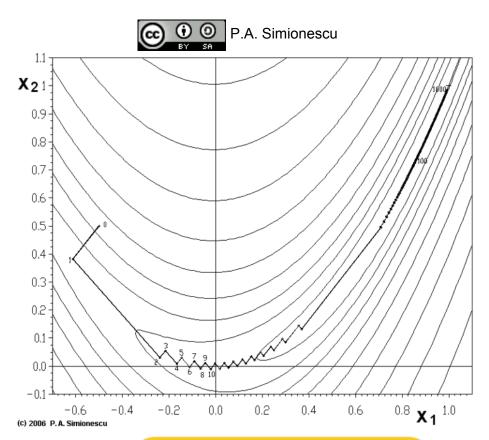
Gradient Descent to Optimize

Optimization:

Gradient Descent Algorithm

initialize $x_0 \in \mathbb{R}^n$ At each iteration t:

- compute gradient ∇f
- $x_{t+1} = x_t \gamma \nabla f(x_t)$ | learning rate



! can be slow close to optimum
 other algorithms might be favorable
 (keyword: natural gradient)

Example: Rosenbrock function

Optimizing Weights in a Layered Network

How to choose the weights in a multi-layered ANN?

Why not optimize weights directly?

$$E(\vec{w}) = \sum_{j=1}^{p} \sum_{k=1}^{m} ||y_{j,k} - d_{j,k}||^2 = \sum_{j=1}^{p} \sum_{k=1}^{m} ||\varphi(\vec{x}_j, \vec{w}) - d_{j,k}||^2$$
$$\vec{w} = \vec{w} - \nabla \left(\sum_{j=1}^{p} \sum_{k=1}^{m} ||\varphi(\vec{x}_p, \vec{w}) - d_{j,k}||^2 \right)$$

since complicated*, better:

gradient descent after each training sample

= stochastic gradient descent (SGD, online gradient descent)

$$w = w - \nabla \left(\sum_{k=1}^{m} ||\varphi(\vec{x}_j, \vec{w}) - d_{j,k}||^2 \right)$$

 descent steps can be performed multiple times over the training set (e.g. with random shuffling)

> * complicated: difficult analytically, numerically expensive Advanced Control Lecture: FL and ANNS, ECP, Jan. 18, 2013 43

Optimizing Weights in a Layered Network

The Backpropagation Algorithm

- introduced around 1970, it gave rise to a renaissance of ANNs
- mainly useful for feed-forward networks
- all transfer functions must be differentiable
- main idea:

$$\nabla\left(||\varphi(\vec{x}_j, \vec{w}) - d_{j,k}||^2\right) : \frac{\partial\left(||\varphi(\vec{x}_j, \vec{w}) - d_{j,k}||^2\right)}{\partial w_{ij}^{(l)}}$$

an efficient stochastic gradient descent by updating all weights at once in a smart way

for simplicity here: only one output layer

Backpropagation: Notations

$$w_{ij}^{(l)} \begin{cases} 1 \le l \le L & \text{layers} \\ 0 \le i \le d^{(l-1)} & \text{inputs} \\ 1 \le j \le d^{(l)} & \text{outputs} \end{cases}$$

$$x_j^{(l)} = \theta(s_j^{(l)}) = \theta\left(\sum_{i=0}^{d^{(l-1)}} w_{ij}^{(l)} x_i^{(l-1)}\right)$$

Goal:

$$\min E(\varphi(\vec{x}_n, y_n)) = \min e(\vec{w})$$

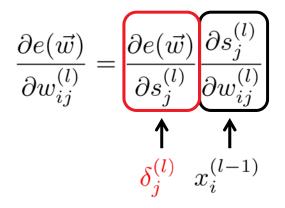
using stochastic gradient descent, we need

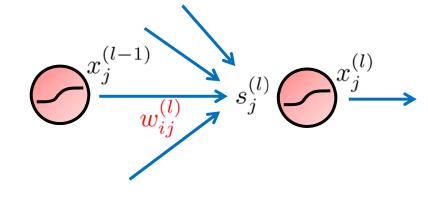
$$\nabla e(\vec{w}) : \frac{\partial e(\vec{w})}{\partial w_{ij}^{(l)}} \text{ for all } i, j, l$$

Computing the Partial Derivatives

we can compute $\nabla e(\vec{w}) : \frac{\partial e(\vec{w})}{\partial w_{ij}^{(l)}}$ for all i, j, l one by one

- analytically or numerically
- or with a trick at once for all i,j,l





- what needs to be done is to compute the $\delta_j^{(l)}$
- we can start with the output layer and propagate the information backwards by means of the derivative of θ

If time allows: math for this part in the end of the course

Notes:

- stochastic gradient descent converges to local minimum
- random initial values, restarts
- more about optimization algorithms within the next weeks

Applications of Neural Networks

Many application areas: e.g.

- identification problems
 - face recognition
 - medical diagnoses
 - character recognition in mobile devices
- predictions/forecasting
 - stock market
 - electronic nose
- control

At the end of the course: exercise using ANNs for the pole balancing problem

I hope it became clear...

...how to build a fuzzy controller (at least in principle)...what artificial neural networks are...and that designing a good controller is not always easy