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Introduction to Control, Examples of Advanced Control,
Introduction to Fuzzy Logic

Fuzzy Logic (cont’d), Introduction to Artificial Neural
Networks

Bio-inspired Optimization, discrete search spaces
The Traveling Salesperson Problem

Continuous Optimization |

Continuous Optimization Il

Controlling a Pole Cart

Advanced Optimization: multiobjective optimization,
constraints, ...

written exam (paper and computer)

all classes + exam at 8n00-11h15 (incl. a 15min break around 9h30)
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Remark to last lecture

All information also available at

http://researchers.lille.inria.fr/~brockhof/advancedcontrol/

(exercise sheets, lecture slides, additional information, links, ...)
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Introduction to

Bio-inspired Optimization

and Genetic Algorithms in particular
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General Context Optimization

Given:
set of possible solutions Search space

uality criterion L . .
4 Y Objective / Fitness function

Objective:
Find the best possible solution for the given criterion

[ | | I
a global maximum il
local maximum
Formally: di k\ i

Maximize or minimize " >/
F : Q I_) R’ | . local minimum 1
z — F(z) e
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Black Box Scenario

black box — F(z) e R

Why are we interested in a black box scenario?

objective function F often noisy, non-differentiable, or sometimes
not even understood or available

Objective: find x with small F(x) with as few function evaluations as
possible

assumption: internal calculations of algo irrelevant
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Example 1. Combinatorial Optimization

Knapsack Problem
= Given a set of objects with
a given weight and value (profit)
* Find a subset of objects whose
overall mass is below a certain
limit and maximizing the
total value of the objects

[Problem of ressource allocation
with financial constraints]

n
max. ija:j with z; € {0} 1}
7=1

n
s.t. Z’lﬂjiﬂj S W

j=1

Q = {0, 1}”J
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Example 2. Combinatorial Optimization

Travelling Salesperson Problem (TSP)
» Given a set of cities and their
distances
= Find the shortest path going
through all cities
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Example 3. Continuous Optimization

Design of a Launcher position

4
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Scenario: multi-stage launcher brings a
satellite into orbit

Minimize the overall cost of a launch

Parameters: propellant mass of each stage /
diameter of each stage / flux of each engine /
parameters of the command law

23 continuous parameters to optimize
+ constraints
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Example 4. Interactive Optimization

Coffee Tasting Problem

= Find a mixture of coffee in order to keep the coffee taste from
one year to another

= QObijective function = opinion of one expert

M. Herdy: “Evolution Strategies with subjective
selection”, 1996
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What makes an optimization problem difficult?

Why using (bio-inspired) search heuristics?

= Search space too large

exhaustive search impossible

= Non conventional objective function or search space
mixed space, function that cannot be computed

= Complex objective function
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non-smooth, non differentiable, Noisy, ...
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Basic Algorithms
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Bio-inspired Stochastic Optimization Algorith

One class of bio-inspired stochastic optimization algorithms:
Evolutionary Algorithms (EAS)

THE ORIGIN OF SPECIES

» Class of optimization algorithms ===
inspired by the idea of biological -
evolution k.

» selection, mutation, recombination | SEEE
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Metaphors

Classical Optimization Evolutionary Computation

candidate solution individual, offspring, parent
vector of decision variables /
design variables / object

variables
set of candidate solutions population
objective function fitness function

loss function
cost function
error function

iteration generation
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Generic Framework of an EA
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Opérateurs stochastiques:

| "Darwinisme" (stochastique ou déterministe)

Important:

representation (search space)
S
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The Historic Roots of EAS

Genetic Algorithms (GA)
J. Holland 1975 and D. Goldberg (USA)
Q=4{0,1}"

Evolution Strategies (ES)
|. Rechenberg and H.P. Schwefel, 1965 (Berlin)
() =R"

Evolutionary Programming (EP)

L.J. Fogel 1966 (USA)

Genetic Programming (GP)

J. Koza 1990 (USA)
() = space of all programs

nowadays one umbrella term: evolutionary algorithms
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Examples for some EA parts
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Selection is the major determinant for specifying the trade-off
between exploitation and exploration

Selection is either

stochastic or deterministic
e.g. fitness proportional Disadvantage: e.g. (U+A), (U,A)
| g, = flzi) T~ depends on
' 1 f(z;)  scaling of f

e.g. via a tournament

Mating selection (selection for variation): usually stochastic
Environmental selection (selection for survival): often deterministic
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Variation Operators

Variation aims at generating new individuals on the basis of those
individuals selected for mating

Variation = Mutation and Recombination/Crossover

mutation: mut: 2 — )
recombination: recomb: 2" — 2° wherer>2ands> 1

= choice always depends on the problem and the chosen
representation

= however, there are some operators that are applicable to a wide
range of problems and tailored to standard representations such
as vectors, permutations, trees, etc.
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Variation Operators: Guidelines

Two desirable properties for mutation operators:

= every solution can be generation from every other with a
probability greater than 0 (“exhaustiveness”)

" d(xz,2") <d(xz,z") => Prob(mut(z) = z') > Prob(mut(z) = ="
(“locality”)

Desirable property of recombination operators (“in-between-ness”):
z" = recomb(z,z') = d(z",z) < d(z,x) Ad(z",z) < d(z,z")

I
.:If
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Examples of Mutation Operators on Permutation

Swap: 1]12]13]4]5]6
N4

swap

Scramble: [1]2]8]4]5]/6] — |1 5]6
t 1

rearrange

Invert: 112[8]4]5]6] - [1]4]3]2]5]6
t t

reverse

Insert: 1]12]3]4]5|/6| — —~[1]4]2]3]|5]6
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Examples of Recombination Operators: {0,1}"

1-point crossover

[1[1]ofof1]0]
—— [l1]ofo]o]1

1[o[1]o}0]1

n-point crossover

[1i1]ofof1]0] Fil0 4 [0 [0}

1§0 1 0§0 1

uniform crossover

_ choose each bit
—— []ofofolofo]

independently from
11011/0[0]1 one parent or another
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A Canonical Genetic Algorithm

* binary search space, maximization
= uniform initialization
= generational cycle: of the population
= evaluation of solutions
= mating selection (e.g. roulette wheel)
= crossover (e.g. 1-point)
= environmental selection (e.g. plus-selection)
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First Conclusions of Introductory Part

= EAs are generic algorithms (randomized search heuristics,
meta-heuristics, ...) for black box optimization

no or almost no assumptions on the objective function

* They are typically less efficient than problem-specific
(exact) algorithms (in terms of #funevals)

not the case in the continuous case (we will see later)

= Allow for an easy and rapid implementation and therefore
to find good solutions fast

easy to incorporate (and recommended!) to incorporate
problem-specific knowledge to improve the algorithm
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Exercise:
Pure Random Search
and the (1+1)EA

http://researchers.lille. inria.fr/~brockhof/advancedcontroI/J
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Proof Technique Fithess-based Partitions

Q= {0,1}" L

i—1 . 1?:0’!&—1' On—zlz

7 399
1

i—=0 fitness level
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Upper Runtime Bound for (1+1)EA on ONEMZ

=inf{te N, X; =(1,...,1)}

X; estimate of solution at iteration ¢
T; time to leave fitness level 71"

n—1

BE(M) <Y B(T))
1=0

Prob(leaveP;) > 1(1 — 2)"~1 x (n — ) (proba to
flip one and only one of the (n — i) remaining 0)

1 1
1__n—1>_
(1-=)"" =

€

Prob(leaveP;) > 2"

en
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Upper Runtime Bound for (1+1)EA on ONEMAX

<e.n(logn+1)

n—1
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